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Abstract—Emerging cellular networks are likely to handle users
with heterogeneous quality of service requirements attending to
the nature of their underlying service application, the quality
of their wireless equipment, or even their contract terms. While
sharing the same physical resources (power, bandwidth, trans-
mission time), the utility they get from using them may be very
different and arbitrage is needed to optimize the global operation
of the network. In this respect, resource allocation strategies
maximizing network utility under practical constraints are inves-
tigated in this paper. In particular, we focus on a cellular network
with half-duplex, MIMO terminals and relaying infrastructure in
the form of fixed and dedicated relay stations. Whereas orthog-
onal-frequency-division multiple access is assumed, it is seen as a
frequency diversity enabler since path loss is the only channel state
information (CSI) known at the transmitters, which is refreshed
periodically. With this setup, the performance of a state-of-the art
relay-assisted transmission protocol is characterized in terms of
the ergodic achievable rates, for which novel concave lower bounds
are developed. The use of these bounds allows us to derive two
efficient algorithms computing resource allocations in polynomial
time, which address the optimization of the uplink and downlink
directions jointly. First, a global optimization algorithm providing
one Pareto optimal solution maximizing network utility during
the validity period of one CSI is studied, which acts as a perfor-
mance upper bound. Second, a sequential optimization algorithm
maximizing network utility frame by frame is considered as a
simpler alternative. The performance of both schemes has been
compared in practical scenarios, giving special attention to the
performance-complexity and throughput-fairness tradeoffs.

Index Terms—Network utility maximization, optimization
methods, resource allocation, wireless networks.

I. INTRODUCTION

A. Motivation

T HE deployment of cellular networks has been tradition-
ally associated to the provision of voice (and low-rate

data) service to mobile users. The exclusivity of this purpose,
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however, is in conflict with the ubiquitous availability of wire-
less equipment and the steadily increasing traffic demands
arising from new interactive, multimedia services, which have
opened the door to a plethora of new potential network sce-
narios. From interactive gaming to wireless broadband access,
different services with heterogeneous quality of service (QoS)
requirements shall converge to the same service network.
Regarding this paradigm, we identify three central issues in
prospective network design which motivate this paper:

• how to characterize the user experience of the different
services of the network using homogeneous performance
measures;

• how to dynamically arbitrate on the shared use of the lim-
ited transmission resources of the network by competing
flows which are of different nature;

• how to extract the largest possible system spectral effi-
ciency from the physical layer.

With this in mind, the optimization of the operation of the
network is hence a matter of allocating resources (power,
bandwidth, rate, transmission time) efficiently for uplink (UL)
and downlink (DL) scheduled transmissions among the serving
users such that some networkwide cost function involving their
service experience is maximized along time.

B. Adopted Network Setup

In this paper, we tackle the network design problem adopting
a cell-by-cell approach. Hence, we focus on a cell consisting of
one base station (BS) serving mobile stations (MSs, or users).
To enable the realization of high spectral efficiencies and boost
network performance, we assume that relay stations (RSs) are
deployed within the cell coverage area to enhance the communi-
cationbetween theusers and theBS[1]–[5]. Interpreting thepres-
ence of relays as an extension of the network infrastructure en-
abling relay-assisted transmission, their locations are assumed to
remain fixed, although they can indeed be optimized beforehand.
All the terminals are assumed half-duplex for practical reasons.

Since the capacity of the relay channel is still an open problem
(so is determining the optimal relaying strategy) we shall adopt
here the cooperation protocol of [6, Prop. 2], based on the
decode-and-forward strategy [7], which comprises essentially
some of the protocols in [3], [5], [8], [9] as particular cases and
is able to work with partial knowledge of the channel state. To
make our approach more general, we let the BS, the RSs, and the
MSs be equipped with an arbitrary number of antennas, denoted
by , , and , respectively ( is the number of
antennas of the th MS, ) such that extra perfor-
mance gains arising from MIMO [10]–[12] can be also captured.

Pursuing theapplicationofour results to practical scenarioswe
are led to two important choices, the first one being the adoption
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of orthogonal frequency division multiple-access (OFDMA).
OFDMA can be efficiently implemented via FFT/IFFT, and it
is able to combat the inherent frequency selectivity of wireless
channels while at the same time allowing a modular tone-based
multiplexing of users. In addition, it improves upon TDMA
with respect to achievable rates and data latency, and allows for
finer granularity in resource allocation [13], a must in wideband
systems. For these and other reasons, it results appealing for
upcoming wireless networking standards [14]–[16].

The second choice is related to the availability and quality of
channel state information (CSI) at each network location (BS,
RSs, and MSs). In relayless OFDMA networks, centralized per-
fect CSI of all the links (in the form of per-tone fading state
knowledge) can be used to allocate resources adaptively. Hence,
bandwidth, power, and rate can be optimally assigned to align
with the instantaneous network conditions [17], yielding enor-
mous performance gains. However, such perfect CSI is likely
not to be available in all the links of our scenario.
On the one hand, the amount of processing required to take ad-
vantage of perfect CSI can be formidable (the complexity has
been shown to be NP-hard even for a relayless network [18]) and
possibly non-affordable. On the other hand, for sufficiently fast
time-varying channels, the necessary CSI refresh interval can
happen to exceed the capacity of the limited-rate feedback chan-
nels of the network. Even worse, propagation and processing
delays on the feedback channels may result in outdated, useless
CSI at the beginning of a resource allocation phase. Thus, unlike
other works [17]–[21] we shall study the network scenario of all
transmitters having perfect knowledge of the path loss of each
of the channels, a slowly varying scalar parameter, but being
ignorant of each per-tone fading state. Although explicit path
loss estimation techniques are out of the scope of this paper, its
accurate estimation seems reasonable provided that some pilot
tones are placed within the transmission bandwidth, which is a
common practice in OFDM-based standards such as the IEEE
802.16 suite [14]–[16], the 3GPP LTE [22], and WiMAX [23]
for synchronization purposes.

With this setup, we aim at optimizing the network operation
for maximizing network utility [21], [24]–[27] in a cell-by-cell
approach. Centralized optimization is hence performed at each
BS which, upon collection of CSI, takes scheduling decisions
and implements resource allocation strategies shaping the in-
stantaneous rates of all the users involved in its cell. One nice
feature of our network operation design framework is that the
network resources (time, frequency, power, and rate) devoted to
UL and DL transmissions are optimized jointly, instead of al-
locating a given portion of total resources to each direction in
each transmission frame and optimizing them separately.

C. Summary of Contributions

This paper proposes a centralized optimization framework for
the maximization of the cell performance based on the user ex-
perience of each serving MS. Under the setup of Section I-B, the

1We consider here that each user requires to send and receive information,
hence generating one UL flow and another DL flow. The generalization to the
setup where users may require more than one flow per direction (e.g., when ac-
cessing different services simultaneously using the same equipment) is straight-
forward as each pair of UL and DL flows can be treated as a different virtual
user.

CSI of all the links (path loss) is collected at the BS which, to-
gether with the QoS requirements of each UL and DL flow1 and
its current degree of fulfillment, decides the resource allocation
strategy to be followed during some period of time. This strategy
is based on the maximization of network utility, a cellwide per-
formance measure which combines the service satisfaction of
all the users, and has given rise to the following contributions to
the problems raised in Section I-A.

• User satisfaction is measured using utility functions. Thus,
the same network infrastructure can flexibly reconfigure to
optimally serve a variety of scenarios by properly choosing
the user utility function of each service under operation
such that their different profiles are conveniently reflected.

• An algorithm to efficiently compute a global optimal re-
source allocation strategy in polynomial time (by solving
a series of convex optimization problems) is proposed. It is
benchmarked against other simpler, suboptimal strategies
able to retain a large fraction of performance with signifi-
cant complexity savings.

• The optimal operation of the network that maximizes net-
work utility is essentially cross-layer, as the joint optimiza-
tion of user scheduling, resource allocation, and relay-as-
sisted transmission is involved for UL and DL directions.

• In characterizing the performance of the adopted relay-as-
sisted transmission protocol, tight concave lower bounds
to the ergodic capacity of MIMO and distributed MIMO
channels are obtained which may find applications outside
the scope of this paper.

D. Outline of the Paper

This paper is structured as follows. Section II describes the
adopted transmission strategy for OFDMA with partial CSI
and some preliminaries regarding key system parameters. Next,
Section III addresses the transmission protocol for relay-as-
sisted communication. Its cellwide short term performance is
analytically characterized in Section IV in terms of instanta-
neous achievable rate regions. Then, Section V builds upon
this to i) introduce user utility functions as a useful tool to
characterize user satisfaction with services of different nature,
ii) pose optimal network strategy as the solution to an optimiza-
tion problem which aims at maximizing network utility, and
iii) propose an iterative algorithm to compute a global optimal
solution to this problem in polynomial time. In addition, a re-
duced-complexity algorithm computing a suboptimal network
strategy is also proposed and benchmarked against the global
optimal in Section VI, where simulation results of practical
scenarios are provided. Finally, Section VII concludes the paper
summarizing results and sketching lines for future work.

E. Notation

Throughout this paper, boldface lower-case letters denote
column vectors, with and standing for the all-zero and
all-one column vectors of length , respectively. We shall
denote by the th entry of vector , and use and for
scalar and component-wise inequalities indistinctly. Similarly,

denotes the vertical stacking of the com-
ponent-wise minimum of two vectors. Boldface upper-case
letters are used for matrices, with standing for the
identity matrix and denoting the entry of the th row and
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th column of matrix , whose transpose and Hermitian are
and , respectively. The th ordered eigenvalue (singular

value) of an square (arbitrary) matrix is denoted by ,
where . Whenever needed, the superscript

shall denote the optimal value of a variable.

II. SYSTEM MODEL AND PRELIMINARIES

Consider the network setup described in Section I-B, where
the BS, the RSs, and the MSs are power constrained to ,

, and , respectively. In every transmission frame in-
terval, denoted by , the same network bandwidth is used
in the UL and DL phases, of adjustable duration via TDD.2 In
each of them, the communication of each BS–MS pair is as-
sisted by one RS. Let us denote the RS attached to the th MS
by . The RS assignment of the network
is hence described by the connectivity matrix ,
where and is the Kronecker delta.
Note that each BS–MS pair is assisted by one RS, but the same
RS can serve more than one BS–MS pair. In fact, the number of
BS–MSs pairs assisted by the th RS equals the number of non
zero entries of the th row of the connectivity matrix .

We shall use the vectors , , and
to denote the CSI collected at the beginning of

the th frame. While stands for the path loss between
the BS and the th MS, is the path loss between the BS
and the th RS, and is the path loss between the th MS
and its associated RS (which is the th). All of them are
assumed to satisfy reciprocity.

When OFDM is employed with the only knowledge of the
link path loss at each transmitter, one practical strategy is
to perform uniform power allocation among groups of tones
sufficiently far apart such that their individual fading states are
uncorrelated and frequency diversity is enabled. This is the
case in the IEEE 802.16e—PUSC and FUSC standards [14].
With this approach, coding across a sufficiently large number
of tones makes the instantaneous achievable rate, denoted by

, be upper bounded by the ergodic (or average) mutual
information thanks to the law of large numbers.3 By ergodic
capacity we understand the instantaneous capacity given some
fading state in the frequency domain averaged over all possible
fading realizations in this domain. Therefore, no matter how
short the transmission interval is nor how fast the channel re-
sponse varies, the ergodic capacity will exclusively depend on
the transmission bandwidth and the link signal-to-noise ratio,

2Although the proposed optimization framework can be extended to the FDD
mode, we have ruled it out because it places more restrictive complexity require-
ments on the RSs, which should be able to receive and transmit simultaneously
on different frequency bands.

3Consider a SISO point-to-point link for simplicity. When the transmit power
is uniformly allocated over � tones spanning some total bandwidth �, the per-
tone is constant. If �� � denote the fading states of each tone (assumed
i.i.d and unknown), the achievable rate satisfies

���� �
�

�
��� �� � � �

�
�

�
� ��� �� � � � �� �� ��� �� � ��� �

where (a) follows for large � from the law of large numbers and convergence is
in probability. For finite moderate values of � , outage events are not precluded.
Its impact on system design, however, is beyond the scope of this paper.

Fig. 1. DL cooperation protocol: the DL phase is split into two subphases at-
tending to the half duplex nature of the RS.

. The suffices to characterize the quality of a link since
interference between neighboring transmitters is prevented by
allocating bandwidth among the different BS-RS-MS triplets
in a disjoint manner4: each BS–MS–RS triplet is assigned a
fraction of the total bandwidth in exclusivity. This fraction may
vary from UL to DL phases and also within each of them, de-
pending on whether the RS is active (relay-transmit subphase)
or not (relay-receive subphase). Whichever subphase we focus
on, the of any link is given by

(1)

where is pathloss, is antenna gain, is transmit power,
is the AWGN one-sided power spectral density, is the

noise factor, and is bandwidth. Whereas the specific values
of and are subject to optimization by the BS and and
are given, we distinguish between , , and

to consider the general case of nodes equipped
with RF front-ends of diverse quality.

III. RELAY-ASSISTED TRANSMISSION

A. Maximum Instantaneous Achievable Rates

The use of RSs in our network setup has the advantage of
realizing performance gains arising from relay-assisted trans-
mission. As the bandwidth is assigned orthogonally (disjointly)
to each BS-RS-MS triplet, intra-cell interference is completely
nulled and it suffices to study one single triplet to describe the
overall behavior of the cell.

Considering that every RS operates in the half duplex mode,
then for a given time duration the relay is in the receive mode
(we call this period the relay-receive subphase), and in the
transmit mode for the rest (we call this period the relay-transmit
subphase).5 To illustrate the cooperation protocol, which is
that of [6, Prop. 2], consider the specific BS-RS-MS triplet
shown in Fig. 1, where the DL phase is described and the
MS and RS index are omitted for simplicity. The matrices

, , and
represent the instantaneous fading states of each of the links at
a given tone.6

Although the details of the coding scheme can be found in
[6, App. A], we provide here a brief sketch of it for the sake of
clarity. The BS splits its message into two independent compo-
nents: one which is transmitted directly to the MS without the

4Inter-cell interference due to frequency reuse in neighboring cells is not con-
sidered in this paper due to our single-cell approach.

5We shall also refer to the protocol subphases as subphase 1 (relay-receive)
and subphase 2 (relay-transmit).

6When UL cooperative transmission is considered, the instantaneous fading
states can be described by using the transposed matrices �� � .
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help of the RS, and another which is transmitted through the RS
to the MS. During the relay-receive subphase, of duration , the
BS transmits one codeword related to the latter message com-
ponent using some power while the RS and the MS listen. At
the end of this subphase, the RS attempts to decode this mes-
sage component. If successful, a relay-transmit subphase of du-
ration starts where both the RS (which re-encodes the de-
coded message component) and the BS (which now transmits a
codeword associated to its other message component) transmit
using powers and , respectively. Otherwise the RS remains
silent during this subphase. The receiver performs successive
decoding: it first attempts to decode the relayed message compo-
nent from the signal of both subphases and, if successful, it sub-
tracts the signal transmitted by the RS in the second subphase
prior to decoding the unrelayed message component. Assuming
that communication takes place over bandwidths (relay-re-
ceive subphase) and (relay-transmit subphase) and that uni-
form power allocation across antennas is performed (see [28]
for relay-assisted communication protocols where power allo-
cation is performed assuming perfect CSI), the achievable rate

in [bit/s] satisfies [6]

(2)

where the min function models whether it is the source-relay
link or the source-destination link which act as information bot-
tlenecks for the relayed message component, and

(3)

(4)

where the s amount to

(5)
where 1, 2.

While the success of decoding the relayed message compo-
nent at the relay indeed impacts on the success of decoding at
the destination, the behavior of the destination is independent of
whether the relay was able to decode or not. The destination will
attempt to decode first the relayed component, perform succes-
sive interference cancellation, and go for the direct component
afterwards, no matter what happened to the relay. This makes
the relay a transparent network feature as seen by the MS, as no
signalling between them is required whatsoever. In fact, as we
rely on the ergodic capacities to characterize performance (see
Section II), it can be assumed that all the transmissions are reli-
able as long as their information rates lie below capacity. Conse-
quently, the performance (2) of the strategy [6] for the one-way

relay channel with half-duplex relay is such that the transmis-
sion rate of the relayed message component always results in
successful decoding at the relay.

It is important to remark that the upper bound (2) is only tight
for Gaussian codes of infinite blocklength. When practical dis-
crete alphabet codes of finite blocklength are used instead, de-
coding errors at the RS and the MS cannot be disregarded at
rates below the corresponding ergodic capacities. However, ex-
pression (2) can still be used by introducing a penalizing gap
such that in (3) and (4).7 We will hence use
the gap from now on and omit the subscript “practical” in for
simplicity. When UL transmission is considered, an analogous
expression to (2) of the form readily fol-
lows by exchanging the roles of the MS and the BS and trans-
posing the matrices .

Oppositely to [21], where relays explicitly switched between
amplify-and-forward and decode-and-forward depending on the
achievable rates, the adopted cooperation protocol has the ad-
vantage of comprising other well-known cooperation strategies
as particular cases such that the best one is implicitly selected
when the resource allocation is optimized. While it mimics the
philosophy of protocol I of [3] and transmit diversity [5], it can
also accommodate the following:

• Protocol III [3], simplified transmit diversity [5]—Set
to be too small to enable direct BS–MS reliable communi-
cation in the relay-receive subphase.

• Protocol II [3], receive diversity [3]—Set .
• Multihop relaying [5], [29], [30]—Set and to be

too small to enable direct BS–MS reliable communication
in the relay-receive subphase.

• Direct transmission—Set and/or and/or
.

B. Universal Concave Lower Bounds on the Achievable Rates

Transmission over multiple tones with uncorrelated fading
makes the ergodic (or average) rates show up in (3) and (4).
They involve computing three MIMO channel ergodic capaci-
ties and one distributed MIMO channel ergodic capacity [the
term in (4)]. After averaging over the fading distribution, i.e.,
the distribution of the matrices , the resulting expecta-
tions depend only on the link s and the products, and
admit closed-form expressions for both the MIMO [10], [31]
and the distributed MIMO [32] channel in case of Rayleigh
fading. However, analytical expressions cannot be derived for
other fading distributions like Ricean, that are common in the
BS-RS link and include line-of-sight components (LOS). On
top of that, (3) and (4) are not concave functions of the dura-
tion of the subphases, the allocated bandwidths, and the transmit
powers. This prevents efficient methods to be applied for rate al-
location in global optimization approaches.

Alternatively, we develop universal, simpler concave lower
bounds of and that ease prospective optimization
methods and allow for an easy concavity test. Here, by “uni-
versal,” we mean that parametric lower bounds with the same
structure can be applied to any fading distribution by changing

7The gap can be further increased to model the impact of inter-cell interfer-
ence on final performance via degradation.
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the parameter values and not that the same expression holds
for all of them. Other parametric approaches have been taken
to approximate MIMO ergodic capacities [33], but oppositely
to our needs, concavity with respect to durations, bandwidths,
and powers was not guaranteed, parameter values were not
systematically found (i.e., curve fitting was performed), and the
distributed MIMO case was not tackled. To start with, consider
the following results upon which our lower bounds are based.
Their concavity analysis will be left to the next section.

Lemma 1: A lower bound to the ergodic capacity of an
MIMO channel is

(6)
where and denotes
the pdf of the channel matrix .8

Proof: Proceeding as in [10, App. E.1], we start from the
expression that relates the ergodic capacity to the ordered eigen-
values of to obtain

(7)

(8)

(9)

where (9) follows from Jensen’s inequality and the convexity of
the function for all .

Lemma 2: A lower bound to the ergodic capacity of an
and distributed MIMO channel is

(10)

Proof: Since
for and both

and are Hermitian matrices, it follows from [34]
that

(11)

The lemma follows by similarly applying Jensen’s inequality
resorting twice to the function .

8Note that since ������� � � ����� � � �, � �� � 	 
 for
����� � � � � � � � .

Fig. 2. Exact ergodic capacity (solid lines) and Lemma 1 lower bound (dashed
lines) versus for different antenna configurations and Rayleigh fading.

Fig. 3. Exact ergodic capacity (solid lines) and Lemma 2 lower bound (dashed
lines) versus for different values of and Rayleigh fading. The antenna
configuration is � 	 � 	 � 	 �.

Lemmas 1 and 2 lower bound the MIMO channel capacities
with expressions that mimic equivalent transmissions through
virtual parallel AWGN channels of gains , which depend
on the antenna configuration and the fading distribution, and
whose tightness is analyzed in Figs. 2 and 3. As for the MIMO
channel, Lemma 1 lower bound is extremely tight. The tightness
of Lemma 2 lower bound with respect to the distributed MIMO
channel capacity, however, depends on the .

The computation of the channel-dependent coefficients
can be accurately performed offline by using Monte Carlo
methods. However, as for Rayleigh fading and an or

antenna configuration, results on the expectation of the
logarithm of a Chi-square random variable [35] can be applied
to show that

(12)
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where is the Euler–Mascheroni constant [36,
4.352-1]. In any case, once the channel-dependent coefficients
are computed, Lemmas 1 and 2 allow us to state the main result
of this section.

Corollary 1: A lower bound on the maximum DL achievable
rates of the adopted relay-assisted transmission protocol is

(13)

where

(14)

(15)

A similar lower bound on the maximum UL achievable rates
holds by exchanging the roles of the BS and the MS and trans-
posing .

IV. ACHIEVABLE INSTANTANEOUS RATES

Given the CSI at the beginning of the th frame, ,
the instantaneous performance of the network is given by the
DL and UL achievable rate regions, i.e., the set of all rate vectors

that can be sustained during one frame
duration. The achievable rates depend upon the frame format
as described by the vector of fractional durations ,

, whose components account for the DL subphase 1
, DL subphase 2 , UL subphase 1 , and UL subphase

2 . Each subphase duration shapes and couples the instanta-
neous achievable rate regions, denoted by (DL) and

(UL), and will be subject to optimization later on,
when rate allocation policies come into play in the next section.
In this section, however, we shall focus on the dependence of
the achievable rates on the disjoint allocations of power among
transmitters and bandwidth among BS-RS-MS triplets.

A. DL Instantaneous Achievable Rate Region

Assuming that the duration of the DL subphases is fixed to
and , the instantaneous achievable rates depend upon

the allocation of bandwidth and transmit power among the
competing flows. Let us describe the DL resource allocation by
using the vectors , which represent
the fractional BS power allocation in subphases 1 and 2, the frac-
tional RS’s power allocation in subphase 2 ( is the fraction
of power transmitted by the th RS in assisting the th
MS), and the fractional bandwidth allocation in subphases 1 and

2, respectively. By imposing non-negativity on each fraction and
constraining the sum of resources it follows that

(16)

(17)

where , 2 and is the connectivity matrix defined in
Section II. Thus, applying Corollary 1 the DL achievable rate
in [bit/s] of the th user, , satisfies

(18)

where

(19)

(20)

condense CSI into the equivalent channel gains

(21)

(22)

(23)

Following the notation of Section III, we have used to
denote the DL fading distribution between the BS and the th
MS, for the DL fading distribution between the BS
and the serving RS of the th MS, and for the DL fading
distribution between the th MS and its serving RS. The DL
achievable rate region is hence given by

(24)

where the union is taken over the allocations satisfying (16)
and (17).

Lemma 3: The DL instantaneous achievable rate region
is convex.

Proof: For fixed , some properties of convex func-
tions [37] can be used to show that the right-hand side of (18)
is concave: the minimum of concave functions is concave, and
the concavity of (19) and (20) can be shown resorting to the
function , which is concave in

. This implies convexity of for
fixed [37], which will turn out to be useful in ensuring global
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optimality in rate allocation problems. This desirable property,
which follows from the use of the universal lower bounds de-
rived in Section III-B, vanishes when the frame format (here in
the form of the relative durations ) is subject to optimiza-
tion too. However, this can be circumvented with the following
variable change:

(25)

where , 2. This variable change gives rise to a new set of
allocation variables, in terms of which (19), (20) become

(26)

(27)

both of them concave functions regardless of . The new set
of feasible allocations transforms accordingly into

(28)

(29)

where 1, 2 again. Formulated in terms of the new allocation
variables, the region can be equivalently obtained by
taking the union in (24) over (28) and (29), where (26) and (27)
are used instead of (19) and (20). This way, the convexity of

with respect to is unveiled: (26) and (27) are con-
cave and the feasible set (28) and (29) is the intersection of
halfspaces and hence convex, something that was hidden with
the original allocation variables. Needless to say, the variable
change (25) can be straightforwardly reversed to obtain the al-
located fractions of bandwidth and power.

B. UL Instantaneous Achievable Rate Region

Proceeding similarly, if the relative duration of the subphases
is fixed to and , the UL resource allocation can be char-
acterized in terms of the vectors . While
the meaning of and is identical, and refer now
to the fractional MS’s transmit power in subphases 1 and 2.
Thus, the feasible set of UL resource allocations is

(30)

(31)

where , 2. The application of Corollary 1 to the UL achiev-
able rate in [bit/s] of the th user implies that satisfies

(32)

where

(33)

(34)

use the equivalent channel gains

(35)

(36)

(37)

Note that by transposing the DL fading state matrices, the fading
distributions account for UL transmission. The UL achievable
rate region can finally be expressed as

(38)
where the union is over (30) and (31).

Lemma 4: The UL instantaneous achievable rate region
is convex.

Proof: As happened in the DL, the achievable rate region
is convex when the frame format is fixed, but not

when it becomes an optimization variable. To avoid this hand-
icap, the same variable change as in (25) is proposed. This leads
to the concave expressions

(39)

(40)
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and the new feasible set

(41)

(42)

where , 2. Thus, a convex representation of
follows by replacing (33) and (34) by (39) and (40) in (38) and
performing the union over the allocations satisfying (41) and
(42).

V. MAXIMUM NETWORK UTILITY RATE ALLOCATION POLICIES

In a cellular network handling users of services with different
QoS requirements, some users might exhibit large sensitivity
to transmission delays while others might only pay attention
to their experienced long-term throughput. And still other key
performance indicators may play a role, such as transmit buffer
overflow probability, energy consumption etc; even users of
the same service, attending to their contract terms, can ask for
differentiated QoS requirements.

This poses a challenging problem: upon collection of CSI at
the beginning of the th frame, the BS must decide by whom,
when, and at which rate any information will be transmitted/re-
ceived until the next CSI refresh arrives. Assuming that CSI up-
dates are received periodically every frames, user scheduling
and resource allocation needs to be jointly optimized for UL and
DL transmission during the frames . On
the one hand, flows of different nature may require completely
different management policies; on the other, the network oper-
ation should seamlessly reconfigure as the scenario (users, ser-
vices, QoS requirements, etc.) varies with time.

We address this problem by using utility functions [21],
[24] that evaluate each user’s satisfaction given the achieved
throughput as compared to its requirements. By properly
characterizing QoS requirements with the dependency of the
utility on the throughput for each service under operation, the
different nature of the serving flows is incorporated into the BS
arbitrage. An arbitrage that will use the utility function of each
user to allocate resources and perform scheduling decisions.

A. User Utility Functions

Utility functions were first used in [24] to introduce the
proportional fair criterion in resource allocation problems, and
allow us to describe the satisfaction of one user given its served
throughput. Although many schemes implicitly assume utilities
proportional to throughputs [17], [19], [30], we shall adopt
here a more general approach as in [20], [21], and [24]–[27].
We define a user utility function as a concave function
of the (long-term) throughput , which is computed using the
exponentially weighted smoothing

(43)

where stands for the throughput as seen at the begin-
ning of the -frame, represents the smoothing memory,
and is the instantaneous rate achieved in the th frame. If
for any reason the user satisfaction profile of a service cannot
be described using a concave function (e.g., an S-type curve),

the finding of efficient methods for network utility maximiza-
tion is compromised. Fortunately, a plethora of common ser-
vices comply with the concavity constraint.

1) QoS-Oriented Utility Functions: We say a utility function
is QoS-oriented whenever the QoS requirements of the service
appear explicitly in its expression. Although we are not con-
strained to it for operational reasons, we focus on utility func-
tions upper-bounded by 1. This way, we set the same maximum
user satisfaction level as a reference for all the services under op-
eration in the network. Otherwise, the use of unbounded utilities
for the different services might cause the BS to bias its attention
towards services with favored utility scales. The following ex-
amples show that this is not a major impairment to describe the
satisfaction profile of services of different nature.

• Example 1: Best-effort data service
The user satisfaction of a best-effort data service (e.g., ftp,
http) without any data latency or other QoS constraints than
achieving the largest possible throughput can be modeled
with the utility function

(44)

This utility is parameterized by the satisfaction level
achieved when the throughput is .

• Example 2: Delay-sensitive service
The user of a delay-sensitive service is interested in
achieving some target throughput under the constraint that
data latency remains below some critical threshold: in prac-
tical applications (e.g., voice service, video streaming),
bits exceeding the maximum allowed delay are dropped.
Since such applications are usually of constant bit rate,
allocation of rates larger than the target throughput ren-
ders suboptimal. In other words, an overuse of resources
makes no real improvement for this user but compromises
the QoS provision to the rest. This can be alternatively
viewed in terms of imposing the instantaneous rate to be
as constant as possible, thus avoiding bursty transmissions
yielding the same throughput at the expense of larger idle
periods (and hence delays). One suitable utility function is

(45)

where is the target throughput and depends on the
maximum allowable delay (in number of frames). To
select , we choose to set the utility of one user that was
initially served but is laid aside frames idle equal
to . This forces the satisfaction index of this user to
move from the peak of (45), where utility was 1, to some
unacceptable value . This way, each frame one such user
is idle it is able to warn the BS about its urgency for being
scheduled by decreasing its utility. With this criterion, the
appropriate is

(46)

In case users of several delay-sensitive services with dif-
ferent QoS requirements (as specified by and ) are
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present in the network, one has only to adjust according
to (46) and use the resulting utility function (45).

2) Best-Effort Utility Functions: In situations where the
utility function of a service does not depend on the QoS re-
quirements, we say that utility is best-effort. As we are not able
to quantify how far we are from the user expectations, we rather
use utility as a qualitative satisfaction index. In addition, if
there is only one service under operation in the network, there
is no reason to focus on functions upper-bounded by 1. This
can allow us to consider a wider class of utility functions. A
useful example of best-effort utility function is the family [38]

if
if

(47)

where the choice of the parameter governs the way resources
are shared among users, and its role shall be discussed later at
the end of Section VI.

B. Network Utility Maximization

To account for services with asymmetric requirements,
consider different DL and UL utility functions, denoted
by and respectively for the th user. Let

denote the vectors corresponding to
the vertical stacking of DL and UL per-user throughputs at the
beginning of the th frame, respectively. As user throughput
varies with time, so does user utility. A global snapshot is given
by the vectors , where

(48)

and a similar expression holds for UL utilities. Using (48), we
define network utility as any concave non-decreasing function
of the user utilities . It provides
a cellwide aggregate indicator rating the goodness of the sched-
uling and resource allocation strategy carried out at the BS as far
as satisfaction of all the users of the cell is concerned. For in-
stance, we could take a maxmin approach and set network utility
as the minimum among all the users’ satisfaction in either UL
or DL directions, i.e.,

(49)

Thanks to the concavity of each user utility on the throughput
and the fact that is a concave non-decreasing function
of the utilities, it follows from the convexity properties of
composite functions [37] that (49) is a concave function of

. This is an important property since con-
cavity of network utility is necessary for obtaining global
optimal allocation strategies in polynomial time. Alternatively,
if there is no pressure to focus on the utility achieved by the
worst user, we can take a simpler choice and set network utility
as the sum of all the user’s utilities

(50)

When (50) is used in conjunction with (47), the parameter is
said to enable -fairness [38]. Fairness is a wide concept which
refers to the fact of not penalizing some users arbitrarily, and
by tuning from 0 to the network planner is given a tool
to easily switch between popular fair schemes. While
yields utilities equal to throughputs and therefore the objective
becomes maximizing the cell throughput, yields propor-
tional fairness [24], and as the network operation
tends to apply the maxmin criterion to the user throughputs.

1) Optimal Strategy: For a given CSI, the task of the BS is to
maximize network utility until the CSI becomes outdated and a
new one is received (this period spans frames). Afterwards,
the following CSI update triggers another network utility max-
imization procedure for the subsequent frames, and so on.
Expressed succinctly, the optimal strategy for a given CSI is the
solution to the following optimization problem9

(51)

(52)

(53)

(54)

(55)

(56)

where (52) and (53) apply for and ,
and (54)–(56) for . Note that in (51)–(56), we
have made implicit the resource allocation optimization with the
use of the instantaneous achievable rate regions and

.
Determining the best rate allocation for the frames under

consideration amounts to solving the multiobjective optimiza-
tion problem (51)–(56). Multiobjective problems do not usually
have unique optimal solutions, and one usually selects one so-
lution from the set of Pareto optimal solutions10 according to
some priorization of the objectives in conflict in the problem.
Since network utility represents cellwide quality of service, our
approach will be to provide the largest possible network utility
in each of the frames under optimization indistinctly. Hence, we
will first aim at maximizing the minimum network utility during

9Note that we have omitted the dependence of network utility on each of the
user utilities in (51) for the sake of simplicity.

10Some resource allocation achieving ����������������� � � � ������
��� belongs to the Pareto optimal set if for any other allocation achieving
��� �������� ������ � � � ��� ������ it will never happen that�� ���
�� � ���� � �� for all � � � � � and �� �� � �� � ���� � �� for some
� � � � �.
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frames, then maximize the second smallest network utility
with no penalty to the previous one, and so on. Under this crite-
rion, one global optimal solution11 can be iteratively computed
using Algorithm 1.

Algorithm 1: Global maximization of network utility

1: Initializations: , for .

2: while do

3: Solve

(57)

constraints (52)–(56) (58)

(59)

4: Compute and

update , .

5: end while

6; Use the optimal resource allocation to compute the UL and
DL exact achievable rates (2): .

7: Update throughputs for , :

(60)

(61)

Proposition 1: The solution computed by Algorithm 1 is
Pareto optimal.

Proof: See the Appendix.
Remark 1: Algorithm 1 is able to compute one global optimal

solution in polynomial time. To see this, it is sufficient to show
that each of the subproblems (57)–(59) are convex. We first re-
quire that the objective (57) is concave, which follows from the
concavity of network utility and the fact that the minimum of
concave functions is concave. Then, the left-hand side of each
of the inequality constraints in (58) and (59), when rephrased as
a function of some optimization variables less than or equal to
zero, should be convex. This follows from the concavity of the
user utility functions with respect to throughput, the fact that
the throughput relates linearly to the instantaneous rates, and
the convexity of the UL and DL achievable rate regions (see
Section IV).

11In case more than one global optimal resource allocation solution exists,
their achieved network utility values are permuted versions of some reference
��� �� � ����� ��� ��� � � � ��� ������ (see the proof of Proposition
1 in the Appendix).

Remark 2: In each of the problems (57)–(59), a threefold
optimization in each of the frames under consideration is per-
formed: first, the frame formats (relative durations of each relay-
assisted transmission subphase for UL and DL) as described by
the corresponding four-dimensional vectors ; second,
the allocated instantaneous rates, which implicitly account for
user scheduling (note that implies that the th
user shall not receive any DL data in the th frame); and
third, the allocated resources (bandwidth and transmit power),
which are implicit in the definition of the DL and UL achievable
rate regions (54), (55) as defined in (24) and (38).

Remark 3: In order to pose the maximization of network
utility as a series of convex optimization problems, we have
resorted to the concave lower bounds on the achievable rates
derived in Section III-B. However, the throughput updates are
performed evaluating the exact ergodic rates (2) achieved by
the optimal resource allocation, and not their lower bounds
(13). As for Rayleigh fading, we resort to [32] for their
computation.

2) Reduced-Complexity Suboptimal Strategies: Although
Algorithm 1 provides the best network strategy from a network
utility point of view, its computational load may become pro-
hibitive in systems either serving a large number of users per
cell (large ) or refreshing the CSI slowly with respect to the
frame duration (large ). To see this, consider the fact that
convex problems of variables each (where we have
considered utilities, rates, frame formats, power allocations,
and bandwidth allocations) are involved in each optimization
instance. Hence, two directions may be taken to cut down
complexity: either reduce the optimization window or the
number of users to be scheduled.

How to deal with the first one is immediate: simply replace
by in Algorithm 1 such that divides (this is re-

quired to avoid optimization windows requiring some CSI not
received yet). The second direction requires the implementa-
tion of a time-domain scheduler on top of Algorithm 1 such
that only a subset of the MSs are selected for network utility
maximization. We choose to select the users that
would have the smallest utilities at the end of the optimization
window if not scheduled. Despite this may have an impact on
final performance since scheduling decisions are no longer op-
timal, time-domain prescheduling renders crucial in scenarios
with a large number of users. On top of the aforementioned
complexity issues, in practice, the frame structure needs to be
signalled to the MSs, and this represents and additional over-
head. If all users are allowed to transmit and/or receive in the
same frame, the average quantity of the allocated resource per
user and frame may go down below practical operational values
while this signalling overhead may increase significantly and
thus hamper network utility.

We benchmark the global optimal solution of Algorithm
1 against the suboptimal strategy which takes
and attempts to maximize network utility sequentially in a
frame-by-frame basis. Thus, Algorithm 2 is run at the begin-
ning of each frame, which allocates resources among the subset
of users selected by a time-domain prescheduler. This way,
we are able to quantify the performance loss of sequential
optimization versus global optimization.



CALVO et al.: OPTIMAL RESOURCE ALLOCATION IN RELAY-ASSISTED CELLULAR NETWORKS 2819

TABLE I
PHYSICAL LAYER SETUP OF THE SIMULATED SCENARIO

Algorithm 2: Sequential maximization of network utility

1: Solve

(62)

(63)

(64)

(65)

(66)

(67)

2: Use the optimal resource allocation to compute the UL and
DL exact achievable rates (2): .

3: Update throughputs for :

(68)

(69)

VI. SIMULATION RESULTS

We focus on two different scenarios sharing the same target
cell spectral efficiency but having different user population
sizes. In either case, we simulate a circular cell of 500 m radius,
with relays uniformly spaced along a circle at 375 m
from the BS, which is located in the cell center. We assume
that the MS–RS links are in line-of-sight and have path loss
exponent 2.6, while the rest of links (BS–MS and MS–RS) are
in non line-of-sight with path loss exponent 4.05. All links are
hampered by Rayleigh fading. See Table I for a complete list of
values of the rest of physical parameters involved.

All the users of the cell are mobile. If denotes
the position of the th MS at the beginning of the th frame in
Cartesian coordinates, then

(70)

where is its speed (assumed constant) and is an AR(1)
stochastic process describing its direction

(71)

where are i.i.d. uniform random variables on .
Whenever a MS happens to exceed the limits of the cell, it is
forced to bounce on the cell edge by reversing its instantaneous
direction in order to keep constant the total number of users. As
a simplifying assumption we set the same speed of
for all the MSs, and consider a feedback update rate of 100 ms,
i.e., . Each time CSI is refreshed, each MS is attached
to the RS towards which the path loss is the smallest. The
connectivity matrix is updated accordingly.

With this setup, we first simulate an scenario consisting of
best-effort users (44) of gold, silver, and bronze QoS

classes. Gold users experience 0.9 utility when they are given 30
Mb/s (DL) and 6 Mb/s (UL) throughput. Silver users have the
same utility level when served 20 Mb/s (DL) and 4 Mb/s (UL)
throughput. Finally, bronze users require 10 Mb/s (DL) and 2
Mb/s (UL) throughput for 0.9 utility. There are two users of each
QoS class and, under a maxmin choice (49), if a network utility
of 0.9 was realized, the cell spectral efficiency would amount to
14.4 b/s/Hz.

Fig. 4 shows the deployment layout and compares the net-
work utility achieved by global and sequential optimization. To
quantify separately the performance gains provided by the pres-
ence of relays from those achieved by the optimization approach
itself, we benchmark the global and the sequential optimization
algorithms against their counterparts without RSs. That is, we
also simulate resource allocation where the relay-transmit phase
is always forced to have zero duration. To make this comparison
fair, we increase the transmit power constraint at the BS and
the MSs such that, frame by frame, the total UL and DL power
is equal with and without RSs in both optimization strategies.
Since the number of users is relatively small, there is no need
for a time-domain prescheduler.

As a general trend, global optimization dominates sequen-
tial optimization in the long term, although at the beginning
the opposite holds. This is because in the first frames, the re-
source allocation of sequential optimization benefits from eval-
uating the actual ergodic rates often (frame by frame) as com-
pared to global optimization, where this evaluation is carried
out every group of frames. This has a positive impact on user
throughput, although this advantage vanishes quickly as con-
firmed also by Fig. 5, where the per-user throughput achieved by
global optimization dominates that of sequential optimization in
less than 2 s of network operation (80 frames). Interestingly, se-
quential and global optimization perform almost undistinguish-
ably without relays: as the ergodic capacity lower bounds are
very tight in this setup (see Fig. 2), the previous effect does not
apply. In any case, the target spectral efficiency of 14.4 b/s/Hz
is achieved only with relaying infrastructure, as the steady-state
performance without RSs falls roughly 25% below QoS targets.
Indeed, as showed in Table II the price to pay is an increase in
computation complexity.

Next, we focus on a practical scenario with the same target
spectral efficiency at 0.9 network utility as before, adopting the
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TABLE II
RELATIVE EXECUTION TIMES PER TRANSMISSION FRAME OF THE MATLAB IMPLEMENTATIONS OF ALL THE RESOURCE ALLOCATION STRATEGIES

Fig. 4. Network utility achieved by global (blue) and sequential (red) optimiza-
tion, with (solid) and without (dashed) relaying infrastructure, and deployment
layout.

Fig. 5. Per-user served throughput of global (blue) and sequential (red) opti-
mization, with (solid) and without (dashed) relaying infrastructure.

maxmin utility criterion (49) again, but now serving 10 times
more users with rate requirements reduced to 10% of the pre-
vious. Thus, best-effort MSs are present in the cell

Fig. 6. Network utility achieved by sequential optimization with time-domain
prescheduling allowing a maximum of 12 (black), 8 (blue), and 4 (red) users per
frame, and deployment layout.

which split into 20 users per QoS class. Now, at 0.9 user utility
gold users require 3/0.6 Mb/s (DL/UL) throughput, silver users
2/0.4 Mb/s (DL/UL) throughput, and bronze users 1/0.2 Mb/s
(DL/UL) throughput. With this system size, global optimiza-
tion renders unfeasible and we restrict our attention to sequen-
tial optimization with time-domain prescheduling. In particular,
we study the performance degradation as a function of , the
maximum number of users per frame. In this respect, Fig. 6
shows the deployment layout and the network utility achieved
with , 8, and 4. Clearly, the larger , the larger net-
work utility but also the algorithm complexity and signalling
overhead. Assuming negligible this last effect for the range of
values of studied,12 the steady-state network utility loss be-
tween and is on the order of 0.1.

In Fig. 7 we show the per-user throughput averaged per QoS
class, to show that, although the general trend is similar for each
value of , the performance degradation when is due to
the fact that gold users are served far below their 0.9 target while
bronze users are satiated more than necessary. As decreases,
the average number of idle frames between transmissions for a
given user increases, but the instantaneous rate per user in an
active frame increases. The conclusion from Fig. 7 is that if

12For each direction (UL and DL), each user should be signalled about the
transmission rate, the fractional bandwidth allocation, the fractional power al-
location, and the duration of the protocol subphases. Assuming that each of these
parameters is quantized to � bits, the throughput penalty per user and direction
is � �� � �� � which decreases with since the subphase durations are
common. Hence, although the global signalling overhead increases in , the
per-user penalty decreases. In particular for a practical value of � � � �	
�,
this penalty is on the order of 1 kb/s and, hence, negligible.
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Fig. 7. Average per-user served throughput per QoS class achieved by sequen-
tial optimization with time-domain prescheduling allowing a maximum of 12
(black), 8 (blue), and 4 (red) users per frame.

Fig. 8. Maximum user delay (number of frames idle) achieved by sequen-
tial optimization with time-domain prescheduling allowing a maximum of 12
(black), 8 (blue), and 4 (red) users per frame.

is too low the global effect is negative. Finally, Fig. 8 addresses
the maximum per-user delay in each setup, which is shown to
be roughly proportional to in average.

Fig. 9. Average steady-state per-user and link-direction throughput versus fair-
ness index. The corresponding values of � are 0.25, 0.50, 0.75, 1, and 5.

So far, we have only explored maxmin network utility and
QoS-oriented utility functions. To conclude this section, how-
ever, we shall modify the previous system with a total of
users and users at most per frame and explore the in-
herent tradeoff between fairness and throughput when other net-
work utility functions are used. In particular, we now consider
the situation where the UL and DL utility functions of every
user are given by (47) and network utility is sum utility (50).
Thus, by changing the parameter we have a way of trading
fairness and throughput. We capture this relation in Fig. 9, where
we focus on the average steady-state per-user and link direc-
tion throughput (UL and DL directions are averaged together as
their utilities are the same). It is plotted against Jain’s fairness
index [39] in each direction for a given cell deployment. This
index rates the degree of fairness incurred in serving com-
peting flows with a real number between (worst case: one
user gets it all) and 1 (best case: resources are equally shared).
Fig. 9 confirms that a simultaneous increase in both fairness
and throughput cannot be achieved and quantifies the explicit
tradeoff. Notice that the time-domain prescheduler prevents the
fairness index to fall below acceptable levels.

VII. CONCLUSION

This paper concentrates on the performance characteriza-
tion of a relay-assisted network deployment under practical
constraints. In particular, terminals are half-duplex MIMO and
path loss is the only CSI assumed to be known at the trans-
mitters. Network performance is evaluated in terms of ergodic
achievable rates by the development of novel lower bounds.
These bounds are employed to derive two efficient algorithms
for resource allocation optimization under heterogeneous QoS
requirements. The first one provides one Pareto optimal so-
lution whereas the second one performs a simpler frame by
frame optimization by means of a sequential algorithm. The



2822 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 7, JULY 2009

performance of both schemes has been evaluated showing
that, whenever global optimization can be afforded, significant
performance gains can be achieved with respect to sequential
optimization. When systems dimensions are large, however, the
complexity of sequential network optimization can be tuned by
using time-domain prescheduling.

The proposed network resource optimization schemes could
be generalized in at least two ways. First, by incorporating
outage events into system design in those scenarios where the
number of tones is limited and moderate. Second, by consid-
ering a multi-cell configuration allowing the incorporation of
a prescribed maximum inter-cell interference as an additional
constraint.

APPENDIX

PROOF OF PROPOSITION 1

Let denote the
network utility achieved by the solution of Algorithm 1, and
define such that

. Assume it is not Pareto optimal.
Hence, there exists at least another allocation achieving

and integers
such that

,

(72)

for some (73)

Then,

(74)
where (a) follows by construction of the solution of Algorithm
1, (b) from (72), and (c) from the definition of . Equation
(74) implies that . Two cases arise
now:

• Case :

(75)
where (a) follows from the definition of , (b) is a con-
sequence of (74), and (c) follows from (72). Then,

. Without loss of generality we can set
, and obtain .

• Case :

(76)
where (a) follows by construction of the solution of Algo-
rithm 1, (b) is derived from (72), and (c) follows from the
fact that and the definition of . Expres-
sion (76) also implies .

Proceeding similarly, we can iteratively show that

(77)

which implies that the network utility values of both strategies
are either equal or related by an arbitrary permutation. In either

case, this contradicts (72), (73), hence implying that the solution
to Algorithm 1 is Pareto optimal.
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