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In the current paper a novel methodology accounting for both the heater heat capacity and the imperfect thermal contact between
a thin heater and a specimen is proposed. In particular, the volumetric heat capacity of the heater is considered by modelling
it as a lumped capacitance body, while the imperfect thermal contact is considered by means of a contact resistance. Thus, the
experimental apparatus consisting of three layers (specimen-heater-specimen) is reduced to a single finite layer (sample) subject to a
“nonclassical” boundary condition at the heated surface, known as sixth kind. Once the temperature solution is derived analytically
using the Laplace transformmethod, the scaled sensitivity coefficients are computed analytically at the interface between the heater
and the sample (heater side and sample side) and at the sample backside. By applying the proposedmethodology to a lab-controlled
experiment available in the specialized literature, a reduction of the thermal properties values of about 1.4% is observed for a high-
conductivity material (Armco iron).

1. Introduction

Sensitivity coefficients are used in parameter estimation [1],
optimal experimental design [2], and uncertainty analysis
[3]. In parameter estimation, a sensitivity analysis of the
temperature to the unknown parameters, such as thermal
conductivity, volumetric heat capacity, or thermal diffusivity,
provides valuable insight. For example, in an experimental
apparatus for which sensitivity coefficients had not been
studied adequately it is possible that additional materials
used in the experimental set-up (for instance, the thin heater
giving up heat to the sample) may affect the temperature
more than thematerial under investigation (sample); also, the
temperature sensor location might not be the optimal one.
Even the uncertainty in the profile of the applied heat fluxmay
represent amode of noise in the experiment [4]; in such a case
an analysis of the temperature sensitivity to the applied heat
flux is needed. All these features can compromise the quality
of the results [2].

Also, the sensitivity coefficients not only make possible a
preliminary evaluation of the goodness of the experimental
results (at least from a qualitative point of view), but are
also directly involved in the estimation of the parameters by
means of the sensitivity matrix when minimizing the ordi-
nary least square norm [5–7] whose convergence difficulties
may be predicted by establishing whether linear dependence
between sensitivity coefficients exists [4].

As known, the parameter estimation technique requires
measured temperature values obtained by transient [8] mea-
surements. One of the principles of parameter estimation is
that the measured temperature values are sensitive to the
parameters of interest: the more sensitive the temperature
(or large the sensitivity coefficient) is, the more valuable the
temperature measurements are [2, 8], though the accuracy of
the estimates may adversely be affected by a large magnitude
difference between the same coefficients [4]. Furthermore,
the sensitivity coefficients have to be uncorrelated; otherwise
it is impossible to estimate two or more parameters simulta-
neously [2, 8].
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Figure 1: Schematic of the experimental apparatus for thermal properties measurements (a) and simplified schematic for the addressed
problem (b).

The focus of the current paper is to develop a new
procedure accounting for both the heater heat capacity and
the imperfect thermal contact between the thin heater and
the specimen. For this reason, the dependence of the thermal
properties on temperature is not considered here. Research
work regarding the estimation of temperature-dependent
properties is available in literature as Refs. [7, 9]. Then, if the
thin heater can be modelled as a lumped capacitance body,
the addressed transient heat conduction problem concerns
a one dimensional (1-D) finite single-layer rectangular body
(sample) subject to a boundary condition of the sixth kind
at the heated boundary and insulated at the backside. The
boundary condition of the 6th kind is somewhat neglected in
the specialized heat conduction literature with the exception
of Refs. [10, p. 22], [11]. Note that the word sixth kind is not
used in Ref. [10], while it is used in [11, p. 160].

The governing equations are conveniently solved by using
the Laplace Transform method. In particular, the solution
calculated in the Laplace domain is inverted by means of the
residues theoremwhich requires the computation of the poles
and of the corresponding residues. Once the thermal field
is obtained, the so-called “scaled” sensitivity coefficients are
computed analytically by performing the partial derivative of
the temperature with respect to the parameters of interest.
The coefficients are presented in a graphical form for three
different locations: (1) at the interface between the heater
and the sample (heater side), (2) at the interface between the
heater and the sample (sample side), and (3) at the sample
back side. A discussion about the better locations of the
temperature sensors is also given.

The results of the proposed procedure are then applied to
a lab-controlled experiment available in the parameter esti-
mation literature [8, Chap. 7]. By comparing measured and
calculated temperatures through the ordinary least squares
norm and, then, minimizing this by the well-established
Gaussmethod, a reduction of about 1.4%was observed for the
thermal properties values of the sample considered (Armco
iron).This slight reduction is however in accordance with the
very thin heater and the very low contact resistance of the
experimental apparatus considered.

2. Mathematical Formulation

A schematic of the experimental apparatus for the mea-
surement of the thermal properties of a solid specimen
is depicted in Figure 1(a). This figure shows a thin layer
heater (metallic or kapton/silicon) located between two high-
conductivity samples of the same material and thickness
which releases heat at the surfaces of both samples.This three-
layer configuration (specimen-heater-specimen) reduces to
the simplified configuration depicted in Figure 1(b) by virtue
of a thermal symmetry. In particular, the finite body is in
imperfect thermal contact with a thin layer (representing the
heater as a lumped body) at the boundary x=0 through a
surface contact resistance 𝑅c. In particular, this resistance
increases when using metallic resistive heaters (made of
copper or aluminium) as they are rigid, while it decreases
if kapton or silicon resistive heaters are utilized as they are
flexible. Then, the finite body and the thin layer are at the
same uniform initial temperature 𝑇in. Also, at t=0 a step
change in the surface heat flux is applied to the thin layer,
whose thickness and volumetric heat capacity are denoted by𝐿 f and𝐶f , respectively. In addition, the finite body is insulated
at the backside x=L, and its properties 𝑘 and𝐶 are considered
temperature-independent, as is 𝐶𝑓.

The mathematical formulation of this transient, linear, 1-
D heat conduction problem is defined as

𝜕2𝑇𝜕𝑥2 = 1𝛼 𝜕𝑇𝜕𝑡
(0 < 𝑥 < 𝐿; 𝑡 > 0)

(1a)

−𝑘(𝜕𝑇𝜕𝑥)
𝑥=0

+ 𝐿𝑓𝐶𝑓 𝑑𝑇𝑓𝑑𝑡 = 𝑞𝑓,0 (𝑡 > 0) (1b)

−𝑘(𝜕𝑇𝜕𝑥)
𝑥=0

= 1𝑅𝑐 [𝑇𝑓 (𝑡) − 𝑇 (0, 𝑡)]
(𝑡 > 0)

(1c)



Mathematical Problems in Engineering 3

−𝑘(𝜕𝑇𝜕𝑥)
𝑥=𝐿

= 0 (𝑡 > 0) (1d)

𝑇 (𝑥, 0) = 0 (0 < 𝑥 < 𝐿) (1e)

𝑇f (0) = 0 (1f)

where Eqs. (1b) and (1c) represent the boundary condition
of the sixth kind at x=0. In particular, the former equation
is obtained by applying the first law of thermodynamics to
the thin layer assumed as a lumped-capacitance body, where𝑞f ,0 = 𝑔f ,0𝐿 f (𝑔f ,0 denotes the volumetric heat generation
within the heater), while the latter accounts for the imperfect
contact between the thin layer and the finite body. Also, the
perfect insulated condition presented in Eq. (1d) is consistent
only with high-thermal conductivity samples.

Then, according to the numbering system devised in
[12, Chap. 2], [13], the above problem may be denoted by
X62B10T11. In particular, this number denotes a transient
heat conduction problem concerning a 1D rectangular finite
body (by the X), subject to a boundary condition of the
sixth kind at the surface x=0 (by the 6 in X62) with a
constant applied heat flux (by the B1), and having an insulated
boundary at x=L (type 2 boundary condition by the 2 in X62,
and zero heat flux by the 0 in B10); also, T11 denotes a nonzero
uniform initial temperature for both layers.

By using the following dimensionless variables,

�̃� = 𝑇 − 𝑇in𝑞f ,0𝐿/𝑘 ,
𝑥 = 𝑥𝐿 ,
�̃� = 𝛼𝑡𝐿2 ,

�̃�f = 𝑇f − 𝑇in𝑞f ,0𝐿/𝑘 ,
𝑃 = 𝐶f𝐿 f𝐶𝐿 ,
�̃�c = 𝑅c𝐿/𝑘

(2)

the governing equations given by Eqs. (1a)–(1f), in dimen-
sionless form, become

𝜕2�̃�𝜕𝑥2 = 𝜕�̃�𝜕�̃� (0 < 𝑥 < 1; �̃� > 0) (3a)

−(𝜕�̃�𝜕𝑥)
𝑥=0

+ 𝑃𝜕�̃�f𝜕�̃� = 1 (�̃� > 0) (3b)

−(𝜕�̃�𝜕𝑥)
𝑥=0

= 1̃
𝑅c

[�̃�f (�̃�) − �̃� (0, �̃�)]
(�̃� > 0)

(3c)

−(𝜕�̃�𝜕𝑥)
𝑥=1

= 0 (�̃� > 0) (3d)

�̃� (𝑥, 0) = 0 (0 < 𝑥 < 1) (3e)

�̃�f (0) = 0 (3f)

Moreover, as the initial conditions are now homogeneous,
Eqs. (3e) and (3f), the problemnotation becomesX62B10T00.

3. Temperature Solution

The temperature solution may be derived by applying the
Laplace Transform method to the governing equations, Eqs.
(3a)–(3f), as shown below. In fact, taking into account the
initial conditions Eqs. (3e) and (3f), Eqs. (3a)–(3f) yield

𝜕2𝜗𝜕𝑥2 = 𝑠𝜗 (0 < 𝑥 < 1) (4a)

− 𝜕𝜗𝜕𝑥
𝑥=0 + 𝑃𝑠𝜗𝑓 = 1𝑠 (4b)

𝜗𝑓 = 𝜗 (0, 𝑠) − �̃�𝑐 𝜕𝜗𝜕𝑥
𝑥=0 (4c)

(𝜕𝜗𝜕𝑥)
𝑥=1

= 0 (4d)

where 𝜗(𝑥, 𝑠) = 𝐿[�̃�(𝑥, �̃�)].
The solution of the problem defined by Eqs. (4a)–(4d)

results in
𝜗 (𝑥, 𝑞) = 𝐵1 cosh (𝑞𝑥) + 𝐵2 sinh (𝑞𝑥)

= 𝐴1 cosh (𝑞𝑥 + 𝜑) (5)

where 𝑞 = √𝑠 and the phase 𝜑 can be determined by applying
the boundary condition at 𝑥 = 1, i.e., Eq. (4d). It follows that𝜑 = −𝑞.

Also, it is possible to determine the constant 𝐴1 by using
the boundary condition of the sixth kind defined by Eqs. (4b)
and (4c) in the Laplace domain. Then, bearing in mind that
the hyperbolic cosine is an even function, the sought solution𝜗(𝑥, 𝑞) is

𝜗 (𝑥, 𝑞) = cosh [𝑞 (1 − 𝑥)]
𝑞2 [𝑃𝑞2 cosh (𝑞) + 𝑞 (𝑃�̃�𝑐 𝑞2 + 1) sinh (𝑞)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐷(𝑞)

= cosh [𝑞 (1 − 𝑥)]𝐷 (𝑞)
(6)

Now a Taylor series expansion of the hyperbolic functions
allows us to gain insight on the poles of the solution defined
by Eq. (6). Hence, the function 𝐷(𝑞) appearing at the
denominator of the above equation becomes

𝐷(𝑞) = 𝑞2 {𝑃𝑞2 [1 + 𝑞22 + 𝑂 (𝑞4)]
+ 𝑞 (𝑃�̃�𝑐 𝑞2 + 1) [𝑞 + 𝑞33! + 𝑂 (𝑞5)]} = 𝑞4 {𝑃 + 1
+ 𝑞2 [𝑃2 + 𝑃�̃�𝑐 + 16] + 𝑂 (𝑞4)}

(7)
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Therefore, this function admits a quadruple pole at q=0
(which implies a double pole at s=0). Also, it has simple zeros
along the negative real axis thatmay conveniently be assumed
as 𝑞 = 𝑖𝛽 (or 𝑠 = −𝛽2). Then, the value of 𝛽 can be computed
by solving numerically the eigencondition 𝐷(𝑞 = 𝑖𝛽) = 0;
that is,

𝑃𝛽 cos (𝛽) + (1 − 𝑃�̃�𝑐𝛽2) sin (𝛽) = 0 (8)

where the relations cosh(𝑖𝛽) = cos(𝛽) and sinh(𝑖𝛽) = 𝑖 sin(𝛽)
have been used. Eq. (8) admits an infinite number of simple
poles at 𝑞 = 𝑖𝛽𝑚, 𝛽𝑚 > 0, m=1,2,. . . (or 𝑠 = −𝛽2𝑚), where𝛽𝑚 is them-th eigenvalue whose computation is discussed in
Section 3.1.

Since the function 𝜗(𝑥, 𝑞) in Eq. (8) is analytic except at
poles q=0 (s=0) and at poles 𝑞 = 𝑖𝛽𝑚 (𝑠 = −𝛽2𝑚), 𝛽𝑚 > 0,
m=1,2. . ., the inverse of such a functionmay be obtained using
the residue theorem [14, pp. 384-385]

�̃� (𝑥, �̃�) = 𝐿−1 {𝜗 (𝑥, 𝑠)} = 12𝜋𝑖 ∫𝛾+𝑖∞
𝛾−𝑖∞

𝜗 (𝑥, 𝑠) 𝑒𝑠𝑡𝑑𝑠
= Residues in the closed contour∑

encompassing the left half plane

= 𝑅𝑠=0 + ∞∑
𝑚=1

𝑅𝑠=−𝛽2𝑚

(9)

where the calculation of the residues,𝑅𝑠=0 and𝑅𝑠=−𝛽2𝑚 , is given
in the Appendix. In particular, they result in

𝑅𝑠=0 = �̃�𝑃 + 1 + 𝑥22 (𝑃 + 1) − 𝑥𝑃 + 1 + 1 − 3𝑃�̃�𝑐3 (𝑃 + 1)2 (10a)

𝑅𝑠=−𝛽2𝑚
= 2 (𝑃�̃�𝑐𝛽2𝑚 − 1) cos [𝛽𝑚 (1 − 𝑥)] 𝑒−𝛽2𝑚 �̃�

[(𝑃�̃�𝑐)2 𝛽4𝑚 + (𝑃 + 𝑃�̃�𝑐 − 2�̃�𝑐) 𝑃𝛽2𝑚 + 𝑃 + 1] 𝛽2𝑚 cos (𝛽𝑚)
(10b)

Substituting Eqs. (10a) and (10b) in Eq. (9) yields the temper-
ature solution in the time domain.

�̃� (𝑥, �̃�)
= �̃�𝑃 + 1 + 𝑥22 (𝑃 + 1) − 𝑥𝑃 + 1 + 1 − 3𝑃�̃�𝑐3 (𝑃 + 1)2

+ 2 ∞∑
𝑚=1

(𝑃�̃�𝑐𝛽2𝑚 − 1) cos [𝛽𝑚 (1 − 𝑥)]
�̃�𝑚𝛽2𝑚 cos (𝛽𝑚) 𝑒−𝛽2𝑚 �̃�

(0 ≤ 𝑥 ≤ 1; �̃� ≥ 0)

(11a)

where �̃�𝑚 is the dimensionless norm given by

�̃�𝑚 = (𝑃�̃�𝑐)2 𝛽4𝑚 + (𝑃 + 𝑃�̃�𝑐 − 2�̃�𝑐) 𝑃𝛽2𝑚 + 𝑃 + 1 (11b)

Once �̃�(𝑥, �̃�) is known, the thin layer temperature �̃�𝑓(�̃�) may
be obtained by using the interface condition defined by the
latter of Eq. (3b). After some algebra, it is given by

�̃�𝑓 (�̃�) = �̃�𝑃 + 1 + �̃�𝑐 + 1/3
(𝑃 + 1)2 − 2 ∞∑

𝑚=1

𝑒−𝛽2𝑚 �̃�
�̃�𝑚𝛽2𝑚 (�̃� ≥ 0) (11c)

3.1. Computation of the Eigenvalues. The eigencondition
defined by Eq. (8) may be rewritten as

tan (𝛽𝑚) = 𝛽𝑚/�̃�c𝛽2𝑚 − 1/ (𝑃�̃�c) (12)

It is worth noting that Eq. (12) is similar to the corresponding
equation of the X33 case treated in [15], where “X33” denotes
a 1D rectangular finite body with boundary conditions of the
third kind on both sides (assuming𝐵𝑖1 at x=0 and𝐵𝑖2 at x=L).
In fact, it is sufficient to replace the sum of the Biot numbers(𝐵𝑖1 + 𝐵𝑖2) with the term 1/�̃�𝑐, and their product (𝐵𝑖1𝐵𝑖2)
with the term 1/(𝑃�̃�𝑐). Therefore, its roots may be computed
by using the same explicit approximate relations based on the
third-order modified Newton method [15]. In particular, the
approximate eigenvalue 𝜁𝑚 is obtained by using an iteration
process as shown below:

𝛽𝑚 ≈ 𝜁𝑚 = 𝑧𝑚 + 𝜀𝑚 (𝑧𝑚) (13)

where 𝛽𝑚 is the exact eigenvalue, 𝑧𝑚 is the initial guess value
used in the first iteration, and 𝜀𝑚 is the deviation which yields
the update value for 𝜁𝑚.

These relations provide an approximate value of the exact
eigenvalue with high accuracy (to at least 7th decimal place
when m=1, and a higher decimal place for m>1, after one
iteration) for 𝑃 ∈ (0,∞) and �̃�𝑐 ∈ (0,∞). To obtain
eigenvalues with an accuracy of 10−15 two more iterations
may be required.

In particular, a computer code called “fdeigX62” for
calculating these eigenvalues is available in Ref. [16, App. B]
for ease of use. Some of them computed for 𝑃 = �̃�𝑐 = 1
are shown in Table 1, where the exact eigenvalues 𝛽𝑚 listed
in the last column are obtained by using the internal Matlab
function “fsolve” setting the tolerance parameter equal to10−15. Note that 𝜁𝑚 after two iterations is exactly the same as𝛽𝑚, but 𝛽𝑚 is obtained after three iterations starting from the
same initial guess 𝑧𝑚.
3.2. Computational Solution. The exact analytical solutions
given by Eqs. (11a) and (11c) exhibit an infinite series, while
the computational solution requires a finite number of terms,
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Table 1: Comparison of the first ten calculated 𝜁𝑚 and exact 𝛽𝑚 eigenvalues for the X62 case.
𝑚 𝑧𝑚 𝜁𝑚 𝜁𝑚 𝛽𝑚

(initial guess) (after 1 iteration) (after 2 iterations) (exact)
1 1.195476244024383 1.207792438624699 1.207792655153241 1.207792655153241
2 3.486925937947245 3.448242071207367 3.448237983351985 3.448237983351985
3 6.468623593104900 6.440956097445878 6.440954447908016 6.440954447908016
4 9.550944741970163 9.530477847514561 9.530477156207574 9.530477156207574
5 12.662238896069196 12.645779030853410 12.645778666218552 12.645778666218552
6 15.785462794465527 15.771538985089661 15.771538762863299 15.771538762863299
7 18.914707557510582 18.902557753172037 18.902557604969395 18.902557604969395
8 22.047411709862786 22.036590088566303 22.036589983609232 22.036589983609232
9 25.182288796593070 25.172508998808841 25.172508921226136 25.172508921226136
10 28.318621989478178 28.309686934070488 28.309686874845468 28.309686874845468

say mmax terms. Therefore, a convergence criterion for the
series solutions is needed and it is defined as follows:

𝜀 =
�̃�𝑐 (𝑥, �̃�, 𝐴) − �̃� (𝑥, �̃�)�̃�𝑓 (�̃�) =

2

∑∞𝑚=𝑚max+1

{(𝑃�̃�𝑐𝛽2𝑚 − 1) cos [𝛽𝑚 (1 − 𝑥)] /�̃�𝑚𝛽2𝑚 cos (𝛽𝑚)} 𝑒−𝛽2𝑚 �̃�⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆𝑇

�̃�/ (𝑃 + 1) + (�̃�𝑐 + 1/3) / (𝑃 + 1)2 − 2∑∞𝑚=1 (𝑒−𝛽2𝑚 �̃�/�̃�𝑚𝛽2𝑚) ≤ 10−𝐴 (14)

where �̃�(𝑥, �̃�) denotes the exact solution (with an infinite
number of terms), �̃�𝑐(𝑥, �̃�, 𝐴) represents the computational
one with a finite number of terms mmax for a truncation
error 𝜀 of 10−𝐴 (A=2,3,. . .15), and 𝑆𝑇 is the “tail” of the series
solutions thatmay be calculated by using the Euler-McLaurin
formula [17]. Then, by solving numerically Eq. (14) for mmax
and by fitting properly the obtained numerical data, the
maximum number of terms may be taken in a conservative
way as

𝑚max

= 1
+ ceil

{{{
1𝜋√𝐴 ln (10) + [𝐻 (𝑃 − 1) − 1] ln (𝑃)�̃�

}}}

(15)

where 𝐻(⋅) denotes the Heaviside step function, while
“ceil(z)” is a Matlab function that rounds the number 𝑧 to
the nearest integer greater than or equal to z.

It is worth noting that mmax is independent of both the
thermal contact resistance �̃�𝑐 and the location 𝑥. When P>1,
it is independent of 𝑃 too.

According to Eq. (15), a large number of terms may be
required for early times.Therefore, for times less than the so-
called deviation time �̃�d defined as [13, 18]

�̃�d = 110𝐴 (2 − 𝑥)2 , (16)

the temperature solution can be replaced by a semi-infinite
transient solution available in Ref. [19] with an error less
than 10−𝐴 (A=2,3,. . .15), where an intrinsic verification of the
solution was proven. A computer code in Matlab ambient for
calculating the solution of the current X62B10T00 problem
is provided in [16, App. E] for ease of use. A plot of
dimensionless temperature and heat flux as a function of time
at the heated surface of the sample for different 𝑃 values and�̃�c = 1 is given in Figure 2. It is evident that the heat flux
at 𝑥 = 0 is time-dependent and this dependence is due to
both the thermal inertia of the heat source and the contact
resistance.

4. Sensitivity Coefficients

The scaled sensitivity coefficients, that is, the partial deriva-
tives of the temperature with respect to the model parameter𝛾 of interest (e.g., 𝑞f ,0, 𝑘, 𝐶, 𝐶f , 𝑅c) multiplied by the parame-
ter itself, are defined as follows:

𝑋𝛾 = 𝛾𝜕𝑇𝜕𝛾 ,

𝑋𝛾,f = 𝛾𝜕𝑇f𝜕𝛾
(17)

Therefore, as suggested by the above equation the scaled
sensitivity coefficients have units of ∘C and their calculation
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Figure 2: Dimensionless temperature (a) and heat flux (b) as a function of the dimensionless time at 𝑥 = 0, for different 𝑃 values and �̃�c = 1.

requires the use of the chain rule [20]. In dimensionless form
they become

𝑋𝛾 = 𝑋𝛾𝑞f ,0𝐿/𝑘 ,
𝑋𝛾,f = 𝑋𝛾,f𝑞f ,0𝐿/𝑘

(18)

4.1. Heat Flux as a Parameter. If the parameter of interest
is the applied heat flux at the boundary 𝑥 = 0, the
corresponding sensitivity coefficient is

𝑋𝑞f ,0 = 𝑞f ,0 𝜕𝑇𝜕𝑞f ,0 = 𝑞f ,0 𝜕𝜕𝑞f ,0 (�̃�𝑞f ,0𝐿𝑘 )

= 𝑞f ,0 [[[
[

𝑞f ,0𝐿𝑘 𝜕�̃�𝜕𝑞f ,0⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

+ �̃� 𝜕𝜕𝑞f ,0 (
𝑞f ,0𝐿𝑘 )]]]

]
= 𝑞f ,0𝐿𝑘 �̃�

(19)

which in dimensionless form results in 𝑋𝑞f ,0 = �̃�, where �̃� is
defined by Eq. (11a). In the same way it is found that 𝑋𝑞f ,0 ,f =
�̃�f where now �̃�f is defined by Eq. (11c). Therefore, the curves
shown in Figure 2 also represent the sensitivity coefficient for
the finite body to the applied heat flux.

4.2. Thermal Conductivity and Volumetric Heat Capacities
as Parameters. As �̃� and �̃�f temperatures depend on the
thermal conductivity of the specimen 𝑘 and volumetric heat
capacity of both specimen and heater, C and 𝐶f , respectively,
six sensitivity coefficients should be studied.

When the considered parameter is the thermal conduc-
tivity, the corresponding sensitivity coefficient is given as

𝑋𝑘 = 𝑘𝜕𝑇𝜕𝑘 = 𝑘 𝜕𝜕𝑘 (�̃�𝑞f ,0𝐿𝑘 )

= 𝑘[𝑞f ,0𝐿𝑘 𝜕�̃�𝜕𝑘 + �̃� 𝜕𝜕𝑘 (𝑞f ,0𝐿𝑘 )]

= 𝑘[𝑞f ,0𝐿𝑘 𝜕�̃�𝜕𝑘 − 𝑞f ,0𝐿𝑘2 �̃�]

(20)

where �̃� = �̃�[�̃�, 𝑃, �̃�c, 𝛽𝑚(𝑃, �̃�c)], with �̃�[𝛼(𝑘, 𝐶)], 𝑃(𝐶, 𝐶f ),�̃�c(𝑅c, 𝑘). Thus, by using the chain rule,

𝜕�̃�𝜕𝑘 = 𝜕�̃�𝜕�̃� 𝜕�̃�𝜕𝛼 𝜕𝛼𝜕𝑘 + 𝜕�̃�
𝜕�̃�c

𝜕�̃�c𝜕𝑘 + ∞∑
𝑚=1

𝜕�̃�𝜕𝛽𝑚
𝜕𝛽𝑚𝜕�̃�c

𝜕�̃�c𝜕𝑘 (21)

Substituting Eq. (21) in Eq. (20) gives the scaled sensitiv-
ity coefficient with respect to the thermal conductivity. In
dimensionless form it becomes

𝑋𝑘 = 𝑘𝜕�̃�𝜕𝑘 − �̃�
= �̃�𝜕�̃�𝜕�̃� + �̃�c [ 𝜕�̃�

𝜕�̃�c
+ ∞∑
𝑚=1

𝜕�̃�𝜕𝛽𝑚
𝜕𝛽𝑚𝜕�̃�c

] − �̃�
(22)

In the same way, the sensitivity coefficient with respect to
the volumetric heat capacity 𝐶 may be obtained.

𝑋𝐶 = 𝐶𝜕�̃�𝜕𝐶 = −�̃�𝜕�̃�𝜕�̃� − 𝑃𝜕�̃�𝜕𝑃 − 𝑃 ∞∑
𝑚=1

𝜕�̃�𝜕𝛽𝑚
𝜕𝛽𝑚𝜕𝑃 (23)
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Similarly the sensitivity coefficient with respect to the
volumetric heat capacity of the heater C𝑓, in dimensionless
form, results in

𝑋𝐶f = 𝐶f
𝜕�̃�𝜕𝐶f

= 𝑃𝜕�̃�𝜕𝑃 + 𝑃 ∞∑
𝑚=1

𝜕�̃�𝜕𝛽𝑚
𝜕𝛽𝑚𝜕𝑃 (24)

As regards the thin layer sensitivities, they are defined as

𝑋𝑘,f = 𝑘𝜕�̃�f𝜕𝑘 − �̃�f

= �̃�𝜕�̃�f𝜕�̃� + �̃�c [ 𝜕�̃�f𝜕�̃�c
+ ∞∑
𝑚=1

𝜕�̃�f𝜕𝛽𝑚
𝜕𝛽𝑚𝜕�̃�c

] − �̃�f

(25a)

𝑋𝐶,f = 𝐶𝜕�̃�f𝜕𝐶 = −�̃�𝜕�̃�f𝜕�̃� − 𝑃𝜕�̃�f𝜕𝑃 − 𝑃 ∞∑
𝑚=1

𝜕�̃�f𝜕𝛽𝑚
𝜕𝛽𝑚𝜕𝑃 (25b)

𝑋𝐶f ,f = 𝐶f
𝜕�̃�f𝜕𝐶f

= 𝑃𝜕�̃�f𝜕𝑃 + 𝑃 ∞∑
𝑚=1

𝜕�̃�f𝜕𝛽𝑚
𝜕𝛽𝑚𝜕𝑃 (25c)

4.3. Contact Resistance as a Parameter. If the parameter of
interest is the thermal contact resistance 𝑅c, the correspond-
ing sensitivity coefficients are

𝑋𝑅c = 𝑅C
𝜕�̃�𝜕𝑅C

= �̃�c
𝜕�̃�
𝜕�̃�c

+ �̃�c

∞∑
𝑚=1

𝜕�̃�𝜕𝛽𝑚
𝜕𝛽𝑚𝜕�̃�c

(26)

𝑋𝑅c ,f = 𝑅c
𝜕�̃�f𝜕𝑅c

= �̃�c
𝜕�̃�f𝜕�̃�c

+ �̃�c

∞∑
𝑚=1

𝜕�̃�f𝜕𝛽𝑚
𝜕𝛽𝑚𝜕�̃�c

(27)

It is interesting to note that all scaled sensitivity coefficients
discussed above are linearly dependent; in fact, they sum to
zero for all values of time and position; i.e.,

(𝑋𝑞f ,0 + 𝑋𝑞f ,0,f) + (𝑋𝑘 + 𝑋𝑘,f) + (𝑋𝐶 + 𝑋𝐶,f)
+ (𝑋𝐶f + 𝑋𝐶f ,f) − (𝑋𝑅c + 𝑋𝑅c,f) = 0 (28)

The same condition is valid for the thin layer (heater) and the
finite body (sample) considered individually:

𝑋𝑘,f + 𝑋𝐶,f + 𝑋𝐶f ,f − 𝑋𝑅c ,f = −�̃�f (29a)

𝑋𝑘 + 𝑋𝐶 + 𝑋𝐶f − 𝑋𝑅c = −�̃� (29b)

4.4. Computation of the Scaled Sensitivity Coefficients. The
sensitivity coefficients listed above may be computed analyt-
ically. In fact, the temperature derivatives with respect to �̃�,
P, and �̃�c can be taken directly using Eqs. (11a) and (11c).
As regards the derivatives 𝜕𝛽𝑚/𝜕𝑃 and 𝜕𝛽𝑚/𝜕�̃�c, from the
eigencondition defined by Eq. (12) one can obtain

𝑃 = tan (𝛽𝑚)𝛽2𝑚�̃�c tan (𝛽𝑚) − 𝛽𝑚 ,
�̃�c = 𝛽𝑚 + tan (𝛽𝑚) /𝑃𝛽2𝑚 tan (𝛽𝑚)

(30)

Then, by differentiating Eq. (30) with respect to the eigen-
value 𝛽𝑚 and by taking the corresponding reciprocals, it is
found that

𝜕𝛽𝑚𝜕𝑃 = [𝛽2𝑚�̃�c tan (𝛽𝑚) − 𝛽𝑚]2
tan (𝛽𝑚) [1 − 𝛽𝑚 tan (𝛽𝑚) (1 + 2�̃�c)] − 𝛽𝑚 ,

𝜕𝛽𝑚𝜕�̃�c
= − 𝛽2𝑚 tan (𝛽𝑚)1 + tan (𝛽𝑚) (2/𝑃𝛽𝑚 + 𝛽𝑚)

(31)

In addition, for early times (less than the deviation time�̃�d) the temperature field within the specimen and the thin
layer temperature may be evaluated accurately by using the
semi-infinite transient solution defined in [19].

4.5. Sensitivity Analysis Results. Three different locations are
considered in the analysis: the interface between the heater
and the sample, i.e., 𝑥 = 0 (both heater side and sample side)
and the sample backside (𝑥 = 1). Note that two sensors are
used at the interface 𝑥 = 0, one located on the surface of the
heater and the other on the surface of the sample. Then at
this interface a silicon grease is used to reduce the contact
resistance. Note also that the sensor location on the surface of
the heater (interface, heater side) is realistic only when using
kapton or silicon resistive heaters rather than metallic ones.

Figures 3–5 show the sample temperature sensitivities as
a function of time and for different values of the heat capacity
ratio P; also, the thin heater sensitivities 𝑋𝐶,f and 𝑋𝐶f ,f are
shown by Figure 6. For the first group of figures a curve for𝑃 = 0 is plotted as a reference case; in fact, in such a case, the
thin heater is neglected and the analyzed problem reduces to
the X22B10T0 case whose solution is discussed in [21].

Figure 3 shows the sensitivity coefficient𝑋𝑘. In particular,
for 𝑥 = 0, it decreases in absolute value when the𝑃 parameter
increases, while at the backside (𝑥 = 1) this behaviour cannot
be observed for P=0.1. Also, at 𝑥 = 1 the sensitivity to the
thermal conductivity 𝑘 is less affected by the𝑃parameter than
the sensitivity at 𝑥 = 0, when large times are considered.

The sensitivity coefficients 𝑋𝐶 and 𝑋𝐶f for 𝑥 = 0 are
depicted in Figure 4. The corresponding graphs for 𝑥 = 1
are not reported here as they are similar to ones given in
Figure 4. A comparison among Figures 4(a) and 4(b) suggests
that, at 𝑥 = 0, the sample temperature is more sensitive to its
heat capacity 𝐶 when P<0.5, while for 𝑃 ≥ 0.5 it becomes
more sensitive to that of the thin heater C𝑓. Also, the sample
temperature sensitivity to the contact resistance 𝑅c is shown
in Figure 5. As indicated by the figure, the highest sensitivity
occurs at the interface between the heater and the sample
(𝑥 = 0).

The coefficients 𝑋𝐶,f and 𝑋𝐶f ,f related to the thin heater
are shown by Figure 6. It is worth noting that, at large times
and for P<0.5, the heater temperature is more sensitive to
the volumetric heat capacity of the sample 𝐶 than to its
volumetric heat capacity 𝐶f ; on the contrary, for 𝑃 ≥ 0.5 it
becomes more sensitive to 𝐶f .

Figures 7 and 8 show the sensitivities 𝑋𝑘 (at 𝑥 = 0)
and 𝑋𝑘,f and the other heater coefficients 𝑋𝐶f ,f and 𝑋𝑅c ,f ,
respectively, as a function of time with the dimensionless
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Figure 3: Sensitivity coefficient to the thermal conductivity as a function of time, for different 𝑃 values and �̃�c = 1, at 𝑥 = 0 (a) and at 𝑥 = 1
(b).
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Figure 4: Sensitivity coefficients to the sample heat capacity (a) and to the heater heat capacity (b) as a function of time, for different 𝑃 values
and �̃�c = 1, at 𝑥 = 0.

contact resistance �̃�c as a parameter. In these figures a curve
for �̃�c = 0 is plotted as a reference case; in fact, in such a case,
the contact between the heater and the sample is perfect and
the problem reduces to the X42B10T00 case, whose solution
is provided in [10] and discussed in [22]. Also, a sensitivity
analysis for this heat conduction problem is carried out in
[23]. Note that the heater sensitivities are more affected by
the thermal contact resistance �̃�𝑐, than the sample sensitivity
coefficients.

A comparison of the sensitivity coefficients related to the
sample and to the heater at 𝑥 = 0 and for 𝑃 = �̃�c = 0.1
is given by Figure 9. In particular, Figure 9(a) compares the
coefficients𝑋𝑘,𝑋𝐶,𝑋𝑘,f and𝑋𝐶,f , while Figure 9(b) compares
the coefficients 𝑋𝐶f , 𝑋𝑅c , 𝑋𝐶f ,f , and 𝑋𝑅c ,f . The former shows
that, for times less than the deviation time defined by Eq. (16),

the coefficients 𝑋𝑘 and 𝑋𝐶 are exactly equal for 𝑥 = 0, and
the same equality is also true for𝑋𝑘,f and𝑋𝐶,f . Moreover, the
sensitivities to the thermal conductivity k, i.e., 𝑋𝑘 and 𝑋𝑘,f ,
respond in the same way; it also occurs for the coefficients𝑋𝐶 and 𝑋𝐶,f . This suggests that for small values of 𝑃 and �̃�c,
it is indifferent to place the temperature sensor on the heater
side or on the sample side. In addition, for large values of
these parameters, the sensitivities to 𝑘 and 𝐶 at the sample
side are greater than the corresponding heater coefficients
(i.e., 𝑋𝑘,f and 𝑋𝐶,f ). On the contrary, Figure 9(b) shows that
the greatest sensitivities to the heater heat capacity 𝐶f and
to the thermal contact resistance 𝑅c occur at the heater side.
This consideration is always valid for the sensitivity to 𝐶f
regardless of the value of 𝑃 and �̃�c; as regards the sensitivity
to the contact resistance it is valid only for 𝑃 ≤ 0.5.
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Figure 5: Sensitivity coefficient to the thermal contact resistance as a function of time, for different 𝑃 values and �̃�c = 1, at 𝑥 = 0 (a) and at𝑥 = 1 (b).
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Figure 6: Heater sensitivity to the sample heat capacity (a) and to its heat capacity (b) as a function of time, for different 𝑃 values and �̃�c = 1.

Figure 10 compares the sample sensitivities with respect
to k, C, 𝐶f , and 𝑅c obtained for 𝑃 = �̃�c = 0.1, at the sample
backside (𝑥 = 1). As shown by the figure the coefficients𝑋𝑘, 𝑋𝐶, 𝑋𝐶f , and 𝑋𝑅c respond initially in the same way,
and then they split up and in particular the sensitivity to𝑘 approaches to a constant value, while the sensitivity to𝐶 increases linearly with the time. Therefore, at the sample
backside the coefficients𝑋𝑘 and𝑋𝐶 are uncorrelated, and the
thermal properties 𝑘 and 𝐶 can be estimated simultaneously.
Furthermore, as no largemagnitude difference exists between
them the estimates for 𝑘 and 𝐶 may be accurate.

Also, by comparing Figures 9(a) and 10, it is possible to
state that the greatest sensitivity to the sample heat capacity𝐶 always occurs at the backside 𝑥 = 1 (except at early times).
As far as the sensitivity to 𝑘 is concerned, for small values

of P (around 0.1) it is greater at the sample side (𝑥 = 0),
while, for large 𝑃 values and at large times, it becomes greater
at the sample backside. Also, the analysis shows that for
estimating the thermal conductivity k, in the event that the
heat capacity ratio (P) is unknown, the temperature sensor
should be placed at 𝑥 = 1, where the influence of this
parameter is lower (see Figure 3).

Moreover, at the sample backside the sensitivities to the
heater heat capacity 𝐶f and to the contact resistance 𝑅c are
lower than the corresponding coefficients obtained for 𝑥 = 0.
In particular, for estimating𝐶f the temperature sensor should
be placed at the heater side when a thin enough heater (𝑃 ≤0.5) is used and large times are considered. In fact, at large
times the influence of 𝑅c is the same either at the heater side
or at the sample side, but at the heater side the sensitivity to𝐶f
is higher. Also, it is even the best location for the temperature
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Figure 7: Sensitivity coefficients to the thermal conductivity as a function of time, for different �̃�c values and P=0.1, for the sample at 𝑥 = 0
(a) and for the heater (b).
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Figure 8: Sensitivity coefficients for the heater as a function of time, for different �̃�c values and P=0.1, with respect to its heat capacity (a) and
to the contact resistance (b).

sensor when estimating the contact resistance, in the event
that a heater with known properties is used.

5. Experimental Results

Theproposedmethodology is now applied to a lab-controlled
experiment based on the schematic of Figure 1(a) whose
measured results are available in Ref. [8, Chapter 7, p.
402]. In this experiment two adjacent, identical Armco
iron disk-shaped flat specimens (thickness L=2.54x10−2m;
diameter 7.62x10−2m) were heated by a Kapton heater
(2𝐿𝑓 =8.4x10−4m; 𝐶𝑓 =2000 kJ/m3∘C) placed between
them. Also, an imperfect contact between the heater and
the sample is considered through a contact resistance𝑅𝑐=1.34x10−4m2∘C/W. All the external surfaces of the

samples were insulated. Therefore, the heat conduction may
be considered one dimensional. Moreover four temperatures
sensors were carefully attached to the heated surface of each
specimen and four were attached at the insulated backsides.
In particular, the sensors were located at angles of 0∘, 90∘,
180∘, and 270∘.

Both specimenswere at the sameuniform initial tempera-
ture (about 27.5∘C) before the start of the experiment.Though
the heat flux of 30.3 kW/m2 was applied to each sample for
a finite heating duration of 15.3 s, the measured data were
collected for 27 s with a time step of 0.3 s.

The average measured temperatures at both the heated
(x=0) and insulated (x=L) surfaces are shown in Figure 11(a).
It is evident that the heated surface temperature increases
only during the heating period, while the insulated surface
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Figure 9: Comparison of the sensitivity coefficients of the heater and of the sample at 𝑥 = 0, with respect to the thermal conductivity and to
the sample heat capacity (a), and with respect to the heater heat capacity and to the contact resistance (b) for 𝑃 = �̃�c = 0.1.
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Figure 10: Comparison of the sensitivity coefficients related to the
sample, at 𝑥 = 1 and for 𝑃 = �̃�c = 0.1.
temperature continues to increase after heater is turned
off until they approach the same equilibrium temperature.
Figures 11(b) and 11(c) show the dimensional actual sensitivity
coefficients with respect to 𝑘 and C, respectively, for the
X22B50T0 (heater completely neglected⇒ 𝐶𝑓=0 and𝑅𝑐=0)
and X62B50T00 cases, where, in the numbering system [13,
Table 2], “B5” denotes a step change in time for a finite heating
duration. It can be observed that the sensitivity coefficients
are not very different at the same location as the heater used
is very thin and the contact resistance is very low (in fact, it
was reduced using a silicon grease).

Sensitivity coefficients are involved in the parameter
estimation procedure when minimizing the ordinary least
squares norm

𝑆 = 8∑
𝑠=1

90∑
𝑛=1

[𝑌𝑠 (𝑛) − 𝑇𝑠 (𝑛)]2 (32)

where𝑌𝑠(𝑛) is themeasured temperature from the s-th sensor
at n-th time and 𝑇𝑠(𝑛) is the calculated temperature at the
location of the s-th sensor at n-th time. Then, applying the
Gauss method to minimize Eq. (32) yields the following
recursive expression:

𝑏(𝑖+1) = 𝑏(𝑖) + [𝑋𝑇(𝑖)𝑋(𝑖)]−1𝑋𝑇(𝑖) [𝑌 − 𝑇(𝑖)] (33)

where 𝑖 is the iteration index, 𝑏 denotes the estimated
parameter vector (in the current case 𝑏 = [𝑘 𝐶]𝑇), 𝑌 is the
measured temperature vector,𝑇 is the calculated temperature
vector, and𝑋 is the sensitivity coefficient matrix. Also, in Eq.
(33) 𝑋(𝑖),𝑋𝑇(𝑖), and 𝑇(𝑖) are all computed using the 𝑏(𝑖) vector
obtained at the i-th iteration.

Moreover, the uncertainty related to the estimated param-
eters (k and C) is determined as discussed in the next
subsection.

5.1. Uncertainty Quantification. Under standard statistical
assumptions of additive, uncorrelated, normal errors with
zero mean and constant variance the approximate covariance
matrix of estimated parameters can be written as [8, p. 452,
Eq. 8.5.17]

cov (b) = [ 𝜎2𝑘 𝜎𝑘,𝐶
𝜎𝑘,𝐶 𝜎2𝐶 ] = [𝐶𝑘𝑘 𝐶𝑘𝐶𝐶𝑘𝐶 𝐶𝐶𝐶]

−1 𝜎2

= [ 𝐶𝐶𝐶 −𝐶𝑘𝐶−𝐶𝑘𝐶 𝐶𝑘𝑘 ] 𝜎2Δ
(34a)

where 𝜎2 is the estimated variance of measurement errors,Δ = 𝐶𝑘𝑘𝐶𝐶𝐶 − 𝐶2𝑘𝐶 denotes the determinant of the 𝑋𝑇𝑋
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Figure 11: Average measured temperatures at x=0 and x=L (a), dimensional actual sensitivity coefficients for X22B50T0 and X62B50T00
cases with respect to k (b), and with respect to C (c).

matrix appearing in Eq. (33), and the elements 𝐶𝑘𝑘, 𝐶𝐶𝐶, and𝐶𝑘𝐶 are defined as

𝐶𝑘𝑘 = 8∑
𝑠=1

90∑
𝑛=1

[𝜕𝑇𝑠 (𝑛)𝜕𝑘 ]2 ;

𝐶𝐶𝐶 = 8∑
𝑠=1

90∑
𝑛=1

[𝜕𝑇𝑠 (𝑛)𝜕𝐶 ]2 ;

𝐶𝑘𝐶 = 𝐶𝐶𝑘 = 8∑
𝑠=1

90∑
𝑛=1

𝜕𝑇𝑠 (𝑛)𝜕𝑘 𝜕𝑇𝑠 (𝑛)𝜕𝐶

(34b)

Also, 𝜕𝑇𝑠(𝑛)/𝜕𝑘 and 𝜕𝑇𝑠(𝑛)/𝜕𝐶 (with 𝑠 = 1, . . . , 8) are the
sensitivity coefficients of temperature measured by the s-
th sensor with respect to the thermal properties 𝑘 and C,
respectively, at the n-th time.

Therefore, the standard deviations of 𝑘 and 𝐶 can be
obtained from Eq. (34a) and (34b) as shown below.

𝜎𝑘 ≅ 𝜎√𝐶𝐶𝐶Δ (35a)

𝜎𝐶 ≅ 𝜎√𝐶𝑘𝑘Δ (35b)

Once the standard deviations for 𝑘 and 𝐶 are known, a
90% confidence interval of the estimates can be computed.

The estimation procedure discussed above is applied
to three different cases: (1) heater completely neglected
(X22B50T0), (2) volumetric heater heat capacity and perfect
thermal contact between the specimen and the heater
(X42B50T00), and (3) volumetric heater heat capacity
and imperfect contact between specimen and heater
(X62B50T00). The results are shown in Table 2 where a
comparison between the estimates of 𝑘 and 𝐶 obtained using
the exact temperature solution (X22B50T0) and the finite
difference method [8] is provided too. As in the current
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Table 2: Estimation procedure results for three different cases.

Case k [W/(m ∘C)] Δ% C [kJ/(m3∘C)] Δ%
X22B50T0 74.10 ± 0.165 3736.95 ± 3.707
X22B50T0 [8] 75.01 1.2 3728.60 -0.2
X42B50T00 73.25 ± 0.163 -1.2 3692.35 ± 3.691 -1.2
X62B50T00 73.16 ± 0.163 -1.3 3680.98 ± 3.682 -1.5

experiment the standard deviations of the estimates are
practically the same, the effect of heat source and contact
resistance is of -1.3% for the thermal conductivity and of
-1.5% for the volumetric heat capacity. However, the contact
resistance between the heater and the specimen exhibits a
lower influence. As already observed, this slight reduction
is in accordance with the very thin heater and the very low
contact resistance.

6. Conclusions

Anovelmathematicalmodelling for simultaneous estimation
of thermal properties of high-conductivitymaterials has been
proposed. It allows the heater heat capacity and the surface
contact resistance between sample and heater to be taken into
account by using a nonconventional boundary condition,
termed as a condition of the sixth kind.

The results of the analysis have been obtained by means
of the Laplace transform method and the related residues
theorem. They have shown that the heater heat capacity can
affect the sample sensitivity coefficientsmore than the contact
thermal resistance at their interface; and these coefficients are
enough large and uncorrelated at the sample backside. Thus,
this side was found to be the best location for the temperature
sensor when estimating simultaneously thermal conductivity
and volumetric heat capacity.

By comparing measured and calculated temperatures
through the ordinary least squares norm and, then, minimiz-
ing it by the Gauss method, a reduction of about 1.4% was
observed for the thermal properties values of Armco iron.

Appendix

Residues Computation

The calculation of the residues 𝑅𝑠=0 and 𝑅𝑠=−𝛽2𝑚 appearing in
Eq. (9) is provided in the following.

In order to determine the residue at q=0 (or s=0),
the inversion integrand 𝜗(𝑥, 𝑞)𝑒𝑞2 �̃� (or 𝜗(𝑥, 𝑠)𝑒𝑠�̃�) has to be
brought into the form of a Laurent expansion at q=0; the
sought residue corresponds to the coefficient of the 1/𝑞2 (1/𝑠)
term appearing in the expansion.

By using a Taylor expansion for 𝑒𝑞2 �̃� and cosh[𝑞(1−𝑥)] and
bearing in mind Eq. (7), it is possible to note that 𝜗(𝑥, 𝑞) is a
quotient of even powers of 𝑞. Then, the inversion integrand
can be rewritten as

𝜗 (𝑥, 𝑞) 𝑒𝑞2 �̃�
= 𝐶0 + 𝐶1𝑞2 + 𝑂 (𝑞4)

𝑞4
1 + �̃�𝑞2 + 𝑂 (𝑞4)

𝐶3 + 𝐶4𝑞2 + 𝑂 (𝑞4)
(A.1a)

whichmay be taken in a form closer to the Laurent expansion

𝜗 (𝑥, 𝑞) 𝑒𝑞�̃�
= [𝐶0𝑞4 + 𝐶1𝑞2 + 𝑂 (1)] [𝐶6 + 𝐶7𝑞2 + 𝑂 (𝑞4)] (A.1b)

Thus, bearing in mind Eq. (6) and by setting Eqs. (A.1a) and
(A.1b) equal, one can obtain the following identities:

𝐶0 + 𝐶1𝑞2 + 𝑂 (𝑞4) = cosh [𝑞 (1 − 𝑥)]
= 1 + 𝑞2 (1 − 𝑥)2 + 𝑂 (𝑞4) (A.2a)

𝑞4 [𝐶3 + 𝐶4𝑞2 + 𝑂 (𝑞4)] = 𝐷 (𝑞)
= 𝑞4 {𝑃 + 1 + 𝑞2 [𝑃2 + 𝑃�̃�𝑐 + 16] + 𝑂 (𝑞4)} (A.2b)

1 + �̃�𝑞2 + 𝑂 (𝑞4)
𝐶3 + 𝐶4𝑞2 + 𝑂 (𝑞4) = 𝐶6 + 𝐶7𝑞2 + 𝑂 (𝑞4) (A.2c)

Then Eqs. (A.2a) and (A.2b) give

𝐶0 = 1,
𝐶1 = (1 − 𝑥)22 ,
𝐶3 = 𝑃 + 1,
𝐶4 = 𝑃2 + 𝑃�̃�𝑐 + 16

(A.3)

Also, Eq. (A.2c) is an identity and the constants𝐶6 and𝐶7 can
be obtained similarly.

𝐶6 = 1𝐶3 = 1𝑃 + 1 ,
𝐶7 = 1𝐶3 (�̃� − 𝐶4𝐶3)

(A.4)

Moreover, by using Eq. (A.1b) the coefficient of 1/𝑞2 (1/𝑠)
term in the Laurent expansion, which is the residue (𝑅𝑠=0) for
the pole s=0, may be identified.

𝑅𝑠=0 = 𝐶0𝐶7 + 𝐶1𝐶6 (A.5)
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Then by substituting Eqs. (A.3) and (A.4) into Eq. (A.5), after
some algebra, the same expression reported in Eq. (10a) can
be obtained.

Now consider the generic pole at 𝑞 = 𝑖𝛽𝑚 (or 𝑠 = −𝛽2𝑚).
As first step, it is worth noting that the inversion integrand is a
quotient of a numerator and a denominator, i.e., 𝜗(𝑥, 𝑞)𝑒𝑞2 �̃� =𝑁(𝑞)/𝐷(𝑞); in such a case the residue for the simple pole 𝑞 =𝑖𝛽𝑚 may be conveniently calculated by taking the derivative
of the denominator of Eq. (6) evaluated at its zero; that is,

𝑅𝑠=−𝛽2𝑚 = 𝑁 (𝑞 = 𝑖𝛽𝑚)𝐷 (𝑞 = 𝑖𝛽𝑚) = cosh [𝑞 (1 − 𝑥)] 𝑒𝑞2 �̃�𝑞=𝑖𝛽𝑚(𝑑𝐷 (𝑞) /𝑑𝑠)𝑞=𝑖𝛽𝑚
(A.6)

where 𝐷(𝑞) = 𝑞2[𝑃𝑞2 cosh(𝑞) + 𝑞(𝑃�̃�𝑐𝑞2 + 1) sinh(𝑞)] and its
derivative𝑑𝐷(𝑞)/𝑑𝑠may be calculated by using the chain rule
as shown below.

𝑑𝐷 (𝑞)𝑑𝑠 = 𝑑𝐷 (𝑞)𝑑𝑞 𝑑𝑞𝑑𝑠 = 12𝑞 𝑑𝐷 (𝑞)𝑑𝑞 (A.7)

According to Eq. (A.6) the above derivativemust be evaluated
for 𝑞 = 𝑖𝛽𝑚. Thus, by using the eigencondition in the form
sin(𝛽) = −𝑃𝛽 cos(𝛽)/(1 − 𝑃�̃�𝑐𝛽2), after lengthy algebra, it
results in

12𝑞 𝑑𝐷𝑑𝑞
𝑞=𝑖𝛽𝑚 = 12 {[𝑃�̃�𝑐𝛽4𝑚 − (4𝑃 + 1) 𝛽2𝑚] cos (𝛽𝑚)

+ [(1 + 5�̃�𝑐) 𝑃𝛽3𝑚 − 3𝛽𝑚] sin (𝛽𝑚)}
= [(𝑃�̃�𝑐)2 𝛽4𝑚 + (𝑃 + 𝑃�̃�𝑐 − 2�̃�𝑐) 𝑃𝛽2𝑚 + 𝑃 + 1] 𝛽2𝑚 cos (𝛽𝑚)

2 (𝑃�̃�𝑐𝛽2𝑚 − 1)

(A.8)

Therefore, by substituting the above equation into Eq. (A.6),
bearing inmind Eq. (A.7), the same expression defined by Eq.
(10b) is obtained.

Nomenclature

𝐴: Counting integer for accuracy (10−𝐴)𝐶: Volumetric heat capacity [kJ/m3∘C]𝑔f ,0: Volumetric heat generation [W/m3]𝐻(⋅): Heaviside or unit step function𝑘: Thermal conductivity [W/m∘C]𝐿: Thickness [m]�̃�𝑚: Dimensionless norm𝑃: Heat capacity ratio𝑞: Auxiliary variable in the Laplace domain
(𝑞 = √𝑠)𝑞f ,0: Applied heat flux per unit area
(𝑞f ,0 = 𝑔f ,0 𝐿 f ) [W/m2]𝑅: Residue𝑅𝑐: Thermal contact resistance [m2∘C/W]𝑠: Laplace variable𝑡: Time [s]𝑡𝑑: Deviation time [s]𝑇: Temperature [∘C]𝑥: Spatial coordinate [m]𝑋: Scaled sensitivity coefficient [∘C]𝑧𝑚: Initial guess for eigenvalue.

Greek Symbols

𝛼: Thermal diffusivity, 𝑘/𝐶 [m2/s]𝛽𝑚: m-th exact eigenvalue𝜀: Error for the computational solution𝜁𝑚: Approximate eigenvalue𝜗: Temperature in the Laplace domain𝜎: Standard deviation of measurement errors [∘C]𝜎𝑘: Standard deviation of 𝑘 [W/m∘C]𝜎𝐶: Standard deviation of 𝐶 [kJ/m3∘C]𝜑: Phase in the Laplace domain

Superscripts

∼: Dimensionless.

Subscripts

𝑖𝑛: Initial𝑓: Surface layer or film (heater)𝑚: Counting integer for eigenvalues.
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