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ABSTRACT
The decomposition of the overall forced response into a steady-state and a transient component can
be exploited to find reduced-ordermodels that retain both long-term and short-term characteristics
of the original system behaviour. To this purpose, the state-space expressions of the aforemen-
tioned components in response to inputs with rational transform are derived. The reduced-order
model is thenobtainedby considering separately the asymptotic and transient terms. The suggested
approach is tested on benchmark examples of very high dimension.
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1. Introduction

Recently,model reductionmethods based on the decom-
position of the forced response into a transient and a
steady-state component (Dorato, Lepschy, and
Viaro, 1994) have been proposed with the purpose of
generating reduced-order models that retain, at least
approximately, some important characteristics of both
the transient component, for example, its impulse-
response energies and moments, and the asymptotic
component in response to particular inputs. Also the
interpolation-basedmoment-matchingmethods (Antoulas,
Beattie, and Gugercin, 2010; Astolfi, 2010; Bultheel and
De Moor, 2000) retain the steady-state response to par-
ticular inputs but do not even ensure, in their standard
version, the preservation of stability. To combine tran-
sient features with the retention of at least the static
or direct-current (DC) gain and, thus, of the steady-state
value in the step response, a variant of the balanced-
truncation method (Moore, 1981) based on perturba-
tion theory (Kokotovic, Khail, and Reilly, 1986) has been
suggested, which can be implemented using popular
control packages (Chaturvedi, 2009). No such (limited)
extensions are as yet available for other optimal reduc-
tion techniques, such as the Hankel-norm (Glover, 1984)
and L2-norm (Antoulas, 2005; Krajewski and Viaro, 2009;
Xu and Zeng, 2011; Zeng and Lu, 2015) approxima-
tion methods. Not even the newly proposed metaheuris-
tic model reduction methods (Desai and Prasad, 2013;
Ramawat andKumar, 2015; Rana, Prasad, andSingh, 2014;
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Sikander and Prasad, 2015) explicitly address the problem
of asymptotic accuracy.

The reconciliation of optimal or suboptimal approx-
imation methods with specifications on the asymptotic
behaviour could be done in the domain of Laplace trans-
forms (transfer functions). Unfortunately, the transfer-
function approach is not suited for the reduction of
very high-dimensional systems given in state-space form
because the conversion from state-space representation
to transfer-function is not numerically robust and cannot
be safely applied to systems whose order is greater than
a few tens. On the other hand, the test inputs often differ
from singularity inputs and can involve, to more advan-
tage, combinations of (possibly complex) exponentials,
for example, sinusoids.

To overcome these problems, this paper first expresses
the components of the forced response to inputs with
arbitrary rational transform in terms of the original
state-space representation (Section 2): since, in the time
domain, these inputs are linear combinations of func-
tions of the form tβ eγ t , with β ∈ N and γ ∈ C, the
state response to this kind of functions is preliminarily
determined (Proposition 2.1). The reduced-order model
is finally obtained by adding an approximation of the
transient component to the original steady-state com-
ponent (Section 3). Essentially, the contribution of this
paper consists in the direct time-domain decomposition
of the state response and in the separate treatment of
its two components. The suggested approach is tested
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on a pair of high-order benchmark examples taken from
the relevant literature (Chahlaoui and Van Dooren, 2005)
(Section 4). Possible extensions of the method, with par-
ticular reference to its applicability tounstable system, are
briefly outlined in Section 5.

2. Decomposition of the forced response

In the following, it is assumed that the original system
is linear time-invariant strictly proper and asymptotically
stable. Denoting its (minimal) state-space representation
by the triplet � = {A, B,C}, its forced state response to a
causal input u(t) is given by

xf (t) =
∫ t

0
eA(t−τ)Bu(τ )dτ . (1)

As is known, if the Laplace transform U(s) of u(t) is real
rational and strictly proper with poles in the closed right
half-plane, u(t) can be expressed as a linear combination
of real non-decreasing exponentials, possibly multiplied
by powers of t and/or, in the presence of pairs of conju-
gate complex poles, sinusoidal functions. If U(s) is exactly
proper (Bernstein, 2009), that is, proper but not strictly, an
impulsive term is also present, but this case is excluded in
the sequel for simplicity. Attention will be limited here to
such persistent inputs because this is precisely the kind of
signals (including singularity inputs and sinusoids) usu-
ally employed to test the system behaviour. Note that,
since the system is bounded-input bounded-output sta-
ble, no resonance phenomena (interaction between input
and systemmodes Dorato et al., 1994) can occur.

By denoting the (possibly complex) poles of a strictly
proper U(s) by qi, the corresponding input u(t) can also
be written as a combination of functions that are not
necessarily real as

u(t) =
nd∑
i=1

μi−1∑
j=0

Qijt
j eqit , t ≥ 0, (2)

where nd is the number of distinct poles of u(t), μi

denotes the multiplicity of pole qi with Re(qi) ≥ 0 and
Qi,j ∈ C. The combination coefficients Qij in (2) are real
whenever qi is so, and complex otherwise. Also, since the
coefficients of U(s) are assumed to be real, if qi is a com-
plex pole of U(s), then its conjugate q̄i is also a pole of
U(s), and the combination coefficient of every function
tj eqit associated with qi is conjugate to the coefficient of
the homologous function tj eq̄it associated with q̄i. Under
these conditions, in fact, the overall input (2) is real for all
t. In the sequel, reference is made to this expression of
the input because it contains functions of one type only,
namely tj eqit . By linearity, the forced state response to
the general input (2) is given by a linear combination of

the responses to these basic signals. The following result,
whose conceptually simple proof can be found in the
Appendix, provides a useful tool for finding the forced
response to an input of the general form (2).

Proposition 2.1: The forced state response of the asymp-
totically stable system� = {A, B,C} to the causal input

uqi ,j(t) = tj eqit , t ≥ 0, Re(qi) ≥ 0, (3)

is given by

xqi ,j(t) = j! eAt(−1)j+1(qiI − A)−(j+1)B

+
j∑

k=0

j!
(j− k)!

(− 1)k(qiI−A)− (k+1)Btk eqit , t≥0.

(4)

Remark 2.1: The invertibility of the matrix qiI − A is
guaranteed because the eigenvalues of the asymptoti-
cally stable matrix A lie in the open left half-plane while
qi lies in the closed right half-plane.

Remark 2.2: The first term on the right-hand side of
relation (4) contains the exponential function eAt , which
depends on the system modes only. Therefore, this
term represents the transient component xtr(t) of the
forced response to the considered input. Instead, the
addenda under the summation symbol depend only on
the input modes associated with the pole qi of the trans-
form Uqi ,j(s) = j!/(s − qi)j+1 of (3) and together form
the asymptotic (or steady-state) component xss(t) of the
response.

Remark 2.3: As Equation (4) shows, in general the
asymptotic component yss(t) of the overall forced out-
put response, which is related to the overall forced state
response via

yf (t) = Cxf (t), (5)

is not simply proportional to the input but is a linear
combination of the input and its first derivatives.

It is easy to derive from (4) the forced responses to
the singularity inputs, which are reported next for conve-
nience. Precisely, the response to u0,j(t) = tj, t ≥ 0, turns
out to be

x0,j(t) = j! eAtA−(j+1)B −
j∑

k=0

j!
k!
A−(j−k+1)Btk . (6)
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In particular, the step and ramp responses are, respec-
tively,

xs(t) = eAtA−1B − A−1B, (7)

xr(t) = eAtA−2B − A−2B − A−1Bt. (8)

The response to

uω(t) = sinωt = 1
2j

(ejωt − e−jωt), t ≥ 0, (9)

can be obtained by combining the responses to ejωt and
e−jωt according to the conjugate coefficients 1/2j and
−1/2j . After some trivial manipulations, this response
turns out to be

xω(t) = eAt(ω2I + A2)−1Bω − (ω2I + A2)−1Bω cosωt

− A(ω2I + A2)−1B sinωt, (10)

whose transient and steady-state components can be
identified easily.

3. Model reduction

Model reduction is, by its very nature, an input–output
problem. Therefore, in the following, attention focuses
on the forced output response yf (t), simply related to
xf (t) via (5). Its transient and steady-state components
are immediately obtained in time domain from the cor-
responding state components without the preliminary
determination of their Laplace transforms, which would
entail computing the transfer function W(s) of the high-
order original system and expanding Yf (s) = W(s)U(s)
into two partial fractions, one with the denominator
of W(s) (transient component) and the other with the
denominator of U(s) (steady-state component). It follows
that the approximation of the transient component can
be carried out by referring directly to the triplet of matri-
ces of its state-space realization, which is easily deter-
mined from the state responses in Section 2.

According to the approach outlined in Section 1, the
suggested reduction procedure can be presented as fol-
lows.

Procedure 3.1:

(i) Determine the transient and asymptotic responses of
the original system to the chosen test input from its
state-space representation � = {A, B,C} and take the
state-space realization�tr = {A, Btr ,C} of the resulting
transient component.

(ii) Approximate �tr according to the chosen stability-
preserving reduction criterion (e.g. minimization of the

Figure 1. Basic flow chart of Procedure 3.1.

Hankel-norm or H2-norm of the approximation error,
balanced truncation).

(iii) Form the reduced-order model from the approximate
forced response obtained by combining the original
steady-state component with the approximate tran-
sient component.

Thisprocedure is schematically represented inFigure1.

Remark 3.1: The firstmatrix of the triplet�tr = {A, Btr ,C},
the so-called state matrix, can be made to coincide with
the state matrix of the original system � = {A, B,C}
because the dynamics of � and �tr are characterized by
the same (decaying) system modes. Also the third matrix
of the triplets � and �tr coincide because the transient
output component ytr(t) is related to the transient state
component by means of the relation (5) that holds for
the overall forced responses. The secondmatrix Btr of the
triplet�tr , instead, depends onbothA and B. For instance,
in the case of the ramp input, it is given by Btr = A−2B
(see Equation (8) and in that of the sinusoidal input (9) by
Btr = (ω2I + A2)−1Bω (see Equation (10)).

Remark 3.2: Step (ii) of Procedure3.1 leads to anapprox-
imate realization �a

tr = {Aa, Batr ,Ca} of �tr . Since the
dimension of�a

tr is much smaller than that of the original
system, the conversion from its state-space representa-
tion to its s-domain representation does not pose any
numerical problem.

Step (iii) of Procedure 3.1 is not so straightforward as
it might seem at first sight. To illustrate this point, let
us refer to the s-domain representation of the reduced
model, and denote by Yatr(s) the Laplace transform of the
reduced-order transient component, which is completely
determined after Step (ii), and by Yss(s) the Laplace trans-
form of the (known) original asymptotic component to
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be preserved. The transfer functionWa(s) of the reduced-
order model should satisfy the equation

Wa(s)U(s) = Yatr(s) + Yss(s). (11)

However, since the denominator daw(s) of the strictly
properWa(s) must coincide with the denominator datr(s)
of Yatr(s), the only unknowns in (11) are the coeffi-
cients of the numerator naw(s) of Wa(s) whose number
is equal to deg[datr(s)], whereas the number of equa-
tions that may be formed by equating the numera-
tor coefficients of the equal powers of s on both sides
of (11) is deg[datr(s)] + deg[dss(s)], where dss(s) denotes
the denominator of Yss(s) (equal to the denominator
du(s) of U(s) = nu(s)/du(s)), so that the systems of equa-
tions is overdetermined for deg[dss(s) = du(s)] > 0. To
match the number of unknowns to the number of equa-
tions, (11) can be replaced by

Wa(s)U(s) = Yatr(s) + Yss(s) + Yα(s), (12)

which contains an auxiliary addendum Yα(s) = nα(s)/
dα(s) with a fixed Hurwitz denominator dα(s) and a free
numerator nα(s). If the poles of Yα(s) are chosen far away
to the left, they do not influence appreciably the dynam-
ics of the reducedmodelwhose order, however, increases
by deg[dα(s)] because the denominator of the reduced
transfer functionWa(s) becomes daw(s) = datr(s)du(s). It is
easily seen that the required matching between number
of equations and number of unknowns is achieved if

deg[dα(s)] = deg[du(s)]. (13)

In most practical cases, deg[du(s)] is very small compared
to the order of the original system (the test signals are
sinusoids, steps and ramps).

The results obtained by applying Procedure 3.1 to a
pair of meaningful examples show the validity of the
suggested approach.

4. Examples

This section shows the results of the application of the
model reduction technique based on the suggested
state-responsedecomposition to apair of very high-order
examples forwhich the transfer-function approachwould
be unreliable or even impracticable since round-off errors
and very small changes in the input data produce wildly
different s-domain representations. The time responses
of the reduced-order models that retain the steady-state
component of the original response to selected inputs
are compared with those obtained, without explicit con-
sideration of the asymptotic behaviour, by means of the
popular Hankel-norm and balanced-truncation methods

Figure 2. Ramp responses of the models of the clamped beam
for the 348th-order original model (solid line) and its three sixth-
order approximations obtained by theHankel-normmodel reduc-
tion (dash–dotted line), balanced truncation with DC gain adjust-
ment (dashed line) and the proposed approach (bold dotted line).
The approximation introduced by the balance truncation (withDC
gain adjustment) method and by the method proposed herein
are, in the considered time interval, very small and hence have not
been magnified.

that can be implemented using readily available com-
puter programs. Since the purpose of this paper is just
to show how reduction techniques can be adapted to
the case in which the asymptotic behaviour need be
reproduced and not to propose a new approximation
algorithm, other reduction techniques are not consid-
ered even if they might lead to better approximations. Of
course, the improvement in the steady-state behaviour
of the suggested approach is limited to the inputs of
interest.

4.1. Example 1

Consider first the 348th-order model of a clamped beam
illustrated in Chahlaoui and Van Dooren (2005). Figure 2
shows the ramp responses of: (i) the original system, (ii)
the sixth-order model retaining the original steady-state
response to the ramp input, (iii) the sixth-order model
obtained using Hankel-norm approximation, and (iv) the
sixth-order model obtained using balanced truncation
(with DC gain adjustment, thus retaining the steady-state
response to a step input).

The transient component of themodel that retains the
steady-state component has been approximated accord-
ing to the Hankel-norm criterion. Figure 3 compares the
responses to the sinusoidal input u(t) = sin 5t. In order
to highlight the differences, attention is limited to the
interval 190 ≤ t ≤ 200 s.
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Figure 3. Responses of the models of the clamped beam to
u(t) = sin 5t for the 348th-order original model (blue solid line),
and its three sixth-order approximations obtained by the Hankel-
norm model reduction (green dash–dotted line), balanced trun-
cation with DC gain adjustment (black dashed line) and the pro-
posed approach (red bold dashed line).

4.2. Example 2

Consider now the 48th-order model that describes the
dynamics of a hospital building. Thismodel, which is illus-
trated in Chahlaoui and Van Dooren (2005), has also been
considered in Antoulas, Sorensen, and Gugercin (2001).

Figure 4 compares again the ramp response of the
originalmodelwith the ramp responses of the sixth-order
models obtained bymeans of: (i) the proposed technique
ensuring the retention of the asymptotic component, (ii)
the Hankel-norm approximation, and (iii) the balanced-
truncation method with DC gain adjustment. Observe,
in particular, that the ramp response of the balanced-
truncation model does not coincide asymptotically with
the original response, as shown by the smaller picture
inside the figure.

Figure 5 compares instead the responses to the input
u(t) = 5 sin 10t. In this case, attention is limited to the
interval 196 ≤ t ≤ 200 s to make the differences more
visible.

5. Conclusions

It has been shown how standard reduction techniques
can be adapted to retain the steady-state response to a
numerous class of inputs, namely those expressed by a
linear combination of exponentials, possibly multiplied
by powers of t. This result is achieved by increasing a little
the order of the reduced model with respect to the order
of the models obtained from the impulse response only.
This increase is negligible when the dimension of the

Figure 4. Ramp responses of the models of the hospital for the
48th-order original model (solid line) and its three sixth-order
approximations obtained by the Hankel-norm model reduction
(dash–dotted line), balanced truncation with DC gain adjustment
(dashed line) and the proposed approach (bold dotted line).

Figure 5. Responses of the models of the hospital to u(t) =
5 sin 10t for the 48th-order original model (blue solid line) and its
three sixth-order approximations obtained by the Hankel-norm
model reduction (green dash–dotted line), balanced truncation
with DC gain adjustment (black dashed line) and the proposed
approach (red bold dashed line).

original system is high, typically, many tens or even hun-
dreds, as is the case in many practical applications (see,
e.g. Chahlaoui and Van Dooren, 2005; Gawronski, 1998).
In these cases, the resort to state-space representations
is mandatory for numerical robustness. To this purpose,
the components of the original forced response have
preliminarily been expressed in this form.

Examples have shown that the approximation of the
responses to the chosen test inputs improves significantly
not only at steady state but also during the transients.

The same approach could be adopted to approximate
unstable original systems by first separating the stable
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and unstable parts and then applying the reduction pro-
cedure to the first one only. The reducedmodelwill finally
be obtained by combining the reduced stable compo-
nent with the original unstable one. In this case too,
care must be taken to ensure that the reduced transfer-
function denominator is the same as the denominator
of the reduced stable transient term. This can again be
obtained by including an auxiliary term as in (12).

The approach could also be extended to the case
where the input denominator has a factor in common
with the denominator of the original transfer function,
which would require considering a resonant or interac-
tion term (Dorato et al., 1994) besides the transient and
asymptotic terms.
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Appendix

The following proposition, which is equivalent to
Proposition 2.1 of Section 2, is proved next:

Proposition A.1: The forced state response of the asymptotically
stable system� = {A, B, C} to the causal input

uq,j(t) = tj eqt , t ≥ 0, Re(q) ≥ 0, (A1)

with j ∈ N and Re(q) ≥ 0, is given by

xq,j(t) = j! eAt(−1)j+1M−(j+1)B

+
j∑

k=0

j!
(j − k)!

(−1)kM−(k+1)Btj−k eqt , t ≥ 0. (A2)

withM= qI−A.

Proof: By induction on j. To begin with, note that

e−AtBtjeqt = e(qI−A)tBtj

and that, for any invertible matrixM,
∫ t

0
eMτBdτ = M−1(eMt − I)B = (eMt − I)M−1B. (A3)

Equation (A3) proves the claim for j= 0, in fact
∫ t

0
eA(t−τ)B eqτ dτ = eAt

∫ t

0
eMτBdτ

= eAt(eMt − I)M−1B,

http://dx.doi.org/10.1016/j.apm.2015.04.014
http://dx.doi.org/10.1002/ nme.4948
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which is equivalent to (A2) for j= 0. Now, suppose that (A2)
holds for a generic j. By applying the integration-by-parts rule,
we obtain

xq,j+1(t) =
∫ t

0
eA(t−τ)Bτ j+1 eqτ dτ

= eAt[(eMτ − I)M−1Bτ j+1]t0 − eAt(j + 1)

×
∫ t

0
(eMτ − I)M−1Bτ j dτ

= M−1Btj+1 eqt − eAtM−1Btj+1 − eAt(j + 1)

×
∫ t

0
eMτM−1Bτ j dτ

+ eAt
∫ t

0
(j + 1)M−1Bτ j dτ . (A4)

By the inductive hypothesis, the third addendum in (A4) can be
written as follows:

− eAt(j + 1)
∫ t

0
eMτM−1Bτ j dτ

= −(j + 1)
∫ t

0
eA(t−τ)M−1Bτ j eqτ dτ

= (j + 1)! eAt(−1)j+2M−(j+2)B

+
j∑

k=0

(j + 1)!
(j − k)!

(−1)k+1M−(k+2)Btj−k eqt .

Moreover, the fourth addendum is

eAt
∫ t

0
(j + 1)M−1Bτ j dτ = eAtM−1Btj+1,

which cancels the second addendum in (A4). In addition, the
first addendum can be included in the summation by simply
extending it to k=−1. As a consequence,

xq,j+1(t) = (j + 1)! eAt(−1)j+2M−(j+2)B

+
j∑

k=−1

(j + 1)!
(j − k)!

(−1)k+1M−(k+2)Btj−k eqt .

Finally, by setting h = k + 1, we obtain

xq,j+1(t) = (j + 1)! eAt(−1)j+2M−(j+2)B

+
j+1∑
h=0

(j + 1)!
(j + 1 − h)!

(−1)hM−(h+1)Btj+1−h eqt ,

which proves the claim for j+1. �
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