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Abstract. A double-ended cantilever beam as a distributed parameter dynamic vibration absorber has been applied to a single-
degree-of-freedom system subjected to harmonic forces.

In this investigation, the beam has been analyzed under the well known model of Timoshenko and the computation of best
parameters is based on the Chebyshev’s optimality criterion.

This is somewhat novel in the field since:

– the design of cantilever beams as dynamic vibration absorbers is usually made under the hypotheses of the Euler-Bernoulli
theory;

– it is the first time that the Chebyshev’s criterion is applied to the design of a double-ended cantilever beam used as a dynamic
vibration absorber.

For a ready use of the results herein presented, design charts allow a quick choice of optimal parameters such as tuning ratio
and mass ratio.

1. Introduction

The classical dynamic vibrations absorber is made up of two masses. The first one is subjected to an harmonic
load which lead to a vibrational motion of this mass, the second mass is connected to the main mass by means
of a spring element. Thus choosing properly the weight of the second mass and the spring stiffness, the vibration
amplitude of the main mass could be reduced and, under ideal conditions, also cancelled [4,12].

In fact when an absorbing mass-spring system is attached to the main mass and the resonance of the absorber is
tuned to match that of the main mass, the motion of the main mass is reduced to zero at its resonance frequency
(Fig. 1).

The test case proposed in this paper concerns a double-ended cantilever beam used as a dynamic vibration
absorber [8]. As a consequence the parameters to be set in order to reduce the vibrations of the main mass are
the intrinsic elasticity of the beam and its weight. For a more faithful modeling of the beam behavior, the authors
have deduced the dynamic equations of the system under analysis by means of the Timoshenko’s model [7]. These
equations have been used under the conditions set by the Chebyshev’s theorem in order to define the optimal features
of the beam (e.g. cross section area, length, thickness) [9]. The results have been compared with the ones obtained
following the Euler – Bernoulli’s model of the beam as reported by Jacquot and Foster [8].
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Fig. 1. Plots of the mass displacements.

Fig. 2. Scheme of the dynamic vibrations absorber.

2. System modeling

The undamped system, shown in Fig. 2, is composed of a spring-supported lumped mass which is free to move
only vertically.

Attached to the mass there is the double-ended cantilever beam as shown. Separating the system into three parts
as shown in Fig. 3, the method of superposition is applied to examine the coupling between the subsystems.

The equation of motion for the main massM is

M
δ2w

δt2
+ kw = P0e

jωt + 2V0e
jωt , (1)

where theV0e
jωt term is the yet unknown vibration absorber force for a single beam on the main mass. This force

can be obtained as the shear force at the root of a displacement-excited cantilever beam. The governing equation for
the cantilever beam, under the assumption of Timoshenko bending theory, is

EIn
δ4y

δx4
+ Aρ

δ2y

δt2
− ρIn

(
1 +

E

χG

)
δ4y

δx2δt2
+

ρ2In

χG

δ4y

δt4
= 0 (2)
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Fig. 3. Freebody diagram of the system.

with the following boundary conditions:

y (0, t) = W0e
jωt (3a)

ϕ (0, t) = 0 (3b)

δϕ (L, t)
δx

= 0 (3c)

δy (L, t)
δx

− ϕ(L, t) = 0 (3d)

In order to obtain a steady-state solution to Eq. (2), we assume a solution of the form

y (x, t) = y (x) ejωt (4)

which will yield the spatial complex amplitude distributionY (x). The shear force amplitude at the root of the
cantilever is then

V (x, t) = χAG

(
ϕ − δy

δx

)
. (5)

The Eq. (2), subjected to boundary conditions Eq. (3), using expression Eq. (5) gives a shear force amplitude of

V0 = (U1 + U2)W0 (6)

with

U1 =
AT 4

[
cos (α1L) sinh (α2L)α1T

2 − sin (α1L) cosh (α2L)α2T
2
]
B1

(α2
2α

2
1χ

2G2Q)

whereB1 =
(
α2

1 + α2
2

)
ρ3λ6Ω6

1,
and

U2 =
Aρ2T 4

[− cos (α1L) sinh (α2L)α3
1 − sin (α1L) cosh (α2L)α3

2

]
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(α2
1α

2
2χGQ)
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(
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1 + α2
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λ4Ω4

1,
and
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Q = Q1 + Q2 + Q3 (7)

Q1 = − T 6Ω6
1λ

6ρ3

(χ3G3α2
1α

2
2)

[−α2
2 sin (α1L) sinh (α2L) − 2α1α2 + α2

1 sin (α1L) sinh (α2L)
(8)

+2α1α2 cos (α1L) cosh (α2L)]

and
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4ρ2
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2
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[2α1α

3
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3
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(9)
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1α
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and

Q3 = −ρT 2Ω2
1λ

2
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[α1α
5
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2 + α2α

5
1 cos (α1L) cosh (α2L) + 2α3
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3
2]

The steady-state solution to Eq. (1) is

w (x, t) = W0e
jωt (11)

whereW0 is the complex amplitude, and the following equation must hold(−λ2 + 1
)
W0 − P0

k
− 2V0

k
= 0 . (12)

Note that the second forcing term on the right side of Eq. (11) is a function of the complex vibratory amplitude of
the massW0. Solving Eq. (12) for complex amplitudeW0 as a function of the external forcing function amplitude
P0 one obtains

W0 =
C

D
(13)

and

C = −P0µα2
1α

2
2χ

2G2Q

2
(14)

where

D = ρAΩ2
1[

(
Lα2

2Qα2
1λ

2 − α2
2Qα2

1L
)
G2χ2 + [− cos (α1L) sinh (α2L)α5
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2
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4Ω2
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1 (15)

+ cos (α1L) sinh (α2L)α1α
2
2 − sin (α1L) cosh (α2L)α2α

2
1 +

− sin (α1L) cosh (α2L)α3
2]T

6Ω4
1µρ2λ6]

In order to get maximum benefit from the present analysis some non dimensional quantities are introduced. The
tuning ratioT is the ratio of the first natural frequency of the cantilever to the natural frequency of the main lumped
parameter system

T =
ωa

Ω1
(16)
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The mass ratioµ is the ratio of the total absorber mass to that of massM

µ =
2ρAL

M
(17)

The frequency ratioλ is the ratio of the frequency to the natural frequency of thek − M combination of

λ =
ω

Ω1
(18)

The static deflection of the main system is defined to be

Wst =
P0

k
(19)

The dimensionless frequency response function is then

γ =
∣∣∣∣ W0

Wst

∣∣∣∣ =
∣∣∣∣ F

H

∣∣∣∣ (20)

where
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1α

2
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and
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(24)

3. Chebyshev’s theorem

In this section are recalled the main proposition of the Chebychev’s theorem for the search of optimal parameters [9].
Let f (x) be a continuous function in[a, b] andp (x) an approaching polynomial belonging to the classP n of

polynomials with degree less or equal ton. As specified by Chebyshev’s theorem, the best uniform approximation
is attained when the condition

min max |f (x) − p (x)| (25)

is fulfilled. The solution to the minimization problem stated by Eq. (25) is unique and it can be found considering the
following theorem. Letf (x) be a continuous function in[a, b] andp (x) the best uniform approaching polynomial
of degreen. Moreover, let
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En = max |f (x) − p (x)| (26)

and

ε (x) = f (x) − p (x) . (27)

There are at least(n + 2) pointsa � x1 < x2 . . . < xn+2 � b whereε (x) assumes the values±En and with
alternating signs:

ε (xi) = ±En (28)

with i = 1, 2, . . . , n + 2 and

ε (xi) = −ε (xi+1) (29)

with i = 1, 2, . . . , n + 1. Hence the best uniform approaching function is completely characterized by the property
of equioscillation at(n + 2) points. This property is the basis of numerical schemes for computing the approximant
polynomial. Applying the Chebyshev’s theorem to the absorber design, the frequency response function around the
input frequency,γ(λ), is approximated by the straight line,L 1, which is the best uniform approximant of degree
n = 1. Thus the Chebyshev’s theorem allows us to determine the optimal values ofµ andT such that the curveγ(λ),
has two peak values with minimum distance from a straight lineL1, whereL1 is initially unknown. The following
system of non-linear algebraic equations can be written(

δγ

δλ

)
λ=λ1

= 0 (30a)

(
δγ

δλ

)
λ=λ2

= 0 (30b)

(
δγ

δλ

)
λ=λ3

= 0 (30c)

−γ (λ1) + L1 + ∆ = 0 (30d)

−γ (λ2) + L1 − ∆ = 0 (30e)

−γ (λ3) + L1 + ∆ = 0 (30f)

where∆ is the maximum deviation of the response curve from the valueL 1. A curve attains a maximum or a
minimum at frequency ratiosλ1,λ2 andλ3. Therefore, system Eq. (30) is composed of six equations with seven
unknown variablesλ1, λ2, λ3, µ, T , L1 and∆. Solving the system of non-linear equation for different and prescribed
values ofµ, it can be computed the numerical values of the optimal parameters.

4. Numerical example

Considering a system where the length of the beam is kept constant, the optimized frequency response function of
the main mass is obtained making use of the design charts presented in Figs 4 and 5. In particular, in Fig. 4 is shown
the graph which relates the optimal values of mass ratio as a function of the main massM . In Fig. 5 is reported the
graph of the optimal tuning ratioT as a function ofµ opt. Thus once known the value ofµopt from the previous step,
is possible to obtain also the optimal value of tuning ratioT . Using the Eq. (20) with both of the optimal values
previously obtained, it is possible to define the final behavior of the frequency response function of the main mass.
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µ

Fig. 4. Optimal values of mass ratio.

µ

Fig. 5. Optimal tuning ratio.

The procedure previously discussed has been applied to a main mass of a primary system whose vibration needs
to be controlled. The value of main mass isM = 42.243 kg and the vibration absorber is a uniform beam with
the following pertinent specifications:L = 1 m, A = 5 · 10−4 m2, E = 2 · 1011 N/m2, G = 0.808 · 1011 N/m2,
ρ = 8000 Kg/m3, In = 10−9 m4 andχ = 0.833. The optimal solution for the Timoshenko beam theory is
Topt = 0.968 andµopt = 0.185.

In conclusion, the main advantages in using the present technique are:

– the two peaks of the main mass maximum displacement value are leveled;
– the use of Timoshenko beam theory guarantee a more faithful modeling of the beam dynamic behavior.

The optimal parameters, using the Euler – Bernoulli beam theory, areT opt = 0.865 andµopt = 0.2. These are not
very far from the optimal solution obtained by means of Timoshenko theory. Figure 6 refers to a comparison between
Euler – Bernoulli beam theory and Timoshenko beam theory with the computed optimal parametersT opt = 0.968
andµopt = 0.185.

5. Conclusions

The authors have proposed a new method for the optimal design of a double-ended cantilever beam as a dynamic
vibration absorber for a lumped-parameter single degree-of-freedom vibration system. The governing equation for
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λ

γ

Fig. 6. Comparison between Timoshenko and Euler-Bernoulli theory.

the cantilever beam was developed under the assumption of Timoshenko bending theory. The Chebyshev’s criterion
was applied and the design charts for optimal beam-type absorber prepared. The results should be useful to designers
of machine elements and structural systems.
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NOMENCLATURE

A area
E Young’s modulus
G shear modulus
In area moment of inertia
k stiffness coefficient
L length
L1 straight line
M main mass
P0 external forcing function amplitude
Q solving equation of the system
q̇, ẇ generalized velocities
T tuning ratio
V shear force
W0 complex amplitude
Wst static deflection of the main system
Y spatial complex amplitude distribution
λ frequency ratio
µ mass ratio
ρ mass density
χ shear factor
Ω1 natural frequency of thek − M combination
ω input frequency
ωa first natural frequency of the cantilever
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