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Abstract— An efficient decoding algorithm for low-density
parity-check (LDPC) codes on erasure channels with sporadic
errors (i.e., binary error-and-erasure channels with error prob-
ability much smaller than the erasure probability) is proposed
and its performance analyzed. A general single-error multiple-
erasure (SEME) decoding algorithm is first described, which
may be in principle used with any binary linear block code.
The algorithm is optimum whenever the non-erased part of the
received word is affected by at most one error, and is capable of
performing error detection of multiple errors. An upper bound
on the average block error probability under SEME decoding
is derived for the linear random code ensemble. The bound is
tight and easy to implement. The algorithm is then adapted to
LDPC codes, resulting in a simple modification to a previously
proposed efficient maximum likelihood LDPC erasure decoder
which exploits the parity-check matrix sparseness. Numerical
results reveal that LDPC codes under efficient SEME decoding
can closely approach the average performance of random codes.

I. INTRODUCTION

The design and decoding of low-density parity-check
(LDPC) codes [1] applied to erasure channels has been vastly
explored in the past decade (see e.g. [2]–[7]). While origi-
nally most of the attention has been paid to the construction
of LDPC codes able to approach the channel capacity under
iterative (IT) decoding, more recently practical maximum-
likelihood (ML) decoding algorithms for LDPC codes over
erasure channels have been devised [6], [8], paving the way
for the design of codes for hybrid IT/ML decoders [9], [10].
It has been shown that ML decoding of LDPC codes can
largely outperform its iterative counterpart, attaining on the
binary erasure channel (BEC) performances close to those of
idealized maximum distance separable (MDS) codes down
to moderate-low error rates [9].

In general, ML decoding of an (n, k) binary linear block
code on the erasure channel turns into solving a system
of n − k equations (imposed by the parity-check matrix of
the code) in the e unknowns corresponding to the e erased
symbols of the codeword. The system is solved by means of
Gauss-Jordan elimination (GJE), which is known to have a
complexity scaling as O(n3). For LDPC codes, the parity-
check matrix sparseness can be exploited to heavily reduce
the fraction of unknowns to be solved by GJE [8], [11].
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Such unknowns are usually referred to as pivots,1 and the
algorithm to select the pivots is termed pivoting algorithm
[12].2 Once the pivots are solved, the remaining unknowns
are recovered by the usual iterative decoding algorithm with
linear complexity.

The erasure channel model is adopted in a number of
applications. For example, in wireless communication sys-
tems, packets that cannot be correctly decoded are discarded
(through a frame validation test involving an error detecting
code), and lost packets are treated as erasures at the higher
layers where a packet erasure correcting code may be used
to recover the missing packets [14]. In optical communica-
tions with pulse-position modulation (PPM), erasure channel
models have been adopted under the assumptions of absent
background radiation and low noise power [15], [16].

Albeit accurate, the erasure channel represents only an
approximation of the actual behavior of these channels.
In wireless communications, the probability of undetected
errors (due to error patterns that satisfy the constraints of
the error detection code) is always bounded away from zero
[17]. In optical communication systems, even in absence of
background radiation and for low noise power, errors may
take place, even if with small probabilities [16]. In both
cases, the channel can be more realistically modeled by
an erasure channel with sporadic errors, i.e. by an error-
and-erasure channel with erasure probability ǫ and error
probability p, where p ≪ ǫ. For example, when a CRC-16
is used to detect errors for an uncoded transmission over
a binary symmetric channel (BSC) with error probability
q = 10−2, undetected errors may happen with probability
close to 10−5 [17]. Hence, in this case the error probability
of the equivalent packet error-and-erasure channel would
be p = 10−5. Assuming at the higher layers a packet
erasure correcting code (i.e. a code only attempting to correct
erasures) with block size n = 103 packets, undetected errors
would compromise the recovery of a block with probability
Pe = 1−(1−p)n ≃ 10−2, so that the block error probability
after erasure decoding would be bounded by Pe ≥ 10−2,
regardless the erasure probability.

Iterative belief propagation decoding of LDPC codes over
the binary error-and-erasure channel (BEEC) can be naturally
implemented by initializing the decoder with the appropriate
log-likelihood ratios (LLRs). According to Fig. 1, assuming
the channel input is x ∈ {0, 1} and the channel output
y ∈ {0, 1, ?} (where ‘?’ denotes an erasure), the message

1Reference variables in [8].
2Pivoting is inherently related to guessing in the alternative ML algo-

rithms proposed in [6], [13].
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at the input of the generic variable node would be Λ(y) =
ln[Pr(x = 0|y)/ Pr(x = 1|y)] resulting in Λ(0) = ln[(1 −
ǫ − p)/p], Λ(1) = − ln[(1 − ǫ − p)/p] and Λ(?) = 0.

In this paper, we introduce an efficient decoding algorithm
for LDPC codes, which extends the ML erasure decoding
algorithm of [8] in the sense of correcting sporadic errors.
For the sake of simplicity, we focus on the binary case
and assume the BEEC as the channel model. However,
the proposed algorithm may be easily extended to packet
error-and-erasure channels. The proposed algorithm performs
optimum decoding of errors and erasures when a received
word is affected by a single error (also recovering some
erasure patterns containing stopping sets of the IT decoder),
and attempts to perform error detection for error patterns
of larger Hamming weights. For this reason, the algorithm
is named single-error multiple-erasures (SEME) decoder.
The algorithm is first illustrated for the case of a generic
linear block code, and a tight upper bound on its average
error probability for the linear random code ensemble is
developed. The algorithm is then adapted to account for
parity-check matrix sparseness in the LDPC code case. It
is illustrated how LDPC codes can efficiently approach the
average performance of the linear random code ensemble
over the BEEC with sporadic errors. We will see that the
proposed algorithm largely outperforms the IT one in the
region where the block error probability is limited by the
channel erasures rather than by the (sporadic) channel errors.

Several previous works focused on the simultaneous cor-
rection of errors and erasures (e.g. [18]–[21]). In particular,
in [21] some parity-check matrix construction techniques are
developed capable to separate errors and erasures. We will
see in Section III and Section V that the proposed algo-
rithm performs a similar separation, properly and efficiently
modifying the parity-check matrix of an LDPC code after
receiving a word from the BEEC.

The paper is organized as follows. In Section II the nota-
tion used throughout the paper is introduced. In Section III
the SEME algorithm is detailed. The average performance
of the binary linear random code ensemble is analyzed in
Section IV, while the efficient implementation of SEME
decoding for LDPC codes is discussed in Section V. A
comparison between the performance of random codes and
that attainable with LDPC codes on the BEEC is given in
Section VI. Conclusions follow in Section VII.

II. NOTATION AND PRELIMINARIES

The BEEC channel model is depicted in Fig. 1, where
‘?’ denotes an erasure and where the erasure and error
probabilities are denoted by ǫ and p, respectively. Moreover,
we let p∗ = p/(1−ǫ) be the probability that a bit transmitted
over the BEEC is received in error given that the bit has
not been erased. For a given linear block code C(n, k) over
the BEEC, where n is the codeword length and k the code
dimension, we denote by E and L the random variables
expressing the number of erasures affecting the generic
received word of length n and the number of errors affecting
the non-erased bits, respectively. Similarly, we denote by
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Fig. 1. BEEC channel model.

e and l realizations of E and L, respectively. In the case
n − k > e, the number of linearly independent parity-check
equations in excess with respect to the number of erasures,
n−k−e, is defined to be the overhead and is denoted by δ.

Assume now a codeword x′ is transmitted over the BEEC,
resulting in a received word y′ with e erasures and l non-
erased bits in error. We let H be a permuted version of a full-
rank ((n−k)×n) parity-check matrix of the code C(n, k), in
which the columns of the parity-check matrix corresponding
to the erased bits occupy the e left-most positions and the
columns corresponding to the non-erased bits (l of which are
in error) the n−e right-most positions. In this way, H may be
split as H = [HK̄ |HK ], where HK̄ is an ((n−k)×e) matrix
and HK is an ((n − k) × (n− e)) matrix. Similarly, we let
x and y be permuted versions of the transmitted codeword
and of the received word, respectively, according to the same
permutation leading to H. The vectors x and y may be split
as x = [xK̄ |xK ] and y = [yK̄ |yK ], where xK̄ and yK̄ are
vectors of length e associated with the erased bits, while
xK and yK are vectors of length n − e associated with the
non-erased bits (so that the Hamming distance between xK

and yK is equal to l). The vector x must satisfy the relation
xHT = 0, where HT is the transpose of H, which may
be written as xK̄HT

K̄
= xKHT

K . Accordingly, the starting
point of the proposed algorithm will consist of imposing and
analyzing the equality

yK̄HT
K̄

= yKHT
K . (1)

The product yKHT
K in the right-hand side of (1) is a vector

of length n − k that we denote by s and, for reasons that
will be clear in Section III, refer to as the syndrome. In the
case where yK is affected by one error (l = 1), we denote
by herr the column of HK associated with the bit in error.

Throughout the paper, we often exploit the following
result.

Proposition 1: Let A be an ((n− k)× e) random matrix
with e ≤ n − k and whose entries are independent and
identically distributed (i.i.d.) Bernoulli random variables with
parameter 1/2. Then

Pr(rank(A) < e) = 1 −

e
∏

i=1

(

1 −
2i−1

2n−k

)

. (2)
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Fig. 2. Pictorial representation of the equivalent linear system ỹK̄H̃T
K̄

=

yKH̃T
K . In the figure m = n − k.

Moreover, we have

2−(n−k−e)−1 ≤ Pr(rank(A) < e) < 2−(n−k−e) . (3)

Equality (2) is a classical result [22]. The lower bound
in (3) is proved in [23], while a proof of the upper bound
is available [24] where the tightness of both bounds is also
illustrated.

III. SEME DECODING OF LINEAR BLOCK CODES

A. Maximum Likelihood Decoding of Linear Block Codes
over the BEC

Let us assume that the communication channel is a stan-
dard BEC introducing erasures but not errors (p = 0). In
this case, xK = yK and (1) represents a linear system of
n − k (or more than n − k, if H is redundant) equations
in e unknowns which may be simply written as xK̄HT

K̄
=

xKHT
K . Here, the unknowns are the elements of xK̄ and

s = xKHT
K is not affected by any error. Moreover, in this

case we always have rank(HK̄) = rank([HK̄ |sT ]), so that
the Rouché-Capelli theorem is always satisfied. Hence, the
system admits a unique solution when rank(HK̄) = e and
multiple solutions when rank(HK̄) < e (which is always the
case when e > n − k). Provided rank(HK̄) = e and x̂K is
the unique solution of the system, we have xK = x̂K with
probability one.

Different decoding algorithms over the BEC attempt to
solve the system and find x̂K with different approaches,
offering a different trade-off between performance and com-
plexity. Among them, ML decoding consists of solving the
system by GJE performed on the matrix HK̄ . The complexity
of GJE decoding is in general cubic with the dimension of
the system, so that the overall decoding complexity is O(n3).

B. Erasure Decoding over the BEEC with Error Detection

When transmitting over the BEEC (p > 0), the relation
rank(HK̄) = rank([HK̄ |sT ]), always valid over the BEC,
may not hold anymore due to the presence of bit errors affect-
ing s (through yK). In this case, (1) admits a unique solution
when rank(HK̄) = rank([HK̄ |sT ]) = e. The system admits
multiple solutions when rank(HK̄) = rank([HK̄ |sT ]) < e.
Finally, the system is impossible when rank([HK̄ |sT ]) =
rank(HK̄) + 1.

The event that the linear system (1) is impossible is the key
to perform the detection of errors affecting yK . As depicted
in Fig. 2, assuming e < n − k (equivalently δ > 0) and
rank(HK̄) = e, GJE performed on the matrix HK̄ leads to an
equivalent linear system ỹK̄H̃T

K̄
= s̃, where the first e rows

of H̃K̄ form the identity matrix of order e and the last δ rows
are all-zero. Here, s̃T and H̃K is obtained by performing on
sT and HK the same row operations leading to H̃K̄ , and ỹK̄

by performing on yK̄ the same column permutations leading
to H̃K̄ . Splitting s̃ as s̃ = [s̃U |s̃L], where s̃U has length e
and s̃L = yKPT has length δ, detection of errors affecting
yK may be performed by simply observing that, if s̃L 6= 0,
then the BEEC must have necessarily introduced errors in
yK .

Next, we derive a tight upper bound on the average
failure probability P̄ d,BEEC

f,R(n,k) of the erasure decoder with
error detection for the ensemble, denoted by R(n, k), of
random binary linear block codes defined by a parity-check
matrix H with n− k rows and n columns whose entries are
i.i.d. Bernoulli random variables with parameter 1/2.3 By
“failure probability” we mean the probability that either the
erasure pattern cannot be recovered due to rank deficiency
of HK̄ (rank(HK̄) < E) or it can be recovered but the
error pattern on yK is undetected as s̃L = 0. Denoting
these two disjoint events by A and B, respectively, we have
P̄ d,BEEC

f,R(n,k) = Pr(A) + Pr(B) =
∑n

e=1 Pr(A|E = e) Pr(E =

e) +
∑n−k

e=0 Pr(B|E = e) Pr(E = e).

Concerning the conditional event {A|E = e}, since HK̄

is a ((n − k) × e) matrix, we have Pr(A|E = e) = 1 for
e > n − k. Moreover, for e ≤ n − k we have Pr(A|E =
e) < 2−δ from Proposition 1. In conclusion, we may write

Pr(A|E = e) ≤ min{2−δ, 1} (4)

with equality if and only if e > n − k and where the
compact expression (4) allows δ to assume negative values.
Consider now the conditional event {B|E = e}. Due to
independence we have Pr(B|E = e) = Pr(rank(HK̄) =
e) Pr(undetected error|E = e). Invoking again Proposition
1, for e ≤ n − k, Pr(rank(HK̄) = e) can be bounded as

1 − 2−δ < Pr(rank(HK̄) = e) ≤ 1 − 2−δ−1 . (5)

Moreover, since for E = e the submatrix P has dimension
((n − k − e) × (n − e)) (as depicted in Fig. 2) we have

Pr(undetected error|E = e)

=

n−e
∑

l=1

(

n − e

l

)

2−(n−k−e)(p∗)l(1 − p∗)n−e−l

= 2−(n−k−e)(1 − (1 − p∗)n−e) (6)

3Note that the dimension of the generic code belonging to R(n, k) is at
most equal to k but not necessarily equal to k.
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where p∗ = p/(1 − ǫ) as defined in Section II. We obtain

P̄ d,BEEC
f,R(n,k) <

n
∑

e=1

(

n

e

)

ǫe(1 − ǫ)n−e min{2−(n−k−e), 1}

+

n−k
∑

e=0

(

n

e

)

ǫe(1 − ǫ)n−e(1 − 2−(n−k−e+1))

× 2−(n−k−e)(1 − (1 − p∗)n−e) . (7)

The bound is tight due to the tightness of the bounds in (3).

C. SEME Decoding over the BEEC

Besides error detection, correction of errors introduced by
the BEEC may be attempted. In the following, we describe
a decoding algorithm for the correction of single errors
affecting yK and of multiple erasures. The algorithm is
called SEME decoding algorithm.

After a word y has been received from the BEEC, let
us consider performing GJE on the matrix HK̄ , leading to
H̃K̄ , and performing in parallel the same row operations on
HK , leading to H̃K . As for Section III-A and Section III-B,
assuming e < n−k and rank(HK̄) = e, the linear system (1)
is transformed into the equivalent system ỹK̄H̃T

K̄
= yKH̃T

K ,
whose right-hand side is denoted again by s̃ = [s̃U |s̃L] and
where H̃T

K = [QT |PT ] as depicted in Fig. 2.
Let us now focus on the last n − k − e parity-check

equations, assuming rank(HK̄) = e. Due to the presence
of an ((n− k − e)× e) all-zero matrix in the last n− k − e
rows of H̃K̄ , these parity-check equations may be exploited
to correct errors affecting yK regardless erasures. In a similar
way as error detection described in the previous subsection,
error correction may be attempted by exploiting the matrix
P. Note in fact that the situation is now equivalent to the
transmission over a standard BSC of an (n − e, k′) linear
block code C′, with k′ ≥ k and parity-check matrix P. The
vector xK plays the role of the transmitted codeword, yK

of the received word, and s̃L of the syndrome. The code
C′, and therefore its properties and its error correction (and
detection) capability, depend on the number and the positions
of bit coordinates erased by the BEEC.

Optimum decoding of C′ may be performed, in principle,
via syndrome decoding [25], which requires the construction
of a decoding table-lookup. Since C′ is different for different
received words y, the table-lookup for C′ should be con-
structed on-the-fly for each received word, after GJE has been
performed. However, in a sporadic error regime, performing
the correction of only error patterns of Hamming weight 1
may be sufficient: As illustrated in Section VI, it yields a
much better performance than that achieved under a simple
BEC model, where all elements of yK are assumed to be
uncorrupted so that all errors are undetected. The key point
is that, in the single error correction case, the construction
on-the-fly of the table-lookup does not require any extra
computation, because the syndrome vectors associated with
the weight-1 error patterns are the columns of the P matrix.
Therefore, if there exists a unique column b of P such that
b = s̃T

L , then decoding consists of setting x̂K = yK + ê,

where ê is the vector of Hamming weight 1 whose unique bit
equal to ‘1’ corresponds to the column b of P. The vector
x̂K is then used to recover the vector xK̄ through the first
e equations of the equivalent system, i.e., by simply setting
x̂K̄ equal to the de-permuted version of ỹK̄ = x̂KQT .

Note that, if P has no all-zero columns and no two
columns of P are equal, then C′ has minimum distance
dmin ≥ 3 and all single error patterns are correctable with
probability 1. In this case, an error pattern ê is always
identified. On the other hand, if P has no all-zero columns
but it has equal columns, then C′ has minimum distance
dmin = 2. In this case, a unique b may not exist and the
algorithm may be able to only detect some single error
patterns. Finally, if P has all-zero columns then C′ has
minimum distance dmin = 1 and some error patterns of
Hamming weight 1 may be even not detected.

IV. PERFORMANCE BOUND FOR BINARY RANDOM

LINEAR BLOCK CODES UNDER SEME DECODING

We now derive a tight upper bound on the average
block error probability under SEME decoding for the same
ensemble R(n, k) introduced in Section III-B. Note that by
“block error” we denote any instance in which decoding is
either not feasible (due to rank deficiency of the matrix HK̄

or due to detectable but uncorrectable errors) or incorrect
(due to undetected errors). To proceed with the derivation,
we first determine four mutually exclusive block error events,
denoted by A, B, C and D, which cover all possible
error types. This allows us to write the average block error
probability as

P̄ SEME,BEEC
e,R(n,k) = Pr(A) + Pr(B) + Pr(C) + Pr(D).

The four error events are defined as follows.

A: {rank(HK̄ < E)}.
B: {rank(HK̄) = E} ∩ {L > 1}.
C: {rank(HK̄) = E} ∩ {L = 1} ∩ {rank([HK̄ |herr]) =

E}.
D: {rank(HK̄) = E} ∩ {L = 1} ∩ {rank([HK̄ |herr]) =

E + 1} ∩ {b is not unique in P}.

Note that C is the event that a single error on yK is
undetectable, while D is the event that a single error on yK is
detectable but not correctable. In the following subsections,
we develop the four conditional probabilities Pr(A|E = e),
Pr(B|E = e), Pr(C|E = e), Pr(D|E = e), from which
P̄ SEME,BEEC

e,R(n,k) can be obtained as

P̄ SEME,BEEC
e,R(n,k) =

n
∑

e=1

Pr(A|E = e) Pr(E = e)

+
∑

Z∈{B,C,D}

n−k
∑

e=0

Pr(Z|E = e) Pr(E = e) .

(8)

Even though in principle it would be possible to develop
exact expressions for the conditional probabilities using (2),
we derive upper bounds which exploit again the upper bound
in (3). The resulting bound on P̄ SEME,BEEC

e,R(n,k) is tight and much
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simpler to implement. As illustrated in Section VI, the bound
is useful also to predict the performance of LDPC codes
under SEME decoding.

Conditional event {A|E = e}: The calculation is the same
as for the conditional event {A|E = e} in Section III-B,
yielding again (4).

Conditional event {B|E = e}: Due to independence, we
have

Pr(B|E = e) = Pr(rank(HK̄) = e) Pr(L > 1|E = e) .

For e ≤ n − k, Pr(rank(HK̄) = e) can be bounded again
as in (5). Moreover, we have

Pr(L > 1|E = e) = 1−(1−p∗)n−e−(n−e)p∗(1−p∗)n−e−1

where p∗ = p/(1 − ǫ) as from Section II. Hence, we can
upper bound Pr(B|E = e) as

Pr(B|E = e) ≤ (1 − 2−δ−1)

× [1 − (1 − p∗)n−e − (n − e)p∗(1 − p∗)n−e−1].
(9)

Conditional event {C|E = e}: We have

Pr(C|E = e) = Pr(rank(HK̄ |herr) = e|rank(HK̄ = e))

× Pr(rank(HK̄ = e)) Pr(L = 1|E = e) .

For e ≤ n − k, we can write

Pr(rank(HK̄ |herr) = e|rank(HK̄ = e)) = 2−δ

and

Pr(rank(HK̄ = e)) ≤ 1 − 2−δ−1

which, combined with Pr(L = 1|E = e) = (n − e)p∗(1 −
p∗)n−e−1 yields

Pr(C|E = e) ≤ 2−δ(1 − 2−δ−1)(n − e)p∗(1 − p∗)n−e−1 .
(10)

Conditional event {D|E = e}: Due to independence, we
may write

Pr(D|E = e) = Pr(rank(HK̄ |herr) = e + 1)

× Pr(L = 1|E = e) Pr(b is not unique in P|E = e, L = 1) .

For e ≤ n − k we have

Pr(rank(HK̄ |herr) = e + 1) ≤ 1 − 2−δ

and

Pr(b is not unique in P|E = e, L = 1) = 1−(1−2−δ)n−e−1

that yield

Pr(D|E = e) ≤(1 − 2−δ)(n − e)p∗(1 − p∗)n−e−1

× [1 − (1 − 2−δ)n−e−1]. (11)

Substituting (4), (9), (10) and (11) into (8), P̄ SEME,BEEC
e,R(n,k)

can be upper bounded as

P̄ SEME,BEEC
e,R(n,k)

<

n
∑

e=1

(

n

e

)

ǫe(1 − ǫ)n−e min{2−(n−k−e), 1}

+

n−k
∑

e=0

(

n

e

)

ǫe(1 − ǫ)n−e(1 − 2−(n−k−e+1))

× [1 − (1 − p∗)n−e − (n − e)p∗(1 − p∗)n−e−1]

+

n−k
∑

e=0

(

n

e

)

ǫe(1 − ǫ)n−e2−(n−k−e)(1 − 2−(n−k−e+1))

× (n − e)p∗(1 − p∗)n−e−1

+

n−k
∑

e=0

(

n

e

)

ǫe(1 − ǫ)n−e(1 − 2−(n−k−e))(n − e)

× p∗(1 − p∗)n−e−1[1 − (1 − 2−(n−k−e))n−e−1].
(12)

Due to the tightness of the bounds (5), the bound (12) is also
tight. Moreover, it is illustrated that, for sufficiently small
values of ǫ, the right-hand side of (12) is dominated by the
second summand, i.e. by the upper bound on the probability
P (B) that the number of errors on yK is larger than one,
giving rise to an error floor. The value of this error floor may
be easily expressed analytically as the limit of the second
summand in (12) when ǫ → 0. This yields

P̄ SEME,BEEC
e,R(n,k) ≈ (1 − 2−(n−k+1))[−n p (1 − p)n−1

+ p (1 − p)n−1 − (1 − p)n−1 + 1] . (13)

Finally note that, for a standard BEC introducing no errors,
we have p∗ = 0 so that only the first summation contributes
to the bound. This yields

P̄ ML,BEC
e,R(n,k) <

n
∑

e=1

(

n

e

)

ǫe(1 − ǫ)n−e min{2−(n−k−e), 1}

=

n−k
∑

e=1

(

n

e

)

ǫe(1 − ǫ)n−e2−(n−k−e)

+

n
∑

e=n−k+1

(

n

e

)

ǫe(1 − ǫ)n−e (14)

which is a tight upper bound on the average performance of
linear random block codes over the BEC [23].4

V. EFFICIENT SEME DECODING OF LDPC CODES

Again, let us assume at first that the communication
channel is a standard BEC introducing erasures but not errors
(p = 0). ML decoding of LDPC codes over the BEC can
be practically implemented following a reduced complexity
approach [8] which exploits the sparseness of the parity-
check matrix and which takes its inspiration from a class

4It is worthwhile pointing out that the bound (14) also holds for the
ensemble of binary nonlinear codes of length n and 2k codewords [26].
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of structured GJE algorithms [27]. The algorithm may be
summarized in the following three steps.

1. Triangularization. The sparse matrix HK̄ is transformed
into an approximate triangular matrix, as depicted in
Fig. 3(b) by row and column permutations only. The
obtained matrix is composed of a lower triangular
matrix T and of the three sparse matrices C, RU ,
RL. Some of the columns blocking the triangularization
process have been moved to the rightmost part of HK̄

and hence form [RT
U |R

T
L]T . The α unknowns associated

with such columns are referred to as the pivots.
2. Sparse row additions. T is transformed into an identity

matrix by sparse row additions. Moreover, C is made
equal to the zero matrix by sparse row additions, leading
to the matrix depicted in Fig. 3(c). Note that, due to
the row additions, both RU and RL may no longer be
sparse.

3. GJE on a dense matrix. GJE is applied to RL to recover
the α pivots. The remaining e−α unknowns are solved
by simple substitution.

During the triangularization step, the elements of the
vector sT = HKyT

K are permuted according to the same
row permutations performed on HK̄ . Similarly, during the
sparse row addition and GJE steps, the elements of sT are
summed according to the row additions performed on HK̄ ,
leading to s̃T = [s̃U , s̃L]T as depicted in Fig. 4.

The complexity of the algorithm is dominated by the
third step, consisting of performing GJE on a (usually)
dense matrix. Therefore, the effectiveness of this approach
relies on one’s capability to considerably reduce the number
of columns of RL, on which brute-force GJE has to be
applied. The number of columns of RL at the end of the
process depends on the adopted pivoting algorithm, i.e. on
the procedure to select the pivots during the triangularization
step. Having a strong impact on the final number α of
pivots, it heavily influences the achievable decoder speed.
Effective pivoting algorithms are described in [28, Annex E]
and in [12], where a practical software ML erasure decoder
implementation has been demonstrated with (2048, 1024)
LDPC code, for which decoding rates as high as 1.5 Gbps
were achieved.

Over the BEC, a decoding failure may take place only if
the rank of RL is smaller than α. Over the BEEC, error
detection can be performed, as for the general linear block
code case, by simply checking whether s̃L is the all-zero
vector or not, where s̃L the vector composed by the last
n − k − e symbols of s̃ (see Fig. 4). Moreover, if the row
additions/permutations performed on the sparse matrix HK̄

are simultaneously applied to the sparse matrix HK , single
error correction can be attempted by the SEME algorithm as
for the general linear block code case. Again, the syndrome
vectors of the table look-up used to correct single errors are
given by the columns of the ((n − k − e)× (n− e)) matrix
P depicted in Fig. 4 and the algorithm sets x̂K = yK + ê,
where ê is the error pattern whose unique ‘1’ bit corresponds
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Fig. 3. Efficient Gaussian elimination steps on the ((n − k) × e) matrix
HK̄ . (a): Structure of HK̄ during the triangularization step. (b): Structure
of HK̄ at the end of the triangularization step. (c): Structure of HK̄ at the
end of the sparse row addition step. In the figure m = n − k.
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Fig. 4. Structure of the matrices H̃K , H̃K̄ . In the figure m = n − k.

to the unique column b of P such that b = s̃L, provided
such a unique column of P exists.

VI. PERFORMANCE OF LDPC CODES UNDER SEME
DECODING

In Fig. 5, performance bounds for the (2048, 1024) linear
random ensemble are depicted, for both the BEC and a BEEC
with error probability p = 10−5. The performance is given
in terms of block error probability, Pe. For the BEC, the
upper bound (14) is displayed. For the BEEC, two cases are
considered, namely:

• No error correction is attempted. In this case, Pe is
simply the probability that the erasure pattern is not
recoverable due to rank deficiency of HK̄ plus the
probability of the event {rank(HK̄) = E} ∩ {L ≥ 1}.

• The SEME decoding algorithm is applied. In this case,
the upper bound (12) is displayed. The contributions to
the bound of the events B, C, D defined in Section IV
are reported. Note that the contribution to the bound of
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Fig. 5. Block error probability for a (2048, 1024) GeIRA code over the
BEC and over a BEEC with error probability p = 10−5, under SEME and
IT decoding. Comparison with the bounds on the block error probability
for the (2048, 1024) binary linear ensemble.

the event A is equal to the already displayed right-hand
side of (14).

The gain due to the single error correction capability of the
SEME algorithm is evident in the error floor region. When
no error correction is attempted, a high floor at Pe ≃ n ·p ≃
2·10−2 affects the ensemble average error probability. On the
other hand, if single error correction is performed, the floor
is lowered by about two orders of magnitude. In this region
the error probability for the SEME algorithm is dominated
by the probability of the event B, i.e. by the probability that
more than one error affects the non-erased bits. Conversely,
in the waterfall region, most of the errors are due to rank
deficiencies of the matrix HK̄ and the error probability is
dominated by the probability of the event A.

In Fig. 5, simulation results are also provided for a
(2048, 1024) GeIRA code [29] designed for ML erasure
decoding [9]. The code performance has been simulated over
the BEC under efficient ML decoding, and over the BEEC
both under SEME decoding and without error correction. The
simulation results illustrate how LDPC codes can approach
the average random code ensemble performance in the three
cases, at least down to moderate to low block error prob-
abilities.5 The performance of the same LDPC code under
IT decoding is provided too, for three cases: On the BEC
(p = 0), on the BEEC with IT erasure decoding (i.e., no
error correction), and on the BEEC with input LLRs set
according to the channel error/erasure probabilities (as briefly
outlined in Section I). The performance under IT decoding
on the BEC shows clearly a coding gain loss with respect
to the ML counterpart. A block error rate Pe = 10−4 is
achieved by the IT decoder at ǫ ≃ 0.39, whereas under ML

5At low error probabilities, LDPC codes over the BEC under ML
decoding exhibit an error floor that is due to their non-ideal minimum
distance. Therefore, their performance curve deviates from the bound (14).
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(a) p = 10−6.
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Fig. 6. Bounds on the block error probability for the (1000, 500) binary
linear ensemble over the BEC and BEEC with various error probabilities.

decoding the target is achieved at ǫ ≃ 0.46. On the BEEC
channel, the SEME decoder outperforms the IT one down
to moderate error rates. As the erasure probability decreases,
the performance of the SEME algorithm converges to a block
error probability Pe ≃ 2 · 10−4, due to the imposed single
error correction capability of the algorithm. Since the IT
decoder is not limited to correct single errors, at low erasure
probabilities it outperforms the SEME algorithm. This effect
may be exploited by a hybrid SEME/IT decoder, e.g. the IT
decoder might be used whenever multiple errors are detected
by the SEME decoder.

Still, in many practical cases, the BEEC error probability
may be quite below p = 10−5, resulting in a (much) lower
error floor for the SEME algorithm, thus reducing the need
for an IT decoding stage. In fact, the gain in the error
floor due to the single error correction capability of the
SEME algorithm is amplified at lower error probabilities
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p. In Fig. 6(a) and Fig. 6(b), the bounds for the average
random ensemble block error probability are displayed for
the case of n = 1000, k = 500 and for two BEEC error
probabilities, p = 10−6 and p = 10−8. While in the former
case, the floor is reduced by 3 orders of magnitude, in the
latter case under SEME decoding the block error probability
meets the floor at Pe < 10−10, about 5 orders of magnitude
lower with respect to the case when no error correction is
performed. Note that (13) provides an accurate estimation
of the error floor under SEME decoding. For example, for
n = 1000, k = 500, p = 10−6, the error floor estimated
by (13) appears at P̄ SEME,BEEC

e,R(n,k) ≈ 4.99 · 10−7, while for
n = 1000, k = 500, p = 10−8 at P̄ SEME,BEEC

e,R(n,k) ≈ 5 · 10−11.
This is in accordance with Figures 6(a) and 6(b).

VII. CONCLUSION

We proposed an efficient single-error multiple-erasures
(SEME) decoding algorithm for LDPC codes. The proposed
algorithm represents an extension of the efficient ML decod-
ing algorithm for LDPC codes over the BEC of [8], which
allows error correction/detection on the BEEC. The block
error rate of LDPC codes has been compared to the average
block error probability for the random code ensemble over
BEECs with sporadic errors, showing that LDPC codes
can attain the performance of random codes under SEME
decoding. A performance comparison with IT decoding on
the BEEC is provided, showing that down to moderate error
rates the SEME algorithm brings to a large coding gain with
respect to IT decoding. The additional single error correction
capability provided by the proposed algorithm allows to
reduce the error floors by several orders of magnitude with
respect to the case of pure erasure decoding.

Although for complexity reasons the algorithm has been
analyzed imposing a single error correction limitation, it may
be easily extended to correct multiple errors whenever a
higher decoding complexity is affordable by the receiver. To
make the algorithm capable of correcting multiple errors, it
is sufficient to generate on-the-fly a decoding table-lookup up
to the desired weight of the error pattern. This usually results
in a heavy improvement of the error floor performance.
For example, assuming again p = 10−5 and letting the
algorithm correct single and double errors, the error floor
for the LDPC code in Fig. 5 would be lowered to about
P̄ SEME,BEEC

e,R(n,k) ≈ 1.4 · 10−6.
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