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Abstract. The study of the convergence to equilibrium of solutions to Fokker-

Planck type equations with linear diffusion and super-linear drift leads in a

natural way to a minimization problem for an energy functional (entropy)
which relies on a sub-linear convex function. In many cases, conditions linked

both to the non-linearity of the drift and to the space dimension allow the

equilibrium to have a singular part. We present here a simple proof of existence
and uniqueness of the minimizer in the two physically interesting cases in which

there is the constraint of mass, and the constraints of both mass and energy.

The proof includes the localization in space of the (eventual) singular part. The
major example is related to the Fokker-Planck equation introduced in [6, 7] to

describe the evolution of both Bose-Einstein and Fermi-Dirac particles.

1. Introduction. The quantum dynamics of many body systems is often modeled
by a nonlinear Boltzmann equation which exhibits a gas-particle-like collision be-
havior. The application of quantum assumptions to molecular dynamics encounters
leads to some divergences from the classical kinetic theory [2] and despite their
formal analogies the Boltzmann equation for classical and quantum kinetic theory
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present very different features. Although the quantum Boltzmann equation, for a
single species of particles, is valid for a gas of fermions as well as for a gas of bosons,
blow up of the solution in finite time may occur only in the latter case. As a con-
sequence the quantum Boltzmann equation for a gas of bosons represents the more
challenging case both mathematically and numerically. In particular this equation
has been successfully used for computing non-equilibrium situations where Bose-
Einstein condensate occurs. From Chapman and Cowling [2] one can learn that the
Boltzmann Bose-Einstein equation is established by imposing that, when the mean
distance between neighboring molecules is comparable to the size of the quantum
wave fields in which molecules are imbedded, a state of congestion results. For
a gas composed of Bose-Einstein identical particles, according to quantum theory,
the presence of a like particle in the velocity-range dv increases the probability that
a particle will enter that range; the presence of f(v)dv particles per unit volume
increases this probability in the ratio 1 + εf(v).

The fundamental assumption which leads to the correction in the Boltzmann
collision operator, namely the fact that the presence of f(v)dv particles per unit
volume increases the probability that a particle will enter the velocity range dv in the
ratio 1 + εf(v), has been recently used by Kaniadakis and Quarati [6, 7] to propose
a correction to the drift term of the Fokker-Planck equation in presence of quantum
indistinguishable particles, bosons or fermions. For Bose-Einstein particles, their
model reads

∂f

∂t
= ∇ · [∇f + vf(1 + εf)] ; v ∈ Rd, d ≥ 1. (1)

By a direct inspection, one can easily verify that equation (1) then admits the Bose-
Einstein distribution as stationary state. Indeed, the Bose-Einstein distribution [2]

fλ(v) =
1

ε

[
e|v|

2/2+λ − 1
]−1

, (2)

satisfies the equation

∇fλ(v) + vfλ(v)(1 + εfλ(v)) = 0

for any fixed positive constant λ. The constant λ is related to the mass of Bose-
Einstein distribution

mλ =

∫
Rd

1

ε

[
e|v|

2/2+λ − 1
]−1

dv,

and, since the mass is decreasing as soon as λ increases, the maximum value of mλ

is attained at λ = 0. If d = 3, the value

mc = m0 =

∫
R3

1

ε

[
e|v|

2/2 − 1
]−1

dv < +∞ (3)

defines the critical mass. The Fokker-Planck equation (1) considered by Kaniadakis
and Quarati in [6, 7] is a particular case of the general one obtained by varying the
diffusion constant in front of the diffusion operator. In this case, the equation reads

∂f

∂t
= ∇ · [θ∇f + vf(1 + εf)] ; v ∈ Rd, d ≥ 1, (4)

where θ is a positive constant, and the steady state, which satisfies the equation

θ∇f(v) + vf(v)(1 + εf(v)) = 0 (5)
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is now given by the Bose-Einstein distribution

fλ,θ(v) =
1

ε

[
e|v|

2/(2θ)+λ − 1
]−1

. (6)

The two parameters (λ, θ) are associated to the mass and energy of (6). One can
easily deduce from equation (5) that the steady state (6) is the most general one
can obtain from the Fokker-Planck equation (4). In fact, even in presence of a
multiplicative constant γ in front of the drift term, one is led to a steady state
which satisfies (5), with the constant θ substituted by the new constant θ/γ.

In particular, the mass given by

mλ,θ =

∫
R3

fλ,θ(v)dv , (7)

still has its maximum attained at λ = 0 for all values of θ > 0, while the kinetic
energy is given by

Eλ,θ =

∫
R3

|v|2fλ,θ(v)dv , (8)

It is then easy to observe that, due to the scaling properties of the distribution
(6),

mλ,θ = θ3/2mλ,1; Eλ,θ = θ5/2 Eλ,1 . (9)

The relations (9) imply (
mλ,θ

mλ,1

)5 (Eλ,1
Eλ,θ

)3

= 1 . (10)

Hence at the critical mass value mc = m0,1, attained at λ = 0, the corresponding
energy Ec := E0,1 satisfies the compatibility condition(

mλ,θ

mc

)5 ( Ec
Eλ,θ

)3

= 1 . (11)

One of the fundamental problems related to evolution equations that relax to-
wards a stationary state characterized by the existence of a critical mass, is to show
how, starting from an initial distribution with a super-critical mass m > mc, the
solution eventually develops a singular part (the condensate), and, as soon as the
singular part is present, to be able to follow its evolution.

We remark that in general the condensation phenomenon is heavily dependent of
the dimension of the physical space. In dimension d ≤ 2, in fact, the maximal mass
m0 of the Bose-Einstein distribution (2) is unbounded, and the eventual formation
of a condensate is lost.

In the linear Fokker-Planck equation, corresponding to the choice ε = 0, conver-
gence to the equilibrium Maxwell-Boltzmann (Gaussian) distribution is achieved by
showing convergence of the Boltzmann H-functional

H(f) =

∫ (
f(v) log f(v) +

|v|2

2
f(v)

)
dv

towards its minimum. An analogous proof for equation (4) would require the knowl-
edge of the convergence of the Bose-Einstein entropy

HB(f) =

∫ (
f(v) log f(v)− (1 + εf(v)) log(1 + εf(v)) +

|v|2

2θ
f(v)

)
dv

towards its minimizer (formally given by the Bose-Einstein distribution (6)). While
the fact that the Bose-Einstein distribution (6) is a minimizer of HB(f) is commonly
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accepted in the physics literature, its rigorous justification needs some care. Some
results in this direction have been shown by Glassey and Strauss [5], Lu [8] and
maybe others. In a recent paper [4], Escobedo Mischler and Valle give almost general
and optimal statements and proofs, with a unified treatment of the minimization
problem in various cases, including the standard Boltzmann functional, as well as
Bose-Einstein and Fermi-Dirac entropies. However the problem of finding a well
posed optimization problem for unique stationary solutions to problem (4) that
admit a singular part has not been addressed so far.

In the present manuscript we solved, by constrained minimization, the problem
of finding stationary solutions to the Fokker-Planck equation (1), where the non-
linear drift term is extended to a general super-linear class defined below. We
deal first with constraining only the mass, and later with constraining both mass
and energy. In both constraining sets, it is possible to show both existence and
uniqueness of solutions that can exhibit a singular part (condensation) depending
on the constrained mass for the first case, and on a relation between the constrained
mass and energy for the latter one.

Our proof relies on existence and uniqueness of minimizers for appropriate energy
(entropy) functionals which are uniquely defined in terms of the super-linear drift
term. The constrained mass-energy problem satisfies an d-dimensional extension of
the compatibility condition (11) that characterizes criticality for the minimization
of mass-energy (m, E) pairs. The the d-dimensional scaling invariant ratio is given
by

Rm,E =

(
m

mc

)d+2 (Ec
E

)d
. (12)

The criticality condition for a Dirac singular mass formation in the solution of the
mass and energy constrained minimization problem is given by the value of Rm,E
compared to unity, as shown in section 3.2 of this manuscript.

This introduction will be completed after the presentation of some preliminaries
concerned with the Fokker-Plank equation with a super-linear drift term. In section
2 we will discuss the corresponding steady states we will introduce the natural
entropy functional. In section 3 we present the minimization problem, both for the
mass constraint case and later for mass and energy constraints. The solutions are
fully characterized by their criticality constraints.

1.1. Preliminaries. We start by noticing that the Fokker-Planck type equation
for Bose-Einstein particles (4) belongs to the more general class of Fokker-Planck
type equations

∂f

∂t
= ∇ · [θ∇f + vD(f)] , (13)

where θ is a positive constant, and the drift function D(f) is super-linear and
strictly increasing from D(0) = 0. We associate this definition to any function D(·)
such that ∫ +∞

1

1

D(ρ)
dρ ≤ K < +∞. (14)

In analogy with the Bose-Einstein case (1) considered by Kaniadakis and Quarati,
where D(ρ) = ρ(1 + ρ), we will assume further that D(·) is linear close to zero

lim
ρ→0+

D(ρ)

ρ
= 1. (15)
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Note that the linear drift D(ρ) = ρ which leads to the standard Fokker-Planck
equation with a Maxwellian equilibrium is the border-line case. Condition (14)
does not hold, since the integral ∫ R

1

1

ρ
dρ

has a logarithmic growth as R converges to infinity.

In the remainder of the paper, we will be interested in the equilibrium states of
the Fokker-Planck equation (13) and in the possibility that these equilibria admit a
singular part (condensation). As known in the situation in which the drift term in
the Fokker-Planck equation is linear, while the diffusion operator is nonlinear [1],
both equilibria and entropy functionals are uniquely characterized in a systematic
way.

An interesting problem related to these equilibria is the minimization problem
of the associated entropy functional, under the constraint of fixed mass and energy.
As we will see, this problem can be solved in a clear and elegant way, by resorting
only to the properties (14) and (15) of the drift function.

One of the results of our analysis will be that, if the super-linearity of the drift
is sufficiently strong, formation of singularities can happen also in dimension one of
the velocity space. This is the case, among others, of the drift functions DN (ρ) =
ρ(1+ρN ), when N > 2. This introduces the possibility to use some of the results in
[1], which are confined to dimension one, to study the relaxation to equilibrium even
in the situation in which the initial datum has a mass which is above the critical
one, and one can have formation of a condensed part in finite time. This problem
will be object of a separate research.

Our minimization proof is alternative to the one recently presented in [4], from
which differs in many aspects. In particular, it is stated here that the (eventual)
singular part is localized in the origin.

2. Steady states and entropy. The steady states of equation (13), of given mass
m > 0, solve

θ∇f + vD(f) = 0. (16)

Since D(f) > 0 when f > 0, the solution to (16) satisfies

1

D(f)
∇f +∇|v|

2

2θ
= 0. (17)

Let us set

Φ′(f) = −
∫ +∞

f

1

D(ρ)
dρ. (18)

Thanks to condition (14), Φ′(ρ) in (−∞, 0) is strictly increasing for ρ ∈ (0,∞), with

lim
ρ→∞

Φ′(ρ) = 0 and. lim
ρ→0+

Φ′(ρ) = −∞

Substituting Φ(·) into (17), we obtain that the steady state is a solution to

∇
{

Φ′(f) +
|v|2

2θ

}
= 0, (19)

or, what is the same,

Φ′(f) = −|v|
2

2θ
− λ, (20)
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λ being an integration constant. We remark that, by the definition of Φ′, the
constant λ has to be nonnegative. If not, choosing v = 0 into (20) we obtain a

contradiction. Since Φ′(·) is strictly increasing, denoting by [Φ′]
−1

its inverse, we
can invert (20) to find the steady states of equation (13)

fλ,θ(v) = [Φ′]
−1
(
−|v|

2

2θ
− λ
)
. (21)

Remark 1. The value of the constant λ is related to the mass of the steady state.
Using the fact that Φ′(ρ) is non-decreasing with respect to ρ, so that the same
monotonicity property holds for its inverse function, we can conclude that the value
of fλ,θ(v) at a fixed argument v̄ is a decreasing function of the parameter λ. In
consequence, the maximum value of the masses of the family of steady states fλ,θ
is achieved in correspondence to λ = 0.

Following the general framework of statistical equilibrium theory, the steady
states of the Fokker-Planck equation (13) can be alternatively seen as the extremal
points of a suitable entropy functional. To identify such entropy functional, consider
that defining

Φ(f) =

∫ f

0

Φ′(ρ) dρ, (22)

the function Φ(ρ), which has a derivative that is non-decreasing, is convex for ρ ≥ 0.
Hence, as usual when dealing with Fokker-Planck type equations [1], let us con-

sider the natural entropy functional

H(f) =

∫
Rd

(
|v|2

2θ
f + Φ(f)

)
dv. (23)

If we now look for extremals of the entropy functional (23) on the set of functions
f that belong to Fm, where, for a given positive constant m

Fm =

{
f ≥ 0 :

∫
Rd

f dv = m

}
, (24)

it is standard to conclude that the (possible) extremals solve∫
Rd

{
Φ′(f) +

|v|2

2θ
+ λ

}
δf dv = 0. (25)

Hence the steady state (21) with λ chosen to satisfy the constraint on the mass,
is the (unique) extremal of the entropy functional (22). Note that, at least from
a formal point of view, the entropy functional H(f) decreases in time along the
solution to the Fokker-Planck equation (13). In fact

dH(f)

dt
=

∫
Rd

[
Φ′(f) +

|v|2

2θ

]
∂f

∂t
dv =

∫
Rd

[
Φ′(f) +

|v|2

2θ

]
∇ · [θ∇f + vD(f)] dv =

−
∫
Rd

θD(f)

∣∣∣∣∇ [Φ′(f) +
|v|2

2θ

]∣∣∣∣2 dv ≤ 0. (26)

Thus, one can expect that, starting from an initial density of given mass, the solution
to the Fokker-Planck equation (13) converges towards the steady state (21) with
the same mass, and the convergence in relative entropy can be stated to show
exponential convergence to equilibrium. In practice, however, various problems
arise if the drift function D(ρ) is growing too fast as ρ goes to infinity. To clarify
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this point, let us point out that, as shown before, the maximal value of the masses
of the steady states (21) is reached for λ = 0. In this case, choosing for simplicity
θ = 1, we obtain∫

Rd

f0,1(v) dv =

∫
Rd

[Φ′]
−1
(
−|v|

2

2

)
= Bd

∫ +∞

0

[Φ′]
−1
(
−ρ

2

2

)
ρd−1 dρ (27)

where Bd denotes the measure of the surface of the unit ball in Rd. Since Φ′, as
defined in (18) is non-positive, the choice of coordinates s given by

Φ′(s) = −ρ
2

2

allows to compute the last integral on (27) in terms of the function Φ, and con-
sequently, of the drift function D. Taking into account that, thanks to properties
(14) and (15) of the drift function one obtains

lim
s→+∞

Φ′(s) = 0, lim
s→0+

Φ′(s) = −∞,

the maximal (critical) mass mc = mc(D) associated to the drift function D, is
furnished by the integral

mc(D) =

∫
Rd

f0,1(v) dv = Bd

∫ +∞

0

sΦ′′(s) [−2Φ′(s)]
(d−2)/2

ds, (28)

or, what is the same

mc = Bd

∫ +∞

0

s

D(s)

[
2

∫ +∞

s

1

D(ρ)
dρ

](d−2)/2

ds. (29)

The main example of super-linear drift is represented by the Bose-Einstein-Fokker-
Planck equation (1) introduced by Kaniadakis and Quarati. In this relevant case,
D(ρ) = ρ(1 + ρ). Then,

Φ′(f) = −
∫ +∞

f

1

D(ρ)
dρ = log

f

1 + f
.

The maximal mass of the steady state in Rd is given by

mc = Bd

∫ +∞

0

1

1 + s

[
2 log

1 + s

s

](d−2)/2

ds. (30)

It is easy to show that the integral is unbounded if d = 1, 2, while the same is
bounded if the dimension d ≥ 3. In other words, when d = 1, 2 by varying the value
of the parameter λ from +∞ to 0, the family (21) of steady states ranges its mass
from 0 to +∞. In the remaining case d ≥ 3, since the integral in (30) is bounded,
this is no longer possible, and the possible masses for the family (21) vary from 0
to mc, which represents a critical mass for the problem.

Consider now a general drift function of the form D(ρ) = ρ(1+ρN ), where N > 0
is a given constant. In this case,

Φ′(f) =
1

N
log

(
fN

1 + fN

)
, (31)

and the maximal mass in dimension d = 1 is given by

mc =

∫ +∞

0

1

1 + sN

[
2

N
log

(
1 +

1

sN

)]−1/2

ds. (32)
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Since the integrand behaves like 1/xN/2 as x goes to +∞, the integral in (32) is
bounded as soon as N > 2. Hence, we have the same phenomenon of existence of
a bounded critical mass in dimension 1 of the velocity variable.

The relationship between the Fokker-Planck equation (13), its steady states and
the related entropy functional induces in a natural way the minimization problem
under mass constraint. The minimization problem associated to an entropy func-
tional where both mass and energy are constrained, is easily obtained from the
H-functional (23), by studying minimizers of

H(f) =

∫
Rd

((
|v|2

2θ
+ λ

)
f + Φ(f)

)
dv, (33)

for a non-negative pair of Lagrange multipliers (λ, θ).

3. Sub-linear entropy functionals and their minimizers.

3.1. Minimization under mass constraint. We first present the minimization
problem, under mass constraint only, related to sub-linear entropies. We exhibit
necessary and sufficient conditions both for the existence of condensates, and for
the localization in velocity space of these condensate solutions. In the remainder
of this section, without loss of generality, we will assume θ = 1. Identical results,
however, still hold for a general θ. More precisely, we consider the entropy function
H(f) defined in (23) which we recall here

H(f) =

∫
(
|v|2

2
f + Φ(f) ) dv.

The function Φ was assumed to be strictly convex and decreasing on [0,∞), satis-
fying

Φ(0) = 0 , lim
s→+∞

Φ′(s) = 0 ; lim
s→0+

Φ′(s) = −∞.

Since Φ′ vanishes at +∞, then limt→+∞
Φ(t)
t = 0.

We will now minimize the functional H on the set

Fm =

{
f ∈ L1

+(Rd);
∫
Rd

f dv = m

}
, (34)

Since the function Φ is sub-linear, the Dunford-Pettis criterion for compactness of
minimizing sequences cannot be satisfied. Therefore sequences of functions with
bounded entropies will eventually weak∗ converge in the sense of measures. This
issue has been extensively studied by Demengel and Temam [3] where one has: Let
fn be a sequence in Fm weak star converging in measures to f ∈ Mb(Rd). In this
context we consider the Lebesgue decomposition f = fr + fs of a measure f , where
fr is the absolutely continuous part of f and fs its singular part. Such measures
should be understood as f(dv) = fr(v)dv+ fs(dv), and its corresponding Lebesgue
integral for the singular part is given with the standard notation∫

ϕfsdv :=

∫
ϕ(v) fs(dv) . (35)

Then

lim inf H(fn) ≥ H(f) =

∫
(
|v|2

2
f + Φ(fr)) dv.
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In other words, the sub-linear part of the entropy does not see the singular part
of the measure f . Consequently the entropy H can be extended to the set

Fm =

{
f ∈M+

b (Rd) ;

∫
Rd

f dv = m

}
, (36)

by setting

H(f) =

∫
(
|v|2

2
f + Φ(fr)) dv, where f = fr + fs.

Note that the functional H is convex and lower semi-continuous in the weak star
topology of measures. Hence, as seen from the previous section, the candidates for
the minimizers are given by

fλ(v) = [Φ′]−1(−|v|
2

2
− λ)

where λ ∈ R+ = [0,∞).
Next, we define the following mass function depending on the parameter λ

M(λ) =

∫
fλ(v) dv .

This is a decreasing function of λ that satisfies

lim
λ→0+

M(λ) = M(0) ∈ (0,∞] ; lim
λ→+∞

M(λ) = 0 . (37)

The first result of this section is the following

Theorem 3.1. For any positive number m, the minimization problem on Fm has
a unique minimizer f .

• In the sub-critical case, m ≤ M(0), there exists a unique λm ≥ 0 such that
m = M(λm). The unique minimizer is given in this case by

f = fλm
.

• In the super-critical case, m > M(0), (and in this case M(0) is finite), the
unique minimizer is given by

f = f0 + (m−M(0))δ(v),

where δ is the Dirac measure at the velocity v = 0.

Moreover, any minimizing sequence in Fm weak star converges in Mb towards the
unique minimizer.

Proof. The convergence of the minimizing sequences is insured by the lower weak
semicontinuity of the functional H and from the uniqueness of the minimizer. Since
we have an explicit formula for the minimizers, we shall directly prove that H(g) >
H(f) for any element of Fm different from f .

(i) The sub-critical case. We assume here that m ≤ M(0). Let g = gs + gr be a
measure in Fm. Then

H(g)−H(f) =

∫
|v|2

2
gs +

∫
|v|2

2
(gr − f) +

∫
(Φ(gr)− Φ(f)) .

Taylor formula gives

Φ(gr)− Φ(f) = Φ′(f)(gr − f) +

∫ 1

0

(1− t)Φ′′(tgr + (1− t)f)(gr − f)2dt
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On the other hand Φ′(f) = −(|v|2/2 + λ). Therefore

H(g)−H(f) =

∫
|v|2

2
gs+λ

∫
(f−gr)+

∫ ∫ 1

0

(1−t)Φ′′(tgr+(1−t)f)(gr−f)2dt dv.

(38)
Since λ ≥ 0,

∫
gr ≤ m and Φ is strictly convex, the three integrals on the right-hand

side of (38) are nonnegative. Therefore f is a minimizer.
Let us prove that it is the unique one. For H(g) = H(f) it is necessary that the

three integrals vanish. But since f is locally bounded and Φ is strictly convex, the
last integral vanishes if and only if gr = f almost everywhere. The mass constraint
then implies gs = 0.

(ii) The super-critical case. Assume that m > M(0). Since the δ function is not
seen neither by the linear part of the entropy nor by the kinetic part (because |v|2
vanishes on its support), then formula (38) with λ = 0 gives

H(g)−H(f0+(m−M(0))δ(v)) =

∫
|v|2

2
gs+

∫ ∫ 1

0

(1−t)Φ′′(tgr+(1−t)f0)(gr−f0)2dt dv.

Again, the right hand side is non-negative and vanishes if and only if

gr = f0 , |v|2gs = 0.

Therefore gs = αδ(v) and the mass constraint gives the value α = m−M(0).

3.2. Minimization under mass and energy constraint. The problem of min-
imization of a suitable entropy functional constraining mass and energy is surpris-
ingly different in some ways and nevertheless coherent with the previous minimiza-
tion under mass constrain only. The new minimization problem reads

S(f) = inf
g∈Fm,E

S(g) (39)

where

Fm,E =

{
f ∈M+

b (Rd) ;

∫
Rd

f dv = m;

∫
Rd

|v|2

2
f dv = E

}
, (40)

and

S(g) =

∫
Φ(gr) dv. (41)

The double parameter minimization problem is now endowed simply with the
entropy functional H(g) = S(g), in which the term corresponding to free energy
does not appear in the functional to be minimized. (Indeed the energy is not free
any longer since we are constraining it with a Lagrange multiplier θ.)

The corresponding Euler Lagrange equations formulation for this minimization
problem yields

Φ′(f) = −
(
|v|2

2θ
+ λ

)
,

where the Lagrange multipliers θ and λ are nonnegative.
Following from (21), let us define a steady state by

Mλ,θ = [Φ′]−1

[
−
(
|v|2

2θ
+ λ

)]
. (42)
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It is clear that the total mass of Mλ,θ is maximal for λ = 0 (as well as its energy).
Let (M(λ, θ), E(λ, θ)), be the mass and energy corresponding toMλ,θ. Then, rescal-
ing the integration variable yields

M(λ, θ) = θd/2Bd

∫ +∞

0

|u|d−1[Φ′]−1(−(
|u|2

2
+ λ)) du, (43)

E(λ, θ) = θd/2+1Bd

∫ +∞

0

|u|d+1

2
[Φ′]−1(−(

|u|2

2
+ λ)) du. (44)

In order to understand the thresholds for condensation, as in the case of mini-
mization under mass constraint, it is interesting to consider the limiting case λ = 0.
Let us define the critical masses and energies by

Mc = M(0, 1) = Bd

∫ +∞

0

|u|d−1[Φ′]−1(−|u|
2

2
) du

Ec = E(0, 1) = Bd

∫ +∞

0

|u|d+1[Φ′]−1(−|u|
2

2
) du.

(45)

Clearly, formulas (43) and (44) imply the relation(
M(0, θ)

Mc

)d+2( Ec
E(0, θ)

)d
= 1, (46)

as shown in (11) in the classical case for Bose Einstein distributions in 3-dimensions.
In particular, it is natural to define the sub-critical ensemble as follows

SCd = {(m, E) ∈ (0,∞)2, Rm,E =

(
m

Mc

)d+2(Ec
E

)d
≤ 1}. (47)

As a consequence the following Theorem holds

Theorem 3.2. For any given pair of positive numbers (m, E), the minimization
problem (39), (40) and (41) has a unique minimizer M.

• In the sub-critical case, i.e. (m, E) ∈ SCd, there exists a unique pair (λ, θ) ∈
[0,∞)×(0,∞) such that m = M(λ, θ) and E = E(λ, θ). The unique minimizer
is given in this case by

M =Mλ,θ. (48)

• In the super-critical case, i.e. (m, E) /∈ SCd, there exists a unique positive θ
such that E = E(0, θ). The unique minimizer of (40) is given by

M =M0,θ + (m−M(0, θ))δ(v), (49)

where δ is the Dirac measure at the velocity v = 0.

Moreover, any minimizing sequence in Fm,E weak star converges inMb towards the
unique minimizer.

Proof. Uniqueness: For the proof of uniqueness we assume the existence of a
ground state M for the minimization problem.

Since we have an explicit formula for the minimizer given by either by (48) or
(49), we proceed like in the previous subsection and show that the functional reaches
its minimum at that candidate stateM. Let g be another minimizer element of the
ensemble Fm,E . We denote both g = gr + gs and M = Mr +Ms meaning their
regular and singular parts respectively.

A key point for uniqueness it to ensure that the singular part of g is concentrated
at v = 0.
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First, since both g and M are in Fm,E , they have the same mass m and energy
E . In particular

0 =

∫
|v|2

2θ
(g −M) =

∫
|v|2

2θ
gs dv +

∫
|v|2

2θ
(gr −Mr) dv (50)

since the singular part of the ground state Ms is a delta measure at v = 0 by (49) .
On the other hand, since the minimizer M is given by (48) or (49), and in

both cases its regular part can be written Mr = Mλ,θ, this implies by (42) that
Φ′(Mr) = −(|v|2/(2θ) + λ) (recall that for the case (49) one has λ = 0).

Thus adding and subtracting
∫
λ(gr −Mr) (50) becomes

0 =

∫
|v|2

2θ
gs dv +

∫
λ(Mr − gr)− Φ′(Mr)(gr −Mr) dv (51)

Finally, using the entropy function, now defined in (41) for the mass and energy
constrained problem, and the null form in (51) we can write the difference between
the entropies of g and M as

S(g)− S(M) =

∫
(Φ(gr)− Φ(Mr)) dv =

∫ (
|v|2

2θ
gs + λ(Mr − gr)

)
dv +

∫
(Φ(gr)− Φ(Mr)− Φ′(Mr)(gr −Mr)) dv.

(52)
Identity (52) allows to prove the uniqueness both for sub-critical and super-

critical cases.
If (m, E) ∈ SCd (sub-critical case), with λ ≥ 0, θ > 0, then by (48) we have

Mr = Mλ,θ = M and thus
∫
Mr dv =

∫
M dv = m =

∫
g dv ≥

∫
gr dv. Since gs

is nonnegative, invoking the strict convexity of Φ as in the previous subsection we
clearly obtain from (52) that S(g) − S(M) ≥ 0 and the equality holds is and only
if gr =Mr =M and gs = 0 =Ms, and consequently g =M. Once more, we used
the fact that g = gs + gs andM have the same total mass, so that gr =M implies
gs = 0.

If (m, E) /∈ SCd (super-critical case), the total mass and energy values are critical
at λ = 0 as noted it in (46) and (47), and as it was originally observed in (11). In
particular, by (49), the regular part of the minimizer is given by Mr =M0,θ, and
the singular part Ms = (m−M(0, θ)δ(v) is also non-negative since m ≥M(0, θ).

Then, once more invoking that gs is nonnegative and the strict convexity of Φ in
(52), we conclude that S(g)−S(M) ≥ 0, and equality holds is and only if gr =Mr

and |v|2
2θ gs = 0. Therefore gs is a Dirac measure centered at zero and its mass is

deduced from the total mass carried out by g. This immediately leads to g =M.
In particular we obtained the minimality of S(M) and the uniqueness of the

minimizer M.

Existence of a minimizer M: We begin with the super-critical case. Let us
consider a mass m and an energy E such that

Rm,E =

(
m

Mc

)d+2(Ec
E

)d
≥ 1 . (53)

In addition, from (44, 45), the constant θ can be defined by

E = θd/2+1Ec . (54)
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Therefore, combining (54) with (43), (45) and the ratio of super-criticality (53)
yields

md+2 ≥
(
Mcθ

d/2
)d+2

= M(0, θ)d+2 . (55)

In particular this last condition insures that m ≥ M(0, θ) and therefore (by
the minimization problem of constraining just masses) the minimizer must have a
singular part, that is there is a state M such that M =M0,θ + (m−M(0, θ))δ(v)

is an element of Fm,E and the above computation of the entropy shows that M is

the unique minimizer of S on Fm,E .

We are left now with showing the existence of minimizers in the sub-critical case,
i.e. we need to show that there exists a unique pair (λ, θ) such that Mλ,θ ∈ Fm,E .

Using (43) allows us to recast the problem in terms of λ by taking

θd/2 =
m

Bd
∫ +∞

0
|u|d−1[Φ′]−1(− |u|

2

2 − λ) du
.

Thus, equation (44) on the energy E now becomes

Ed = θd(d+2)/2Bd
d

[∫ +∞

0

|u|d+1

2
[Φ′]−1(−|u|

2

2
− λ) du

]d
=

md+2
[∫ +∞

0
|u|d+1

2 [Φ′]−1(− |u|
2

2 − λ) du
]d

Bd
2
[∫ +∞

0
|u|d−1[Φ′]−1(− |u|

2

2 − λ) du
]d+2

.

This is an identity that depends on λ ≥ 0 which, using definition (21), can be
reformulated as a functional identity G(λ) = 1, where G is defined by

G(λ) :=
md+2

[∫ +∞
0
|u|d+1[Φ′]−1(− |u|

2

2 − λ) du
]d

(2E)dBd
2
[∫ +∞

0
|u|d−1[Φ′]−1(− |u|

2

2 − λ) du
]d+2

. (56)

Hence, the sub-critical condition for (m, E) ∈ SCd corresponds to writing that
G(0) ≤ 1, and the proof of existence of minimizer is then reduced to show that the
identity G(λ) = 1 is solvable.

In order to achieve this result, we will study in detail the behavior of the function
G(λ). First, we will prove that G(λ) is increasing in λ.

Indeed, set h(s) = (Φ′)−1(s) and use the change of coordinates ρ = |u|2
2 . Expres-

sion (56) then becomes

G(λ) = K

[∫ +∞
0

ρd/2h(−ρ− λ) dρ
]d

[∫ +∞
0

ρd/2−1h(−ρ− λ) dρ
]d+2

.

with K = md+2/[(2E)−dBd
−2].

Computing

d

dλ
lnG(λ) = −d

∫ +∞
0

ρd/2h′(−ρ− λ) dρ∫ +∞
0

ρd/2h(−ρ− λ) dρ
+ (d+ 2)

∫ +∞
0

ρd/2−1h′(−ρ− λ) dρ∫ +∞
0

ρd/2−1h(−ρ− λ) dρ
, (57)
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and integrating by parts in the denominators of each term we obtain that right
hand side of (57) becomes

d(d+ 2)

2

[
−
∫ +∞

0
ρd/2h′(−ρ− λ) dρ∫ +∞

0
ρd/2+1h′(−ρ− λ) dρ

+

∫ +∞
0

ρd/2−1h′(−ρ− λ) dρ∫ +∞
0

ρd/2h′(−ρ− λ) dρ

]
. (58)

Finally, since by (21) h is increasing in λ, then using Hölder’s inequality we
obtain(∫ +∞

0

ρd/2h′(−ρ− λ) dρ

)2

<

∫ +∞

0

ρd/2−1h′(−ρ−λ) dρ·
∫ +∞

0

ρd/2+1h′(−ρ−λ) dρ,

which proves that (58) is positive, and in particular G′(λ) > 0.
Second, let us examine the behavior of G(λ) for large values of λ. We use the

notation fλ(u) = (Φ′)−1(−|u|2/2− λ). Then formula (56) reads

G(λ) :=
md+2

[∫ +∞
0
|u|d+1fλ(u) du

]d
(2E)dBd

2
[∫ +∞

0
|u|d−1fλ(u) du

]d+2
. (59)

We note that by Hölder inequality∫ +∞

0

|u|d−1fλ(u) du ≤
(∫ +∞

0

|u|d+1fλ(u) du

)(d−1)/(d+1)(∫ +∞

0

fλ(u) du

)2/(d+1)

,

which implies

G(λ) ≥
md+2

[∫ +∞
0
|u|d+1fλ(u) du

]2/(d+1)

(2E)dBd
2
[∫ +∞

0
fλ(u) du

]2(d+2)/(d+1)
. (60)

By the monotonicity of the function Φ′(·) (non-decreasing), fλ(u) ≤ fλ(0).
Hence, for every R > 0∫ +∞

0

fλ(u) du ≤
∫ R

0

fλ(u) du+
1

Rd+1

∫ +∞

R

|u|d+1fλ(u) du ≤

∫ R

0

fλ(0) du+
1

Rd+1

∫ +∞

0

|u|d+1fλ(u) du = fλ(0)R+
1

Rd+1

∫ +∞

0

|u|d+1fλ(u) du.

Next, optimizing over R we get∫ +∞

0

fλ(u) du ≤ Ad[fλ(0)](d+1)/(d+2)

(∫ +∞

0

|u|d+1fλ(u) du

)1/(d+2)

(61)

where the constant Ad is explicitly computable. Inequality (61) can be rewritten as∫ +∞

0

|u|d+1fλ(u) du ≥ Bd
(

1

fλ(0)

)d+1(∫ +∞

0

fλ(u) du

)d+2

(62)

Using inequality (62) into (60) we obtain

G(λ) ≥ md+2

(2E)dBd
2 (Bd)

2/(d+1)

(
1

fλ(0)

)2

. (63)

Since

lim
λ→∞

fλ(0) = 0,
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inequality (63) shows that limλ→+∞G(λ) = +∞, which proves the existence of a
unique solution λ to the equation G(λ) = 1.

Remark. If Mc →∞ while Ec remains finite, then by the sub-criticality condition
(46) all the pairs (m, E) ∈ (0,∞)2 lie in the sub-critical ensemble SCd.

Remark. Condition (47), which defines the sub-critical ensemble, can be rewritten
as

md+2

Ed
≤ md+2

c

Edc
= Cd. (64)

Hence, a pair of values (m, E) violates the sub-critical condition (64) not only when
the mass m is above the critical mass, but, most interestingly, when the mass m
is below the critical mass, while the energy E is below a suitable value. In the
physically relevant case of the Bose-Einstein distribution, there is no regular Bose-
Einstein state also for particles density below the critical value, provided the energy
is suitably small. We remark that this relationship between mass and energy has
not been observed in [4].
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