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Abstract We report results from studies of baryon ground and resonant states by taking explicit mesonic
degrees of freedom into account. We are following a relativistic coupled-channels approach relying on a
Poincaré-invariant mass operator in matrix form. Generally, it corresponds to a bare particle that is coupled to
a number of further mesonic channels. Here we present results, where the bare particle is either a bare nucleon
or a bare Delta coupled to pion–nucleon and pion–Delta channels, respectively. For the pion–baryon vertices
we employ coupling constants and form factors from different models in the literature. From the mass-operator
eigenvalue equation we obtain the pion-dressing effects on the nucleon mass as well as the mass and pion-decay
width of the Delta. The dressed masses become smaller than the bare ones, and a finite width of the Delta
is naturally generated. The results are relevant for the construction of constituent-quark models for baryons,
which have so far not included explicit mesonic degrees of freedom, but have rather relied on three-quark
configurations only.

A proper description of hadron resonances poses considerable problems in all current approaches to quan-
tum chromodynamics (QCD). Along constituent-quark models resonances have hitherto usually been consid-
ered as excited bound states rather than as genuine resonances with finite decay widths. Covariant predictions
for decay widths of baryons have shown shortcomings usually underestimating data from phenomenology [1–
4]. A possible remedy consists in coupling to decay channels and thereby including mesonic degrees of freedom
explicitly.

In this spirit we construct a relativistically invariant coupled-channels (CC) mass operator

(
MB̃ K
K † MB̃+π

) ( |ψB〉
|ψB+π 〉

)
= mB

( |ψB〉
|ψB+π 〉

)
. (1)

Herein MB̃ is the mass operator of a bare particle B̃, which in our case is either a bare nucleon Ñ or a bare
Delta Δ̃. The second channel with the mass operator MB̃+π

contains in addition an explicit interaction-free π .
The transition between the channels is governed by the operator K . The mass eigenvalue mB becomes real for
the physical nucleon N (no decay channel open) and complex for the physical Delta Δ (as a genuine resonance
acquiring a finite decay width).
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Fig. 1 π-Loop diagrams considered for the dressing of a bare Ñ and a bare Δ̃

Table 1 Parameters of bare π Ñ Ñ and π ÑΔ̃ vertex form factors entering into Eq. (4)

RCQM SL PR multipole PR Gaussian

π Ñ Ñ
f 2
π Ñ Ñ

/4π 0.0691 0.08 0.013 0.013
λ1 0.451 0.453 0.945
λ2 0.931 0.641 1.102
λ 0.665

π ÑΔ̃

f 2
π ÑΔ̃

/4π 0.188 0.334 0.167 0.167
λ1 0.594 0.4583 0.853
λ2 0.998 0.648 1.014
λ 0.603

The first three columns correspond to the multipole type as on the l.h.s. of Eq. (5) and the last column to the Gaussian type as on the
r.h.s. of Eq. (5). The corresponding parametrizations are taken from Refs. [5,6], respectively. All (bare) coupling constants belong
to k2

π = 0. RCQM refers to the predictions of the relativistic constituent-quark model of Ref. [7], SL to the πN meson-exchange
model by Sato and Lee [8], and PR to the Nijmegen soft-core model of Polinder and Rijken [6]. All cut-off parameters are in GeV

We apply a Feshbach reduction to Eq. (1) and are left with the following eigenvalue problem[
MB̃ − K

(
mB − MB̃+π

+ i0
)−1

K †
]
|ψB >= mB |ψB > . (2)

The optical potential K (mB − MB̃+π
+ i0)−1K † corresponds to the diagrams in Fig. 1, where at the vertices

the π-coupling to either a bare Ñ or a bare Δ̃ is furnished by K (resp. K †) and is given by the following
pseudovector Lagrangian densities with the π-field φ(x) coupling the Ñ Dirac fields ψ(x) and the Δ̃ Rarita–
Schwinger fields ψμ, respectively, [5]

L
π Ñ Ñ (x) = − f

π Ñ Ñ

mπ

ψ̄(x)γ μγ5τψ(x) · ∂μφ(x) and L
π ÑΔ̃

(x) = − f
π ÑΔ̃

mπ

ψ̄(x)Tψμ(x) · ∂μφ(x) + h.c.

(3)
The eigenvalue equation (2) then adopts the following explicit form

mB̃ +
∫

d3kπ

(2π)3

1

2ωπ2ωÑ2mB̃

F
π Ñ B̃(k2

π )〈B̃|L
π Ñ B̃(0)|Ñ , π;kπ 〉

× (
mB − ωÑ − ωπ + i0

)−1
F

π Ñ B̃(k2
π )〈Ñ , π; kπ |L†

π Ñ B̃
(0)|B̃〉 = mB, (4)

where mB̃ is the bare baryon mass, ωπ and ωÑ are the π- and Ñ -energies, respectively, and the integration is
over the intermediate π-momentum kπ . For the extended π Ñ and πΔ̃ vertices we employ (bare) form factors
taken from prescriptions or models in the literature. They are parametrized through the formulae

F
π Ñ B̃(k2

π ) = 1

1 + (kπ

λ1
)2 + (kπ

λ2
)4

or F
π Ñ B̃(k2

π ) = exp−k2
π /2λ2

(5)

in case of multipole or Gaussian types, respectively. The values of the coupling constants and cut-off parameters
for the different models used here are given in Table 1. The momentum dependences of the corresponding form
factors are depicted in Figs. 2 and 3.

With these ingredients we solve the eigenvalue equation (4) by calibrating the mass eigenvalue mN to
the physical N mass mN = 0.939 GeV. Thereby we can predict the difference to the bare mass mÑ . The
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Fig. 2 Momentum dependences of the different (bare) form-factor models in the case of the π Ñ Ñ system

Fig. 3 Momentum dependences of the different (bare) form-factor models in case of the π ÑΔ̃ system

Table 2 π-Loop effects in the N mass mN = 0.939 GeV according to the l.h.s. diagram of Fig. 1

RCQM SL PR multipole PR Gaussian

mÑ (GeV) 1.067 1.031 1.051 1.025
mÑ − mN (GeV) 0.128 0.092 0.112 0.086

corresponding effects of the pion-loop diagram on the l.h.s. of Fig. 1 are given in Table 2. It is seen that the
dressing effects are all of the same order of magnitude for the different form-factor models employed. The
biggest mass difference is obtained in case of the RCQM. The individual results from different models stem
from an interplay of the magnitude of the coupling constant f

π Ñ Ñ and the momentum dependence of the
vertex form factor (Fig. 2).

For the Δ we proceed in an analogous manner calibrating the real part of the mass eigenvalue mΔ to the
physical Δ mass mΔ = 1.232 GeV. Thereby we can predict the difference to the bare mass mΔ̃ and the
Δ → Nπ decay width Γ . The corresponding effects of the π-loop diagram on the r.h.s. of Fig. 1 are given in
Table 3. Again the results for the dressing effect on the Δ masses are of the same order of magnitude for the
different form-factor models. This time the effects are biggest in case of both PR models. Still the predictions
for the π-decay widths are all far too small as compared to the experimental value of about 0.12 GeV.

An improvement by about one order of magnitude for the π-decay widths is obtained, when replacing
the bare Ñ in the π-loop diagram on the r.h.s. of Fig. 1 by the dressed N , i.e. always the physical mass
mN = 0.939 GeV is used instead of the respective bare masses mÑ , while the coupling constants and form
factors are kept the same (i.e. bare) as before. In this way the phase space for the hadronic decay is increased
and thus about half of the value of the experimental π-decay width is reached (e.g., in the SL model); cf.
the results in Table 4. This represents already a significant improvement over the even smaller values for the
covariant results of π-decay widths of Δ(1232) obtained with relativistic constituent-quark models before [1].
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Table 3 π-Loop effects in the Δ mass mΔ = Re (mΔ) = 1.232 GeV and in the π-decay width Γ according to the r.h.s. diagram
of Fig. 1, where the bare Ñ masses mÑ in the intermediate states are the same as in Table 2

RCQM SL PR multipole PR Gaussian

mΔ̃ (GeV) 1.300 1.295 1.337 1.323
mΔ̃ − mΔ (GeV) 0.068 0.060 0.104 0.090
Γ = 2 Im (mΔ) (GeV) 0.003 0.017 0.005 0.010

Fig. 4 π-Loop diagram considered for the dressing of a bare Δ̃, where in the intermediate state a physical N with mass mN =
0.939 GeV is employed

Table 4 π-Loop effects in the Δ mass mΔ = Re (mΔ) = 1.232 GeV and in the π-decay width Γ according to the diagram in
Fig. 4, where in the intermediate state always mN = 0.939 GeV

RCQM SL PR multipole PR Gaussian

mΔ̃ (GeV) 1.318 1.305 1.358 1.339
mΔ̃ − mΔ (GeV) 0.086 0.073 0.125 0.107
Γ = 2 Im (mΔ) (GeV) 0.042 0.069 0.039 0.04

In summary the CC approach allows in a promising way to include explicit couplings to mesonic channels
in a fully relativistic framework. In this way resonant states are naturally generated with complex eigenvalues
and thus with finite decay widths. So far π-loop effects involving only one π have been investigated. Here
we presented the corresponding results for the N and Δ. Presumably, for a more realistic description multiple
π-contributions are still necessary and a π-interaction in the second channel should be foreseen. These issues
are presently under study or planned. Likewise we are now in the process of applying the same approach to
N∗ resonances.
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