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Abstract
High-resolution digital terrain models (HR-DTMs) of regional coverage open interesting 
scenarios for the analysis of landscape, including derivation and analysis of channel network. 
In this study, we present the derivation of the channel network from a HR-DTM for the 
Autonomous Province of Trento. A preliminary automatic extraction of the raw channel 
network was conducted using a curvature-based algorithm applied to a 4 m resolution DTM 
derived from an airborne LiDAR survey carried out in 2006. The raw channel network 
automatically extracted from the HR-DTM underwent a supervised control to check the 
spatial pattern of the hydrographic network. The supervised control was carried out by 
means of different informative layers (i.e. geomorphometric indexes, orthophoto imagery 
and technical cartography) resulting in an accurate and fine-scale channel network.
Keywords: Channel network, high-resolution DTM, geomorphometry.

Introduction
The detailed cartographic delineation of the channel network plays a fundamental role 
in manifold landscape management issues, such as water resources management, geo-
hydrological risk analysis, buildup of technical cartography, and legal matters related to 
land use.
In mountain regions the patterns and density of hydrographic network are generally highly 
complex and heterogenous mainly in response to the wide variety of geo-structural and 
geomorphological settings, as well as to the high spatial variability of local climate regimes. 
Moreover, human activities in mountain regions result in a wide variety of environmental 
impacts. In some cases, channel network has been modified for drainage and irrigation 
purposes, in other the alteration of drainage patterns is due to the presence of man-made 
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features, such as roads and urbanized areas. The last 40 years have seen relevant changes 
in land use in mountain regions, with an important increase of urbanized areas and road 
network, and consequent modifications of the hydrographic network. Human activities that 
influence runoff generation and drainage pattern have reflections in the context of hydro-
geological hazard and water resources management. Accordingly, an up-to-date detailed 
recognition of the channel network is needed for landscape management purposes.
The hydrographic network is made up of channels that run through the watershed surface, 
converging to its outlet. The definition of channel, referring to the common perception of 
stream and river, does not present any particular problem of interpretation. The characteristic 
elements of a channel are the presence of flowing water with a velocity proportional to the 
energy gradient in the direction of motion and a transversely confined geometry that defines 
a wetted section [Dalla Fontana, 2005]. The interpretation of the hydrographic network 
becomes more complicated when the presence of water is linked to different phases of 
the hydrological cycle. The absence of a permanent drainage is typical of watercourses 
in dry climate regions whereas in humid climates it is characteristic, especially but not 
exclusively, of headwater channels [Marchi et al., 2008; Brardinoni et al., 2009].
The study of the processes that underlie the formation of channel heads, i.e. the starting 
points of the hydrographic network, their recognition in the field and the extraction of 
synthetic network starting from Digital Terrain Model (DTM) have been the subject of 
numerous researches [Tarboton et al., 1991; Montgomery and Dietrich, 1992; Dietrich et 
al., 1993; Montgomery and Foufoula-Georgiou, 1993; Dalla Fontana and Marchi, 2003; 
Hancock and Evans, 2006; Molloy and Stepinski, 2007; Tarolli and Dalla Fontana, 2009; 
Orlandini et al., 2011; Sofia et al., 2011].
Nowadays the availability of high-resolution digital terrain models (HR-DTMs), especially 
those derived from airborne LiDAR (Light Detection and Ranging), has permitted significant 
advances in different fields of earth science, including landslide analysis and mapping 
[McKean and Roering, 2004; Van Den Eeckhaut et al., 2005; Ardizzone et al., 2007, Booth 
et al., 2009; Tarolli et al., 2012] and recognition of surface morphology in different contexts 
[Staley et al., 2006; Frankel and Dolan, 2007; Cavalli and Marchi, 2008; Cavalli et al., 2008; 
Trevisani et al., 2009; Trevisani et al., 2010; Pirotti et al., 2012]. These terrain models offer 
an unprecedented capability to interpret surface morphology and the related geomorphic 
and hydrological processes [Tarolli et al., 2009; Cavalli et al., 2012; Trevisani et al., 2012]. 
Accordingly, also research in channel network analysis greatly benefits from the availability 
of HR-DTMs [Notebaert et al., 2009; Vianello et al., 2009; Cavalli and Tarolli, 2011] which 
favor the application and development of several techniques for the identification of channel 
heads and the extraction of channel networks, e.g. the use of wavelets [Lashermes et al., 
2007], nonlinear filters [Passalacqua et al., 2010], and the statistical processing of curvature 
[Tarolli and Dalla Fontana, 2009], different geomorphometric indices [Thommeret et al., 
2010; Cazorzi et al., 2012] and openness maps [Sofia et al., 2011]. Moreover, the availability 
of HR-DTMs of regional coverage is increasing, thanks to technological developments and 
decreasing costs of data acquisition and processing, opening interesting prospects for the 
analysis and the definition of the channel network. 
In this study, we present our experience in the derivation of channel network from a HR-
DTM for an alpine region (Autonomous Province of Trento, Northern Italy), covering an 
area of 6210 km2. The derivation of the channel network is conducted via a geomorphometric 
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approach. The digitally derived channel network is then verified and refined manually with 
an extensive comparison with ground truth. The refining process of channel network was 
particularly useful for the precise definition of channel heads as well as for the correction 
of channel reaches in complex morphological and difficult to be interpreted areas. In 
particular, an important part of the refining process was corroborated by extensive field 
surveys in area morphologically affected by anthropic activities, such as urban areas and 
road infrastructures. Moreover, we analyze the interaction between human activities and 
the channel network by comparing the channel network derived from the HR-DTM with 
field evidences collected during extensive field surveys.

Study area and LiDAR data
The Autonomous Province of Trento (northern Italy) is an alpine region covering an 
area of 6210 km2 (Fig. 1). The landscape of the region presents an heterogeneous surface 
morphology with about 70% of the total area lying above 1000 m a.s.l. and a mean elevation 
of 1400 m a.s.l.. Land use is typical of mountain landscape: forests (especially conifer 
stands) cover around 70% of the total area, while rocky outcrops and bare ground occupy 
11.5% of the territory. Urbanized and agricultural areas are mostly located in valley floors 
covering around the 19% of the Province. The region is characterized by a complex geo-
structural setting, marked by important structural lineaments and relevant deformation 
structures [Castellarin et al., 2005]. 

Figure 1 - Location map for the Province of Trento study site (Trentino, Italy).

The bedrock of the area is constituted by a mosaic of different lithologies, ranging from 
Permian to Tertiary age. Almost all the area is part the Southern Alpine Units composed by 
intrusive and effusive magmatic rocks, metamorphic rocks and a variety of sedimentary rocks 
(mainly calcareous and dolomitic). Only a small portion of the area, on the northwest, is part 
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of Australpine system, characterized by the presence of basement rocks (lower Paleozoic) 
like phyllites, micaschists, paragneisses with some associated marbles and amphibolites. 
The transition between Austroalpine system and the Southern Alpine Units is marked by the 
relevant tectonic lineament “Periadriatic Lineament” located in correspondence of Val di 
Sole. Quaternary deposits are widespread in the area, mainly consisting in glacial deposits 
and talus slope at the highest elevations and colluvial and alluvial deposits in the valley 
floors.
The whole territory of the Autonomous Province of Trento is covered by an HR-DTM 
derived from airborne LiDAR data, which is freely available for download (http://www.
territorio.provincia.tn.it/S.I.A.T.). The entire Province was covered by different flights 
between autumn 2006 and winter 2007. The surveyed area was divided into two sections 
with different point density and accuracy standards in order to provide a DTM resolution of 
1 m (0.15 m vertical accuracy) for main valley and urbanized area, and 2 m (0.3 m vertical 
accuracy) for the remaining areas. The HR-DTM was provided in 1410 and 345 blocks with 
2 km side with the 1 m and 2 m resolution, respectively.

Methodology
DTMs are a mandatory topographic informative layer useful for the automatic definition 
of the drainage paths and, consequently, of the digital channel network of a given basin. 
Different algorithms have been implemented in both commercial and open source GIS 
software, which allow generating a drainage network from DTM [Montgomery and 
Foufoula-Georgiou, 1993; Desmet et al., 1999; Tarboton and Ames, 2001]. The developed 
methodology, which will be described in detail in subsequent sections, mainly requires two 
analysis steps: (i) the automatic derivation from the HR-DTM of a preliminary channel 
network, and (ii) supervised control aimed at the refinement of the preliminary channel 
network and at the classification of the reaches according to their main characteristics.

Raw channel network derivation
A preliminary analysis was conducted in order to test different algorithms for extracting a 
preliminary (‘raw’) channel network from the HR-DTM. In order to carry out in a consistent 
manner the elaborations required for the automatic derivation of the raw channel network, 
it was necessary to create a unique DTM with a homogeneous resolution for the whole 
Province of Trento. A resolution of 4 m of the LiDAR DTM has been chosen to achieve 
the optimal trade-off between the high detail required and the large extent of the area to 
be analyzed. The resolution reduction by 1 to 2 m and, subsequently, from 2 to 4 m was 
achieved by using the Aggregate tool of ArcGIS 9.3 Spatial Analyst computing the mean of 
the cell values of the input DTM into a moving window of size equal to the new resolution. 
Due to the difficulties to manage a unique 4-m DTM of the Province, the study area has 
been divided into 5 sub-regions (North-East, North-West, South, South-East, South-West) 
in which the basic hydrologic layers, i.e. hydrologically correct DTM (with an algorithm 
based on sink filling approach), flow direction (with classic D8 algorithm), and upslope 
area, have been derived. A further subdivision into 47 hydrologic drainage basins was 
necessary in order to define, for homogeneous areas, the appropriate thresholds for channel 
extraction (Fig. 2).
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Figure 2 - Subdivision of the study area into 5 sub-regions named NE, NO, SE, S, SO, and their 
respective sub-basins.

Initially, two different morphological algorithms for extracting the channel network from 
the HR-DTM were tested: a curvature-based and a modified slope-dependent threshold area 
approach. A numerical/statistical approach for the definition of the thresholds was avoided 
in relation to two main reasons: (i) an extensive quality control and manual refinement of 
the derived channel network was a commitment of the planned procedure. Accordingly, 
this reduced the need to invest many resources in the definition of the thresholds given the 
possibility to refine manually the channel heads; (ii) the definition of a numerical/statistical 
procedure for the optimization of thresholds would have required the availability of a high 
resolution digital channel network for a wide set of test areas (considering the morphological 
heterogeneity of the area). This process is time consuming and the derivation of the test 
channel network would be operated via the same thematic layers used for the control and 
refinement of the raw channel network, leading to a kind of circularity. 
The tests aimed at the comparison between the mentioned algorithms were conducted 
on the Alto Avisio basin (NE1 basin in Fig. 2), covering an area of approximately 210 
km2. This area was chosen because of its wide variety of morphological settings and 
the representativeness of the hydrologic network. Moreover, the Alto Avisio basin was 
particularly well suited for conducting intensive field surveys aimed at the validation of the 
derived raw channel networks. 
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Curvature-based method
The first algorithm we tested was the Curvature-based method [Tarboton and Ames, 2001] 
implemented in the TauDEM (Terrain Analysis Using Digital Elevation Models, http://
hydrology.usu.edu/taudem/taudem4.0/index.html).
The algorithm first identifies upwards curved grid cells using the approach of Peuker and 
Douglas [1975] reported by Band [1986]: initially the pixels of highest elevation in a 4-cell 
moving window are flagged and then, after one sweep of the matrix, the unflagged cells 
are identified as drainage courses (Fig. 3). Before identifying upwardly curving grid cells, 
the DTM is first smoothed by a kernel with weights at the center, sides, and diagonals. The 
patterns of upward curved cells lack connectivity and are not readily amenable to delineate 
channel network. The connection of upwards curved cells is achieved by computing a 
weighted contributing area using only the identified upward curved cells as a weighting field. 
A threshold in this weighted drainage area is finally applied to delineate channel network. This 
means that the threshold in the Curvature-based algorithm is expressed in number of upward 
curved grid cells in contrast to contributing area based algorithms where the threshold is 
commonly expressed in terms of surface facilitating a comparison with other environments.
As in the case of the Slope-dependent threshold area method, threshold was defined 
following a trial and error approach based on a visual evaluation of the density and channel 
heads location of the derived channel network. 

Figure 3 - Method of Peuker and Douglas [1975] for the identification of the upwards grid 
cells. The highest grid cell in each set of four is selected (white). The remaining unflagged 
(blue) grid cells represent drainage courses (from Tarboton and Ames [2001]).
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Modified Slope-dependent threshold area method
The other algorithm we tested was the Slope-dependent threshold area method [Montgomery 
and Dietrich, 1992; Tarboton et al., 1992; Tarboton, 1997] as implemented in the TauDEM 
software. With this method the channel derivation is based on a slope- area relationship:

T a S 1n m= 6 @

Where a is the specific drainage area, i.e. upslope contributing area per unit contour width, 
S is the slope expressed as tangent of the slope angle, n and m are the exponents of a and 
S, respectively. When T is above a defined threshold a channel head is defined. Even in 
this case, the determination of the threshold relies on an heuristic procedure based on field 
evidences and visual control of drainage network density.
In this work, in order to reduce the degrees of freedom of eq. [1], we set up n=1 and m=2, 
as in the first application of the method by Montgomery and Dietrich [1992]. Consequently 
the equation becomes:

2T aS2= 6 @

This formulation is a strong simplification of eq. [1], and it is deemed important to remark 
as the original formulation [1] opens interesting prospects for the modeling of a wide range 
of runoff generation processes. Unfortunately, the definition of exponents n and m require 
more complex and possibly physically based procedures of calibration. In equation [1], the 
factor S2 can be interpreted as a multiplicative factor of the specific drainage area a, which 
amplifies or reduces a, depending on slope values. According to this formulation, at 45° 
(slope=1) we have no effect on drainage area, with higher slopes we have amplification and 
lower slopes attenuation.
When applied directly to HR-DTMs this method tends to produce side effects such as a 
very dense channel network on steep slopes and a too much coarse network in plain areas. 
However, we observed that with some ad-hoc modifications of the original algorithm, 
required and suggested by the available high resolution, the Slope-dependent threshold 
area method could be proficiently applied with HR-DTMs. The performed modifications 
are summarized briefly in the following lines:
i) In the equation [2] we used for S not the single pixel local slope but an upslope average 
slope: i.e. for a given pixel, corresponding to a potential channel head, the slope used 
corresponds to the average local slope of the related drainage basin;
ii) We defined, because of purely algebraic considerations, an upper and lower threshold 
on slope corresponding respectively to √2 (around 55°) and 0.577 (corresponding to 30°) 
limiting the multiplicative factor S2 respectively to 2 and 1/3. The upper threshold, together 
with the use of an average slope, prevents the derivation of a too dense drainage network on 
steep slopes. The lower threshold was set to reduce the side effect of a too coarse drainage 
network on flat areas.

Choice of the method
Both approaches, applied to the Alto Avisio pilot area (NE1 basin in Figure 2), generate 
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suitable results in terms of drainage density and channel heads location, with a slight better 
performance of the Curvature-based algorithm in low-slope areas (Fig. 4).

Figure 4 - Comparison between the two methods described in this paper in a sample area. (a) 
Slope-dependent threshold area method; (b) Curvature-based method. The dotted line outlines a 
higher drainage density in the flat area for the slope-dependent threshold area method.

For the final derivation of the raw channel network we decided to use the Curvature-based 
algorithm. This choice is only marginally based on its slight better performance in low-slope 
areas. The main reason is that this algorithm, differently from the slope/area based one, does 
not require ad-hoc modifications which increase the complexity of the procedure and which 
could require a more in deep analysis in regard to the involved physical processes in order 
to justify the calculation parameters. Moreover, another reason that argues in favor of the 
Curvature-based approach when applied on HR-DTMs relies on the definition of channel 
head. Montgomery and Dietrich [1988] defined a channel head as “the farthest upslope 
location of a channel with well-defined banks”, definition then rephrased by Dietrich and 
Dunne [1993] as “the upstream boundary of concentrated water flow and sediment transport 
between definable banks”. According to these definitions of channel heads, it is evident 
that the geometric and morphologic element plays a key role in determining the channel 
network. HR-DTMs can effectively represent the morphologic signature of channels; thus 
the choice of a Curvature-based algorithm, enhancing the importance of the geometric 
element in the channel network derivation, seems the most appropriate.

Supervised quality control and network classification
The automatically derived channel network represents a ‘raw’ hydrographic network that 
needs a supervised quality control and, in some cases, manual refinements. This is related 
to different factors among which the inherent limitations of a exclusively morphological 
approach in the definition of channel heads, possible errors and artifacts in the HR-DTM, 
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and, mostly, anthropic influences (e.g. culverts, bridges, secondary roads).
Before performing the supervised quality analysis, the raster of the ‘raw’ hydrographic 
network has been converted into vector format taking into account the flow path direction 
of the channel network and dividing it into separate reaches (a reach originates from a 
channel head or from the junction of two upstream reaches). To remove artifacts generated 
in this phase, namely the sudden changes in direction of the segments that compose the 
polyline, the Polynomial Approximation with Exponential Kernel smoothing algorithm 
[Bodansky et al., 2002] has been applied to the vector ‘raw’ channel network. 
The quality control and refinement procedures were carried out by means of visual 
interpretation of different informative layers in a GIS environment and via field surveys 
mainly tailored on urbanized areas and channel head locations. The geographic informative 
layers used for the refinement of channel network can be grouped into two classes: (i) 
technical and thematic cartography and high resolution orthophoto imagery (Fig. 5), and 
(ii) geomorphometric indexes derived from the HR-DTM.

Figure 5 - Illustration of some of the thematic layers used for the revision of the raw channel 
network: (a) panchromatic orthophoto; (b) morphological and sedimentological map; (c) technical 
cartography (1:10000); (d) near-infrared orthophoto.

With regard to the first class, various layers have proven useful in this phase of the 
analysis. Traditional technical cartography (1:10000 and 1:25000 scale) furnished valuable 
information about the channel network pattern of the study area (Fig. 5c), especially 
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the one at 1:25000 scale that was compiled by Italian Military Geographical Institute 
(IGMI) also via field surveys. Nevertheless, it has to be taken into account that technical 
cartography is dating back to 80s (1:10000) and 50s (1:25000). Several thematic layers (i.e. 
geomorphologic, geologic, and land use maps, hydraulic regulation works and roads layers) 
help interpret and, if necessary, correct the channel network pattern (Fig. 5b). Orthophoto 
images acquired in the recent years (2006 and 2008) are probably the most important layers 
in the supervised analysis since they provide updated information about the actual pattern 
of the channel network that is consistent with LiDAR HR-DTM with the only limitation of 
shadows in few limited areas (Fig. 5a). Particularly valuable information has been provided 
by using the near infrared band to create a false-color image of 2008. This kind of image 
greatly enhances the presence of water (Fig. 5d).
Geomorphometric indexes will be discussed in detail in the following sub-section.

The quality control and refinement procedures included the need to perform a channel 
network classification aimed to differentiate channel reaches according to their main 
characteristics. In particular, every reach of the hydrographic network has been classified 
into one of the following three classes (Fig. 6):

- Real: existing channels;
- Virtual: drainage paths in unchanneled areas, connecting real channels;
- Covered channels: in correspondence of culverts and bridges.

Figure 6 - Example of the classified channel network showing the different class types.
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Geomorphometric layers
The second group of geographic informative layers used for the refinement of channel 
network includes various geomorphometric indexes that can be derived directly from the 
HR-DTM. The high resolution and good quality of the LiDAR DTM have allowed the 
generation of geomorphometric parameters [Hengl and Reuter, 2009] useful to undertake the 
analysis of interpretation even in forested areas where the first group layers have problems 
of interpretability (e.g. orthophoto) or of accuracy (e.g. technical cartography). Four 
parameters were derived from the HR-DTM: (i) shaded relief, (ii) Openness [Yokoyama et 
al., 2002], (iii) local anomalies, and (iv) plan curvature (Fig. 7).

Figure 7 - Geomorphometric parameters derived from HR-DTM for a sample area. (a) Shaded 
relief; (b) Openness; (c) Local anomalies; (d) Plan curvature.
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The shaded relief map of the study area was created from the HR-DTM with 2 m cell 
size to take advantage of the highest resolution available (Fig. 7a). The shaded relief map, 
representing the hypothetical illumination of the surface, is a classic geomorphometric 
parameter useful for visualization purpose. It can be produced by setting a position for a 
hypothetical light source and determining the illumination values of each cell in relation 
to neighboring cells. The shaded relief maps of the five macro-areas were created using a 
hypothetical light source from the North-West direction with a zenith of 45° and an azimuth 
of 315° (i.e. the default for many GIS software). The input values of zenith and azimuth 
angles are then processed along with slope and aspect computations to obtain the final 
shade relief value for each cell in the output raster, according to the following algorithm 
[Burrough and McDonnell, 1998]:

255 3Shade cos(z) cos(S) sen(z) sen(S) cos(az A)$ $ $ $= + -6 6 6@ @ @" ,

where z is the zenith angle, az the azimuth angle (both expressed in radians), S and A are 
slope and aspect, respectively.
The calculation of local anomalies is a typical sharpening technique [Campbell, 2008] 
useful to enhance high frequency morphological features such as structural lineaments, 
channel incisions, small scarps, local roughness, etc (e.g., [Carturan et al., 2009; Trevisani 
et al., 2009; Cazorzi et al., 2012]). The local anomalies are derived via a simple sharpening 
technique i.e. making the difference between the original DTM (2 m resolution) and a 
smoothed one; an example of the resulting map is showed in (Fig. 7c), where the smoothed 
DTM was derived via moving averages with a window size of 8 m.
The Openness index [Yokoyama et al., 2002] is a surface representation which requires no 
light source, thus removing one limitation of relief shading (i.e. the presence of shadowed 
areas) and it is less affected by the DTM noise afflicting most other geomorphometric 
parameters. Openness expresses the degree of dominance or enclosure of a location on 
an irregular surface. It is an angular measure of the relation between surface relief and 
horizontal distance. Topographic openness is calculated as the average of either zenith (Φ) 
or nadir (Ψ) angles along eight azimuths D (0, 45, 90, 135, 180, 225, 270 and 315) within a 
radial distance L [Yokoyama et al., 2002]. Openness thus provides two visual perspectives: 
it is designated “positive” and “negative” in the same sense as has been used to express 
terrain-slope curvature. Positive openness ΦL is convex-upward and refers to the calculation 
with zenith angles; negative openness ΨL is concave-upward and refers to evaluation with 
nadir angles [Sofia et al., 2011].
Along the azimuth direction (D), the zenith angle DΦL at a cell within radial distance L is:

90 4D L D LbU = - 6 @

where DβL is the minimum elevation angle for which the line-of sight is unobstructed along 
L. Nadir angle DΨL is expressed as follow:
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90 5D L D LdW = + 6 @

where DδL is the minimum angle of depression for which the line-of sight is unobstructed 
along L.
The positive Openness ΦL of a DTM cell is defined as follow:

( )
8

6L

L L L0 45 315$$$
U

U U U
=

+ + +
6 @

and the negative Openness ΨL:

( )
8

7L

L L L0 45 315$$$
W

W W UW
=

+ + +
6 @

by varying L, landforms at different scales can be represented.
The resulting map resembles shaded relief or slope maps, but emphasizes dominant surface 
concavity and convexity (Fig. 7b).
Curvature is defined as the rate of change of the slope and is usually determined as the second 
derivative of the surface. The two most frequently calculated forms are: (i) profile curvature, 
calculated along the direction of maximum slope, and (ii) plan curvature, calculated orthogonally 
to the direction of maximum slope. The latter provides a measure of convergence and divergence 
of flow and is often used for the identification of ridges and channels on DTM [Cavalli and 
Marchi, 2008]. Therefore, a plan curvature map is particularly appropriate for interpretative 
purpose in the quality control and refinement phase of the ‘raw’ channel network (Fig. 7d). 

Results and discussion
The raw channel network was derived using the curvature-based algorithm and setting 
different thresholds ranging from 80 to 120 in the 47 catchments reported in Figure 2. 
Figure 8 shows the result of the application of the proposed methodology to the Alto Avisio 
test area. The overall development of the derived channel network, including both real 
channels and reaches classified as virtual and covered, is approximately 27600 km. Virtual 
and covered reaches constitute 19.5% (about 5400 km) of the total channel network length. 
In particular, the procedure was able to detect a large number of covered reaches (5870, the 
4.2% of the total number of hydrographic network reaches) for a total length of 84 km.
The classification into real, virtual and covered reaches is of considerable importance 
since it allows adapting the channel network for various purposes. For example, virtual 
reaches, i.e. drainage paths connecting a channel ending without a connection to a receiving 
watercourse, should not be reported in topographic maps. Heavy rainfall events can cause 
floods typically resulting in runoff conveying also along unchanneled surfaces or roads. 
Being virtual reaches derived from the ‘raw’ channel network, thus, following the computed 
flow directions, they can represent the preferential flow paths in case of intense storm (Fig. 
9). Therefore, when the channel network has to be used for geo-hydrological risk analysis 
or modeling purpose, the virtual reaches deserve to be preserved. 
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Figure 8 - The map illustrates the new classified channel network for the Alto Avisio basin (NE1 in 
Fig. 2) resulting from the semi-automatic procedure proposed.

Figure 9 - A forest road classified as virtual reach affected by runoff triggered by an intense storm.
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The benefits of the applied methodology emerge from Figure 10 presenting a rather flat 
and urbanized area of the Province. The LiDAR-based channel network is clearly more 
detailed, more accurate and with a higher completeness if compared with the technical 
cartography channel network (red line in Figure 10). 

Figure 10 - Comparison between the technical cartography channel network and the derived one.

The high degree of extensiveness is also proved by the high values of drainage density. The 
drainage density (Dd) represents an important morphometric parameter closely related to 
significant environmental factors as climate, vegetation, and soil and rock properties and is 
defined as follows:

D
A
L

8d
T= 6 @

Where LT is the total length of the channel network (km) within area A (km2).
Table 1 shows drainage density values for the 47 basins in which the Province of Trento has 
been subdivided (Fig. 2). It’s important to highlight that not all these areas are headwater 
catchments. Some of them are actually interbasins, defined as the area directly drained 
by a reach of the main stem lying between two tributaries [Verdin and Verdin, 1999]. The 
derived channel network reaches were classified according to the Horton-Strahler ordering 
and maximum values within the above mentioned areas are also shown in Table 1. The 
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maximum Horton-Strahler order of areas relating to the Adige river has not been reported 
since Adige receives the discharge from a large basin of about 7500 km2 external to the 
Province of Trento.

Table 1 – Main morphometric parameters of the channel network of Trento Province computed for 
the 47 basins reported in Figure 2 (Typology: B=Basin; IB=Interbasin).

Catchment Area (km2) Length (km) Maximum order 
(-)

Drainage density 
(km-1) Typology

S1 45.49 240.66 - 4.55 IB
S5 175.37 607.10 - 3.01 B
S2 53.95 201.02 - 3.36 IB
S3 234.53 708.84 - 2.32 IB
S4 201.45 511.56 - 1.94 IB
S6 231.94 928.37 - 3.46 IB

NO1 68.32 209.38 5 2.55 B
SE2 129.24 481.56 5 2.76 B
SE6 70.77 221.37 5 2.75 B
NE1 209.17 758.99 6 2.96 B
NE3 186.00 764.13 6 3.33 B
NE7 137.45 684.95 6 4.56 B
NO2 142.44 603.49 6 3.49 B
NO4 135.41 386.68 6 2.44 B
NO5 105.24 418.50 6 3.04 B
NO8 104.29 460.23 6 3.62 B 
SE4 112.32 365.62 6 2.83 B
SE5 119.16 539.03 6 3.82 IB
SE7 132.75 473.38 6 2.94 B
SE8 158.48 510.36 6 2.73 B
SO2 131.11 850.83 6 5.08 B
SO3 97.59 708.84 6 2.75 B
SO4 176.11 1024.54 6 4.64 B
SO8 93.94 275.73 6 2.00 IB
SO9 132.64 820.00 6 5.02 B
SO11 123.76 672.77 6 4.48 B
NE2 95.02 505.91 7 4.55 B
NE4 182.78 687.41 7 3.04 IB
NE5 167.62 652.00 7 3.42 IB
NE6 111.89 393.14 7 3.08 IB
NE8 99.65 530.68 7 4.88 IB
NE9 127.77 910.43 7 6.10 B
NE10 99.96 729.53 7 6.39 B
NO3 178.52 862.62 7 4.11 B
NO6 195.05 895.34 7 3.86 IB
NO7 149.88 366.20 7 1.96 IB
NO9 197.32 794.11 7 2.88 B
NO10 83.36 314.07 7 3.08 IB
SE1 88.50 440.23 7 4.06 IB
SE3 81.45 273.09 7 2.70 B
SO1 149.64 783.34 7 3.83 B
SO5 140.51 822.26 7 4.35 IB
SO6 92.61 605.98 7 5.43 B
SO7 153.92 504.83 7 2.52 B
SO10 176.92 1282.71 7 6.24 B
SO12 115.14 468.78 7 2.92 B
SO13 85.64 308.26 7 2.59 IB
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The drainage density of channel network considering only real and covered reaches, has a 
mean value of 3.54 km-1, ranging from 1.94 to 6.39 km-1, for S4 (subcatchment of the Adige 
river between the Calliano and Chizzola localities) and NE 10 (lower Torrente Cismon 
basin including Torrente Noana tributary) catchment, respectively. 
Some considerations relating to drainage density can be formulated looking at the histogram 
of Figure 11 and to the spatial distribution of the drainage density of the basins (Fig. 12). 
The analysis of drainage density conducted should be viewed as a preliminary analysis 
because of the statistics and the spatial patterns of drainage density are affected by the 
area and shape of defined basins. Consequently, this analysis is focused only on the more 
relevant characteristics of drainage density.

Figure 11 - Histogram of drainage density computed for the 47 basins with reported main 
summaries statistics.

The histogram (Fig. 11) of drainage density has a slight positive distortion, characterized 
by a higher dispersion toward high values of drainage density. This positive distortion 
is also outlined by the summary statistics of drainage density (Fig. 11) which show a 
difference between mean density (3.52 km-1) and the median density (3.32 km-1) and a 
skewness of 0.80. The basins with higher density (Fig. 12) are located on the west and 
east margins of the Trento Province coverage. The basins with higher density appear to be 
located in correspondence of areas characterized by relevant tectonic lineaments (faults 
and overthrusts), strong deformation of geological bodies and high contrast of competence 
between lithologies [Castellarin et al., 2005]. From this perspective an ad-hoc study is 
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necessary to decipher the possible connections between channel network density and 
geometry and the geo-structural local setting at the different spatial scales.

Figure 12 - Subdivision of the defined basins into 4 classes of drainage density (equal interval 
width).

The overall high values of drainage density reveal the great detail of the results of the proposed 
methodology. It is worth noting that the definition of the channel network of the Province of 
Trento and, consequently, the reported drainage density can be considered scale independent 
when a HR-DTM is used as basis for the analysis. A major advantage of the proposed 
approach is that it permits overcoming the dependency of channel network representation on 
the map scale. Many first-order channels are not visible on coarse-scale aerial photographs 
especially when the topographic signature of the channel is fine. Traditional methods, such 
as stereophotogrammetry, produce channel network patterns deeply linked to the scale of the 
used photographs. In cartography the concept of scale is related to the level of detail of a map 
whereas the same concept when dealing with gridded DTM is closely related to cell size or 
grid resolution [Hengl and Reuter, 2009]. A HR-DTM, as the one used in this study, can be 
considered a representation of topography at a scale approaching reality. For the same reason, 
the channel network derived from HR-DTMs can be considered not related to a given scale, 
thus resulting in more realistic values of drainage density. 
Nevertheless, where man-made features (roads, culverts etc.) and urbanized areas are 
present, this method is not capable of deriving the effective channel network. In these areas, 
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where the aerial photo and geomorphometric indexes interpretation is also difficult, field 
surveys are needed in order to revise the flow paths defined by the automatic derivation 
procedure. The supervised control analysis revealed the presence of 1930 areas in which 
the definition of the channels was uncertain. In these areas an intense campaign of field 
survey was conducted, allowing to obtain a significant database (approximately 20,000 
GPS points and 30,000 photographs) describing the characteristics of the urbanized channel 
network. This database has been made available to technical offices of the Province of 
Trento responsible for the management of critical reaches of the channel network.

Concluding remarks
In this paper a semi-automatic methodology has been developed for the derivation of the 
channel network from a High-Resolution Digital Terrain Model at regional scale for the 
Autonomous Province of Trento (Italy). The main advantage of this two-steps procedure 
(automatic extraction and supervised control) relies on the fact that the manual editing task 
is limited due to the high quality, in terms of channel heads location, spatial pattern and 
drainage density, of the automatic extracted preliminary channel network. The preliminary 
channel network greatly benefits of the high resolution and quality of the available regional 
LiDAR DTM, where the morphological signature of channel network is greatly highlighted. 
Furthermore, the choice of a curvature-based algorithm for deriving the preliminary 
channel network, that for its morphological nature fully exploits HR-DTM characteristics 
and enhances the importance of the geometric element, seems the most appropriate.
The procedure provides satisfactory results in areas less affected by human activities, also 
in presence of dense vegetation cover and complex morphology. In urban areas, and in 
other zones with a strong anthropic influence, the GIS-derived channel network has to be 
complemented and corrected by means of field surveys.
This approach is a cost/time efficient methodology that fits well with the needs of a dynamic 
and constantly up-to-date cartography resulting in an accurate and highly detailed definition 
of a countrywide channel network. 
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