
Electronic Notes in Theoretical Computer Science 48 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume48.html pp. 1 – 28

Layered map reasoning:
An experimental approach put to trial on sets 1

Andrea Formisano 2

Dipartimento di Matematica e Informatica,
Università di Perugia

Eugenio G. Omodeo 3

Dipartimento di Matematica Pura ed Applicata,
Università di L’Aquila

Marco Temperini 4

Dipartimento di Informatica e Sistemistica,
Università ‘La Sapienza’ di Roma

Abstract

New successes in dealing with set-theories by means of state-of-the-art theorem-
provers may ensue from terse and concise axiomatic systems, such as can be moulded
in the framework of the (fully equational) Tarski-Givant formalism of dyadic rela-
tions, here named ‘maps’. This paper sets the ground for systematic experimenta-
tion based on such axiomatic systems. On top of a kernel axiomatization of map
algebra, we develop a layered formalization of basic set-theoretic concepts. A num-
ber of concrete experiments have been carried out in this framework, as the paper
reports, with the assistance of a first-order theorem-prover. The aim is to assess
the potential usefulness of the proposed layered architecture and, to the extent it
reveals promising, to best tune it.

Key words: Set Theory, relation algebras, first-order
theorem-proving, algebraic logic.

1 This research was partially funded by the Italian IASI-CNR (coordinated project
log(SETA)) and by MURST (PGR-2000—Automazione del ragionamento in teorie insie-
mistiche).
2 Email:formis@dipmat.unipg.it
3 Email:omodeo@univaq.it
4 Email:marte@dis.uniroma1.it

c©2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Formisano, Omodeo and Temperini

1 Introduction

In view of its pervasiveness in exact sciences, Set Theory deserves sustained
efforts that bring to light richer and richer decidable fragments of it [7], general
inference rules for reasoning in it [36,2], effective proof strategies based on its
domain-knowledge [3], and so forth. While this specialized area of automated
reasoning progresses and attains autonomous results and a larger horizon (cf.
[9]), many experiments with set-theories have been carried out by means of
standard theorem-proving systems. Still today such experiments pose consid-
erable stress on state-of-the-art theorem provers, or demand the user to give
much guidance to proof assistants; they therefore constitute ideal benchmarks.
Even for those who are striving to develop something entirely ad hoc in the
challenging arena of set-theories, it is important to assess what can today
be achieved by unspecialized proof methods and where the context-specific
bottlenecks of Set Theory precisely reside.

In its most popular first-order version, namely the Zermelo-Skolem-Fraenkel
axiomatic system ZF, set theory (very much like Peano arithmetic) presents
an immediate obstacle: it does not admit a finite axiomatization. This is
why the von Neumann-Bernays-Gödel theory GB of sets and classes is some-
times preferred to it as a basis for experimentation [5,35,30]. Various authors
(e.g., [24,28,29]) have been able to retain the traits of ZF, by resorting to
higher-order features of specific theorem-provers such as Isabelle.

In this paper —which continues a series inaugurated with [17]— we pur-
sue a minimalist approach, relying on purely equational and most concise
formulations of both ZF and the theory (first proposed in [33]) of finite sets.
Such formulations are based on the logical system L× deeply investigated in
[34]: we designed them with the aim of offering a good starting point for
experimentation—with Otter [23], say, or with a more markedly equational
theorem-prover. Guidelines for our axiomatization task were drawn from [34]
too: the outcome is equational and devoid of variables, and accordingly some-
what out of standards. Luckily, a theory stated in L× can easily be emulated
through a first-order system, simply by treating the meta-variables present in
the schematic formulation of its axioms (both the logical axioms and the ones
endowed with a genuinely set-theoretic content) as if they were first-order
variables. In practice, this means treating ZF as if it were an extension of
the theory of relation algebras [20,22,12,32,26,14,18], whose variables are not
supposed to range over sets but over the dyadic (i.e. binary) relations on the
universe of sets. Anyway, the exact relationship of our own formulation of
ZF with ZF proper on the one hand, and with GB on the other, is a delicate
theoretical issue which we intend to address in another paper of this series.

This paper consists of two parts:

• Sections 2–3 briefly recall —and, to a little extent, ameliorate w.r.t. [15], [17,
Sec. 7.2]— our equational formulation of set-theoretic axioms. Taken in its

2

Formisano, Omodeo and Temperini

entirety, Set Theory offers a panorama of alternatives (cf. [31, p. x]); that is,
it consists of axiomatic systems not equivalent (and sometimes antithetic,
cf. [25]) to one another. This is why, rather than producing the axioms of
just one theory, we indicate various options. Future work will expand the
material of these sections into a toolkit for assembling class- and set-theories
of all kinds—after we have singled out, through experiments, formulations
of the axioms that work decidedly better than others.

• Sections 4–6 mainly report on experimental results based on the above for-
mulation of the set-axioms.

Comparison with analogous results based on more traditional specifications
of the set-axioms, which exploit in full the expressive means of first-order
predicate languages, are deferred to another paper of this series.

2 Syntax, semantics, and logical axioms of L×

L× is a ground equational language where one can state properties of dyadic
relations —maps, as we will call them— over an unspecified, yet fixed, domain
U of discourse. The map whose properties we intend to specify is the mem-
bership relation ∈ over the class U of all sets. The language L× consists of
map equalities Q = R, where Q and R are map expressions:

Definition 1 Map expressions are all terms of the signature shown at the top
of Fig. 1—of whose symbols, ∩,�, ◦,\,∪, † will be used as left-associative
infix operators, −1 as a postfix operator, and as a line topping its argument.

✷

For an interpretation of L×, one must fix, along with a nonempty U , a
subset ∈� of U2 =Def U × U . Then each map expression P comes to desig-
nate a specific map P� (and, accordingly, any equality Q = R between map
expressions turns out to be either true or false), on the basis of the following
evaluation rules:

Ø� =Def ∅, 1l� =Def U2, ι� =Def {[a, a] : a in U};
(Q∩R)� =Def { [a, b] ∈ Q� : [a, b] ∈ R� };

(Q�R)� =Def { [a, b] ∈ U2 : [a, b] ∈ Q� if and only if [a, b] /∈ R� };
(Q◦R)� =Def { [a, b] ∈ U2 : for some c in U , one has [a, c] ∈ Q� and [c, b] ∈ R� };

(Q−1)� =Def { [b, a] : [a, b] ∈ Q� } .

Of the operators and constants in the signature of L×, only a few deserve
being regarded as primitive constructs; indeed, we choose to regard as derived
constructs the ones for which we gave no evaluation rule, as well as others
that we will tacitly add to the signature—see central part of Fig. 1.

3

Formisano, Omodeo and Temperini

The interpretation of L× obviously extends to the new constructs; e.g.,

(P†Q)� =Def { [a, b] ∈ U2 : for all c in U , either [a, c] ∈ P� or [c, b] ∈ Q� },
funcPart(P)� =Def {[a, b] ∈ P� : [a, c] /∈ P� for any c 	= b},

so that funcPart(P)= P will mean “P is a partial function”, very much like
to be seen below.

Notice that we are also allowing ourselves to define, through abbreviating
definitions, alternative notation for map equalities that follow certain patterns.
This is, e.g., the case of the notation Func(P), which means the same as
funcPart(P) = P ; or the case of Total(P), which states that for all a in U
there is at least one pair [a, b] in P�.

The logical axioms characterizing the derivability notion
× for L× are
shown in the third frame of Fig. 1. These will be supplemented with proper
axioms reflecting one’s conception of U as being a hierarchy of nested sets over
which ∈ behaves as membership.

It must be said that there is no representation theorem that plays for map
algebras a role analogous to the Stone theorem for Boolean algebras (cf. [4]).
In other words, there exist equalities that are true in all algebras of dyadic
relations over a fixed U but which are false in some structure which, though
fulfilling the axioms of map algebra, does not consist of relations. This defect
will presumably propagate to any set theory formulated as an extension of the
map algebra; but anyway, even in first-order logic, a set theory never reflects
the intended semantics univocally, and hence the map-algebraic formulation
and the logical one can, with their limitations, be on a par. The results
reported in [10], which we will briefly review in Sec. 5, constitute a verification
of this fact.

3 Specifying set theories in L×

One often strives to specify the class C of interpretations that are of interest in
some application through a collection of equalities that must be true in every
� of C. In [15] (cf. also [17, Sec. 7.2]) we undertook a task of this nature: our
aim, there, was to capture through simple map equalities the interpretations
of ∈ complying with

• standard Zermelo-Fraenkel theory, on the one hand;

• a theory of finite sets ultimately based on individuals, on the other hand.

In this section we briefly recall the main points of [15], leaving momentarily
individuals out of consideration.

In part, the game consists in expressing in L× common set-theoretic no-
tions. To start with something obvious,

4

Formisano, Omodeo and Temperini

symbol : Ø 1l ι ∈ ∩ � ◦ −1 \ ∪ †
degree : 0 0 0 0 2 2 2 1 1 2 2 2

priority : 5 3 6 7 2 2 4

P ∪Q ≡Def P � Q�P ∩Q P \ Q ≡Def P � P ∩Q

P ≡Def P � 1l P † Q ≡Def P ◦ Q P ⊆ Q ≡Def P ∩Q = P

funcPart(P) ≡Def P \ P ◦ ι Func(P) ≡Def P−1◦P ⊆ ι

lAbs(P) ≡Def P = 1l◦P Total(P) ≡Def P◦1l= 1l

P ∩Q = Q∩P

P ∩ (Q� R)�P ∩Q = P ∩R

(P �1 Q) �1 R = P �1 (Q �1 R)

ι◦ P = P

P−1−1
= P

(P �2 Q)−1 = Q−1 �2 P−1

((P � Q)� P ∩ Q)◦ R = (Q◦R �P◦R)�Q◦R ∩P◦R

P−1◦ (R ∩(P◦Q�1l))∩Q = Ø

1l∩P = P

�1 ∈ {�,∩,◦} and �2 ∈ {∩,◦}
Fig. 1. Operators, derived constructs, and axioms of map algebra

	∈ ≡Def ∈,
 ≡Def ∈−1, 	
 ≡Def
;

ε0ε1 · · · εn ≡Def ε0◦ε1◦ · · ·◦εn,

where each εi stands for one of ∈, 	∈,
, 	
, 1l, ι. To see something slightly
more sophisticated:

Example 1 With respect to an interpretation �, one says that a intersects b
if a and b have some element in common, i.e., there is a c for which c∈�a and
c∈�b. A map expression P such that P� = { [a, b] ∈ U2 : a intersects b } is

∈.

Likewise, one can define in L× the relation a includes b (i.e., “no element
of b fails to belong to a”), by the map expression 	
∈. The expression
	∈∪ι
translates the relation a is strictly included in b, and so on.

The property of a set a being transitive in the sense that every element
of any element of a belongs to a can be designated by the following map

5

Formisano, Omodeo and Temperini

expression trans:

trans ≡Def ι \ 	
∈∈.

Here, by requiring trans� to be contained in ι�, we have made it represent a
collection of sets; then, the further requirement that trans� be disjoint from
(
∈∈)� amounts to the condition that c∈�a holds when a, c, and d are such
that a trans� a, d∈�c, and c∈�a hold. ✷

Secondly, the reconstruction of a set-theory within L× consists in restating
ordinary axioms (and, subsequently, theorems), through map equalities.

Example 2 The sum-set axiom and the power-set axiom respectively state,
for every set a, that there is a set comprising as elements all elements of
elements of a and that there is a set comprising as elements all sets included
in a. The former can be formulated in the map language as

(Un)

	∈ ◦ 1l = 1l

(or, more succinctly, as Total(

†∈)); the latter as

(Pow) Total(
∈†∈).

A customary strengthening of the sum-set axiom is the transitive embed-

ding axiom, which states that every b belongs to a set a which is transitively
closed w.r.t. membership:

(T) Total(∈◦trans).

The foundation (or ‘regularity’) axiom ensures that the membership rela-
tion ∈� is cycle-free—more generally, under infinity and replacement axioms
(see below), it can be used to prove that ∈� is well-founded on U (cf. [13,
Ch.2, Sec.5]). Regularity is usually stated by saying that when some b belongs
to a, there is a c also belonging to a that does not intersect a:

(R) 1l∈ = 1l ◦ (∈\
∈). ✷

In the third place, we are to prove theorems about sets by equational
reasoning, moving from the equational specification of the set-axioms. In this
phase we must refer to the inferential apparatus of L×, consisting of the logical
axioms displayed in Fig. 1 and of the ordinary rules of equational reasoning.

Example 3 From the above-stated regularity axiom (R), one can deduce
that any transitive non-void set has a void set among its elements:

1l∈ ∩ trans ⊆ 1l∈ ◦ ∈.

✷

Extensionality and subset axioms

As was observed in [15], two derived constructs can be of great help in stating
the properties of membership simply; they are the following ∂ and F:

∂(P) ≡Def P ◦ 	∈, F(P) ≡Def ∂(P) \ P ◦ ∈.

6

Formisano, Omodeo and Temperini

Plainly, a∂(Q)�b and aF(R)�b will hold in an interpretation � if and only
if, respectively,

• all cs in U for which aQ�c holds are ‘elements’ of b (in the sense that c∈�b);

• the elements of b are precisely those c in U for which aR�c holds.

First in the list of axioms postulated by Zermelo (cf. [37]), extensionality,
states that sets whose elements are the same are identical :

(E) F(
)= ι.

A useful variant of this axiom is the scheme Func(F(P)), where P ranges
over all map expressions.

The subset axioms enable one to extract from any given a the set b con-
sisting of those elements of a that meet a condition specified by means of a
map expression P . A more general form of this axiom scheme depends on a
second map expression Q too: To every set a, there corresponds a set b which
is null unless there is exactly one d fulfilling aQ�d, and which in the latter
case consists of all elements c of d for which aP�c holds. Formally:

(S) Total
(

F(funcPart(Q)◦
∩P)
)
.

Example 4 By taking Q ≡ ι and P ≡ 1l◦(ι\∈) in (S), we obtain that to
every set a there corresponds a b consisting of exactly those elements c of a
for which c∈�c is false. This subset b of a does not belong to a. Notice, in
fact, that b cannot belong to itself (else a contradiction would ensue from the
very characterization of the elements of b); then, since b	∈�b, we have that
b	∈�a (the opposite assumption would in fact yield b∈�b). In view of the
genericity of a in the above argument, we conclude that every set has a subset
not belonging to it: Total(
∈\
).

(When (R) is postulated, the same conclusion can be reached far more
easily.) ✷

Pairing and finiteness axioms

Two maps λ, � are said to be conjugated quasi-projections if they are (partial)
functions and for any pair a0, a1 of entities in U there is a b in U such that
λ(b) = a0, �(b) = a1. We assume in what follows that λ, ρ are map expressions
designating two conjugated quasi-projections. It is immaterial whether they
are added as primitive constants to L×, or they are map expressions suitably
chosen so as to reflect one of the various notions of ordered pair available
around, and subject to axioms that are adequate to ensure that the desired
conditions, namely

(Pair) λ−1 ◦ ρ = 1l, Func(λ), Func(ρ), ∈
 = 1l,

hold (cf. [34, pp. 127–135]).

Under the set-axioms (E), (Pow), (S), (Pair) introduced so far, it is

7

Formisano, Omodeo and Temperini

reasonable to characterize a set a as being finite if and only if every set b
of which a is an element has an element which is minimal w.r.t. inclusion
(cf. [33, p. 49]). Accordingly, in forming a theory concerned exclusively with
finite sets, one can adopt the following finiteness axiom:

(F) finite = ι, where finite ≡Def ι∩
(
1l◦(∈∩((ι∪	
∈)†	∈))†	

)
.

On the one hand, this means that afinite� a holds for every set a; on the other
hand, the requirement that finite� be contained in

(
1l◦(∈∩((ι∪	
∈)†	∈))†	

)�

amounts to the condition that when both a finite� a and b
�a hold, there is a
c∈�b such that no d∈�b other than c itself is included in c.

Single-element addition and removal

This section is a digression on techniques for forming pairs with sets.

One of the axioms in [37] states that “there exists a set · · · that contains
no elements at all. If a is any object of the domain, there exists a set {a}
containing a and only a as element; if a and b are any two objects of the
domain, there always exists a set {a, b} containing as elements a and b but
no object x distinct from both.” As one easily sees, the axioms (E), (S),
(Un), and (Pair) make the null set and the adjunction operation available;
therefore they also enable singleton- and doubleton-formation, and hence they
make the above Zermelo’s axiom of elementary sets unnecessary.

Sometimes, though, one likes to work within a very weak membership the-
ory, e.g. a theory whose only postulates are (E) and the axiom of elementary
sets. These axioms have (Pair) as a consequence, because they enable the
formation of { { a, b }, { a } } from given sets a, b, which is Kuratowski’s classi-
cal encoding of the ordered pair with left component a and right component
b. The components of such an entity can be retrieved by means of

λ ≡ funcPart(
◦funcPart(
)),

and
ρ ≡

∩((

∪λ)†ι)∩(
†
1l),

respectively, and it can indeed be shown that λ and ρ, so defined, fulfill
(Pair)2,3,4.

An ordered pair can, alternatively, be conceived of as a set of the form
{ { b } \ { a }, { b } ∪ { a } }. The ongoing is based on this idea. Instead of
directly postulating doubleton formation (as Zermelo did), we postulate (E),
null-set existence

(N) 1l∈ ◦ 1l = 1l,

and single-element addition and removal, intended as the possibility of forming
c∪{a} and c\{a} out of given sets c, a. Stating that these two operations can

8

Formisano, Omodeo and Temperini

be performed singularly is almost certainly impossible (cf. [21]), and hence we
resort to an axiom directly stating that { { b } \ { a }, { b } ∪ { a } } can always
be constructed:

(WL) (∈∈ ∩ valve(∈∈, 	∈∈)) ◦
 = 1l,

where

valve(P,Q) ≡Def P \ ι ◦ (P \ Q).

This means: If c and a are any two objects in the domain, there always
exists a sets d containing c as element, for which a is the sole object x fulfilling
both x∈∈�d and x 	∈∈�d.

Conjugated quasi-projections associated with the pair

{ { b } \ { a }, { b } ∪ { a } }

are

λ ≡Def ν−1 and ρ ≡Def valve−1(∈∈,ν),

where

ν ≡Def 	∈∈ ∩ valve(∈∈, 	∈∈).

As we will discuss later on, (Pair) is derivable from (E), (N), and (WL).

An infinity axiom, and the replacement axioms

We have collected in Fig. 2 all the axioms introduced so far, along with an
additional clause of (Pair), a version (Repl) of the classical replacement
axiom, and an axiom (I) which, presupposing (R), states the existence of
infinite sets (cf. [27]). Of course this infinity axiom is antithetic to the
axiom (F) seen earlier: one can adopt either one, but only one of the two.

The new axioms (Pair)5, (Repl), and (I) are not discussed here: the
interested reader can find in [15] detailed comments.

4 Layers of experiments set up on Otter

To follow [34] orthodoxly, we should treat L× as an autonomous formalism,
on a par with first-order predicate calculus. This, however, would pose us two
problems: we should develop from scratch a theorem-prover for L×, and we
should cope with the infinitely many instances of (S) and of (Repl). Luckily,
this is unnecessary if we treat as first-order variables the meta-variables that
occur in the logical axioms or in (S), (Repl) (as well as in induction schemes,
should any enter into play either as additional axioms or as theses to be
proved). Within the framework of first-order logic, the logical axioms lose their
status and become just axioms on relation algebras, conceptually forming a
chapter of axiomatic set theory interesting per se, richer than Boolean algebra
and more fundamental and stable than the rest of the axiomatic system.

9

Formisano, Omodeo and Temperini

(E) F(
) = ι

(N) Total(1l∈)

(WL)
(

	∈∈ ∩ (∈∈ \ ι ◦ (∈∈∩ 	∈∈))
)

◦
 = 1l

(Pow) Total(∂(
∈))

(Un) Total(∂(

))

(T) Total(∈ ◦ (ι ∩ ∂(

)
)

(S) Total
(

F(funcPart(Q)◦
∩P)
)

(Pair)1,2,3,4 λ−1 ◦ρ = 1l, Func(λ), Func(ρ), ∈
 = 1l

(Pair)5 λ ◦ λ−1 ∩ ρ ◦ ρ−1 \ ι = Ø

(F) ι ⊆ 1l ◦
(

∈ ∩ ((ι ∪ 	
∈) † 	∈)
)

† 	

(R) 1l∈ = 1l ◦ (∈\
∈)

(I) Total
(
1l◦(∂(

)∩ ∂(

)−1\∈\
\ ι \
◦∈ �
 ◦ ∈)

)

(Repl) Total
(

∂((λ ◦
 ◦ λ�1∩ ρ ◦ ρ�1) ◦ funcPart(Q))
)

where ∂(P) ≡Def P ◦ 	∈, F(P) ≡Def ∂(P) \ P ◦ ∈
Fig. 2. Toolkit for axiomatizing set theories within map calculus

Any standard theorem-prover, e.g. Otter, can be exploited to experiment
with axioms like the ones on relation algebras (cf. Fig. 1) and the ones on sets
we have examined so far (condensed in Fig. 2).

Otter (Organized Techniques for Theorem-proving and Effective Research)
is a resolution-style theorem prover developed at the Argonne National Labo-
ratory (refer to [23] for a detailed description). It can manipulate statements
written in full first-order logic with equality. The inference rules available in
Otter are: binary resolution, (ordered) hyperresolution, UR-resolution, and
binary paramodulation. Otter’s main features are:

• the input may be in conjunctive normal form, or in full first-order logic;

• forward demodulation rewrites and simplifies any newly inferred clause with
a set of equalities, and back demodulation uses newly inferred equalities to
rewrite all existing clauses;

• forward subsumption deletes an inferred clause if it is subsumed by any
existing clause, and back subsumption deletes all clauses subsumed by an
inferred one;

• a variant of the Knuth-Bendix Method can search for a complete set of
reductions;

• weight functions and lexical ordering decide the ‘goodness’ of clauses and
terms;

10

Formisano, Omodeo and Temperini

• a set-of-support strategy is employed.

Otter offers a large number of parameters and options to help the user in
guiding the inference process. In what follows we briefly illustrate those we
found more useful in our experimentation. This will be done by giving the
reader a description of the basic strategy we adopted in proving theorems with
Otter. As we will see, in most cases this strategy worked well, whereas we
needed some kind of tuning in order to successfully cope with a few theorems.

Since we are dealing with equality, we selected the Knuth-Bendix comple-
tion procedure; whenever non-unit clauses or non-equational predicates en-
tered into play, we enabled hyperresolution and binary resolution. Paramodu-
lation was employed. We usually exploited the default strategies for ordering,
demodulation of clauses, and weighting. On the other hand, we made sys-
tematic use of the parameters devoted to limit the search space. To get into
details, all theorems were proved imposing bounds on the maximum number of
literals in a derived clause, and on the maximum number of distinct variables
occurring in a derived clause. Moreover, we often imposed a threshold on the
weight of derived clauses: the ones ‘heavier’ than this value were discarded.
We also adopted Otter’s default weighting strategy (cf. [23]); in some cases
we found it useful to give extra weight to certain terms or literals in order
to reduce the time spent for finding a proof. Here are the Otter settings we
used in proving almost all theorems of map calculus (for the parameters and
flags not mentioned here, we kept the values adopted by Otter’s autonomous
mode):

% Strategy:

set(knuth bendix). set(back demod).

set(para from). set(hyper res).

set(para into). set(binary res).

set(dynamic demod all).

% Limits on the search space:

assign(max distinct vars,3).

assign(max literals,1).

assign(max weight,18).

Notice that the value assigned to max weight was usually ‘guessed’ by taking
into account the syntactical structural complexity of the theorem to be proved.

Initial experimentation in map reasoning with Otter has been described
in [1,17]; in [15] an equational re-engineering of set theories is presented. Au-
tomated set reasoning based on this equational formulation of ZF set the-
ory was explored in [10,16]. In particular, in [10] the authors obtained a
(semi-)automated proof of a fundamental result: under very weak set-axioms,
namely (E), (N), and (WL), it was possible to derive the existence of a pair

11

Formisano, Omodeo and Temperini

of projections satisfying the pairing axiom (cf. Sec. 5, to be seen). This result,
to be briefly surveyed in Sec. 5, guarantees the equipollence in means of proof
of the equational formulation of ZF with its first-order version (cf. [34]).

The experimentation activity reported in [10] was carried out by rely-
ing completely on the autonomous mode supplied by Otter, and by always
adopting the default settings. The explicit tuning of parameters and flags
was avoided in order to obtain a higher independence of the approach from
the specific theorem-prover. Since the syntactic complexity of the theorems
tackled in [10] was quite low, this approach represented a viable choice.

The activity we are going to describe here is aimed at proving theorems
that involve set-theoretical concepts whose syntactical and semantic complex-
ity keep growing as experimentation proceeds. This fact can easily be grasped
by considering the higher level of abstraction of notions such as totality or
functionality w.r.t. the basic map constructs. To reflect this growth in com-
plexity, we will develop a layered hierarchy of lemmas. Starting with a ‘kernel’
consisting of the constructs and axioms of Fig. 1, we will proceed systemati-
cally by defining new set-theoretical concepts and by proving groups of laws
that characterize the new set-constructs. Each one of these extension steps
will be a (potential) part of the basis for the next extension. Moreover, in
proving a generic theorem, it will be possible to select a subset of the avail-
able constructs, together with their laws. This, actually, will help the search
for the proof in two orthogonal ways: firstly, Otter will deal only with the part
of the global environment that the user judges to be relevant and related to
the theorem to be proved; and secondly, the inference activity will be better
focused at the most suitable level of abstraction. For instance, in proving a
law that infers the totality of the composition of maps from the totality of the
components (cf. Fig. 11), a deep treatment of ‘low level’ concepts such as the
intrinsic properties of symmetric difference should not be needed.

The first step in the development of our layers consists in proving a series
of auxiliary laws for the kernel constructs (namely, �, ∩,◦,−1). From the
theoretical point of view, these laws are not necessary to prove any (provable)
theorem of map calculus. Nevertheless, experimentation revealed that Otter
was unable to prove several simple theorems in a reasonable amount of time,
unless by employing these auxiliary laws. A conspicuous part of the laws
regarding � and ∩ are shown in Fig. 3, while the laws on map composition
(group C1) and map inversion (group G1) are listed in Fig. 4.

The laws are divided into groups because each group usually corresponds to
an input file that could be loaded into Otter; moreover, the laws in the same
group were usually proved by adopting similar settings for parameters and
search controls, and often by using the same groups of premises as hypotheses.

For each law in the tables, we indicated:

a) the groups of formulas given to Otter as input;

b) the length of the proof found by Otter;

12

Formisano, Omodeo and Temperini

law premises len. time gen. kept

I1 P \ Ø = Ø Ax 20 7 1120 185

P \ P = P Ax 20 13 2304 382

P \ (P \Q) = P \Q Ax 27 13 2157 318

I2 P \Q = P ∧ Q\P = Q→Q = P Ax, I1 1 < 1 2 24

P \Q = Q ∧ Q\R = Q→P \R = P Ax, I1 2 3 162 62

S1 P 4Q = Q4 P Ax 7 2 195 52

P 4 (Q4R) = Q4 (P 4R) Ax 8 4 258 54

Ø4 P = P Ax 20 8 1124 190

P 4 P = Ø Ax 16 5 1110 180

P 4 (P 4Q) = Q Ax 5 2 234 52

�\ (P 4 P−1) = Ø Ax,S1 199 5m 30s 6.4 · 106 13842

P \ (Q4R) = (P \Q)4 (P \R) Ax, I1,S1 2 2 120 45

Fig. 3. Laws on ∩ and �

law premises len. time gen. kept

G1 Ø−1 = Ø Ax 22 8 1434 226

1l−1 = 1l Ax 4 < 1 85 40

�
−1 = � Ax 3 < 1 38 22

(P 4 1l)−1 = P−1
4 1l Ax,S1 43 1.33s 24972 2033

(P 4Q)−1 = P−1
4Q−1 Ax,S1,G1 89 1.12s 17147 1554

C1 Ø � P = Ø Ax 26 9 1447 231

P � Ø = Ø Ax 17 8 1378 219

P � � = P Ax 4 2 38 23

1l � 1l = 1l Ax 29 20 3215 526

((P � P−1)\ �) � P = P Ax,G1,C1 66 18.53s 221080 8774

P � ((P � P−1)\ �) = P Ax,G1,C1 71 19.02s 227467 8844

P \ (P � 1l) = P Ax 62 6.36s 68558 6734

P \ (1l � P) = P Ax 61 6.08s 67926 6646

Fig. 4. Laws on −1 and ◦

c) the time spent (if not differently specified, it is expressed in hundredth
of seconds);

d) the number of clauses generated during the inference process:

e) the number of clauses being kept (i.e., the generated clauses that fulfill
all restrictions on weight, number of variables, number of literals, etc.).

In our experimentation we used Otter 3.0.6 running under Linux on a PC
(Pentium III-450, with 128Mbyte of RAM).

Notice that sometimes there are more kept clauses than generated clauses.
This is because the former include all clauses obtained by processing the input
set of formulas. The writing ‘Ax’ reported for most of the laws, does not
necessarily mean that all of the axioms of Fig. 1 have been fed into Otter;
usually this is the case only when no other group of laws is employed in the

13

Formisano, Omodeo and Temperini

law premises len. time gen. kept

N1 P = P Ax 5 2 195 53

Ø = 1l Ax 21 9 1229 318

1l = Ø Ax 17 9 1215 308

P \Q = Q4 (P \Q) Ax 11 4 361 77

P 4Q = P 4Q Ax 9 2 257 57

P 4 P = 1l Ax 2 < 1 40 24

P \ P = Ø Ax 18 15 2210 496

N2 P
−1

= P−1 Ax,N1,S1, I1,G1 1 2 0 40

P 4 P = 1l ′′ 1 2 0 40

P \Q = P → P \Q = Ø ′′ 4 3 164 68

P \Q = Ø → P \Q = P ′′ 8 4 181 71

�\ P−1 � P = �
′′ 20 17 2336 467

P 4Q = P \Q\ P \Q ′′ 18 37 5012 1435

P 4Q = P \Q\ P \Q ′′ 42 10m 36s 1.2 · 107 13860

P 4Q = P \Q\ P \Q Ax,N1,S1, I1,G1,N2.6 7 10 1645 385

P−1 \Q−1 = (Q\ P)
−1 ′′ 5 4 560 182

(P 4Q)−1 = P \Q\ P \Q
−1

′′ 3 2 0 43

Fig. 5. Laws on map complementation

proof; otherwise, just (part of) the axioms regarding the constructs occurring
in the theorem have been given in input. For instance, to prove the law

((P ◦ P−1) ∩ ι) ◦ P = P(1)

of group C1, we exploited the laws of G1 and those of C1 (meaning with this
that Otter was allowed to use the laws listed before (1) in C1); moreover, we
loaded the portion of Ax relative to ◦ and to −1.

Figures 5 and 6 list the laws on map complementation and map union,
respectively. The definitions of these constructs in terms of the primitive ones
are listed in Fig. 1, together with the map formalization of other notions that
will come into play in the sequel.

Other laws on map composition and expressing properties of ι are listed
in Fig. 8. In order to prove these laws, Otter needed to employ the defined
map constructs of complementation and union, together with their laws. It
should be noticed that Otter was not able to prove, in a reasonable amount of
time, several of the laws of Fig. 8 without using the laws in I1,C1,G1,U1,2,3,4.

Next come the laws on map inclusion and left-absoluteness. This extension
of the signature can be considered as preparatory for the study on totality and
functionality of maps. In turn, the laws on totality and functionality will play
a crucial role in proving the set-theoretical theses we will report on in later
sections.

A few remarks on the behavior of Otter confronted with map calculus are
due. Firstly, experimentation revealed that, in general, proving a theorem/law

14

Formisano, Omodeo and Temperini

law premises len. time gen. kept

U1 P [Q = Q[P Ax 8 < 1 107 46

Ø[P = P Ax 19 3 675 122

1l[P = 1l Ax 6 3 210 65

P [P = P Ax 24 13 1746 478

(P \Q)[(P \R) = P \ (Q[R) Ax 27 18 1939 597

(P \R)[(Q\R) = (P [Q)\R Ax 42 38 4669 1046

P \ (P [Q) = P Ax 32 17 1920 567

P \ (Q\ (P [R)) = P \Q Ax 37 17 1951 604

P [(P \Q) = P Ax 33 16 1916 559

P [(P \Q) = P [Q Ax 39 16 1986 648

P [(P \Q) = P [Q Ax 36 17 1981 622

(P \Q)[(P \Q) = Q Ax 35 18 1996 624

P [P = 1l Ax,N1 9 2 0 28

P [Q = P \Q Ax 19 11 1298 448

P \Q = P [Q Ax 18 12 1275 435

U2 P [(P [Q) = P [Q Ax,U1 6 2 101 68

(P [Q)[R = P [(Q[R) Ax, I1,C1,U1 6 2.74s 69861 1047

P [(Q[R) = Q[(P [R) ′′ 4 2.62s 68421 1035

(P [Q)\ (P [R) = P [(Q\R) ′′ 13 1.41s 39504 709

(P [R)\ (Q[R) = (P \Q)[R ′′ 30 1.44 39550 729

P [(Q[(P \R)) = P [Q ′′ 37 1.48 39872 735

(P [Q)[(P \R) = P [(Q[R) ′′ 11 11 2232 300

U3 P [Q = Ø→ P = Ø Ax,U2 2 4 233 68

P 4Q = (P \Q)[(P \Q) ′′ 82 1.84s 26090 2116

(P [Q)\ (P \Q) = (P \Q)[(P \Q) ′′ 53 37 7033 792

P 4Q = (P [Q)\ (P \Q) ′′ 43 1.44s 25517 1802

�\ ((P \ P−1)[(P \ P−1)) = Ø ′′ 35 9.60s 101784 9462

�\ ((P \ P−1)[(P \ P−1)) = Ø Ax,U2,U3 6 5 0 94

U4 (P [Q) �R = (P �R)[(Q �R) Ax 9 2 288 144

(P � (Q[R))−1 = ((P �Q)[(P �R))−1 Ax,G1 42 42 5959 1508

P � (Q[R) = (P �Q)[(P �R) Ax,U4 2 4 377 141

Fig. 6. Laws on map union

law premises len. time gen. kept

Y1 P �Q\R = Ø → P−1
�R\Q = Ø Ax 56 13 2104 328

T1 P = Ø ∨ 1l � P � 1l = 1l Simpl,Ax 13 22 6252 362

P � 1l = 1l ∨ 1l � P = 1l Simpl,Ax 2 2 240 62

Fig. 7. Cycle law and some consequences of simplicity

seems to be more challenging (with our inference machinery) when the map ι
or some of its properties are involved. Consider, for instance, the penultimate
law in Fig. 3, and the laws involving ι in C1 or C2. The same can be said for
those laws that correspond to deep intrinsic characteristics of ι, such as the

15

Formisano, Omodeo and Temperini

law premises len. time gen. kept

C2 P \ (P � (Q\ �)) = P � (Q\ �) Ax, I1,C1,G1,Ui,Y1 21 20.61s 236370 13644

P \ ((Q\ �) � P) = (Q\ �) � P ′′ 21 40.52s 584457 15052

P \ � = P−1
\ �

′′ 76 40.34s 568993 14885

(P \ �)−1 = P−1
\ �

′′ 3 7 946 160

(P \ �)−1 = P \ �
′′ 74 43.47s 616878 15167

P−1 � P \ � = � Ax, I1,C1,2,G1,Ui,Y1 13 4.78s 59433 6707

C3 (P−1
� ((P �Q)4 1l))\Q = Ø Ax 5 9 1217 241

(P−1
� (R\ (1l4 (P �Q))))\Q = Ø Ax 34 15 2472 442

C′
3 (P−1

� P �Q)\Q = Ø Ax, I1,C1,3,G1,Y1 2 2 204 46

(P−1
� (R\ P �Q))\Q = Ø Ax, I1,C1,3,G1,Y1 4 9 2335 192

Fig. 8. More laws on map composition and ι

property:

for each P ⊆ ι, it holds that P−1 = P .(2)

This phenomenon could be intuitively explained by observing that state-
ments such as (2) assert properties that do not concern the map as a single
object, but predicate on a relationship holding between the components of
each pair belonging to the map. In a sense, this kind of statements can be
thought of as having a ‘deeper character’, or, in other words, to model a sort
of deep knowledge on the domain(s) of discourse.

Secondly, simple syntactical changes (preserving the semantics) in the the-
sis to be proved sometimes badly affect Otter’s performances.

Consider, for instance, the law

P � Q = P ∩ Q∩P ∩Q(3)

in Fig. 5. Its proof was relatively easy for Otter, if compared with the one of

P � Q = P ∩ Q∩P ∩Q(4)

which is obtainable from (3) by just applying the rule

P = Q
× P = Q

and by exploiting the double-negation law P = P .

To find a possible justification of this ‘unstable’ behavior, we have to con-
sider that Otter adopts a default lexicographic ordering of terms (whenever
the user does not supply his own criterion), in order to orient the rewriting
rules (recall that Knuth-Bendix completion is employed), and to handle de-
modulation and weighting. In the above-mentioned case, the default ordering
is the same for both theses, but it works better with the former of them.
Changing the criterion for lexicographic ordering (in proving (4)) would have
determined a better performance.

As a last remark on this phenomenon, notice that, as one expects, the
proof of (4) turns out to be extremely easy (cf. Fig. 5) when (3) is included

16

Formisano, Omodeo and Temperini

law premises len. time gen. kept

Inc1 P � P Ax, I1,C1,G1,N1,U1 1 3 46 58

P � Q → (Q � R → P � R) ′′ 8 4 362 107

P � Q → P−1 � Q−1 ′′ 7 7 1582 229

P � Q → (R � S → (P \R � Q\ S)) ′′ 16 74 19377 1638

P � Q → P \Q = P ′′ 1 2 0 50

Ø � P ′′ 1 3 32 50

Inc2 P � Q → (R � S → (P �R � Q � S))
Ax, I1,C1,G1,N1,

U1,4,Y1, Inc1

16 1m 16s 2 · 106 3425

Inc3 P \Q = P → P � Q
Ax, I1,C1,G1,N1,

U1,4,Y1, Inc1,2

1 3 1 54

P � Q → (Q � P → P = Q) ′′ 3 3 205 65

�\ P � P ′′ 4 5 413 90

�\ P � P−1 ′′ 24 2m 30s 3.3 · 106 25386

P � Q → Q � P ′′ 9 8 1641 268

P � Q → (R � S → (P \ S � Q\R)) ′′ 10 11.46s 76721 28971

1l � P � P−1 = Ø ′′ 19 37 8199 1002

P � 1l ′′ 2 3 210 65

1l � 1l � P = 1l � P ′′ 36 10.23s 166778 8485

P � Q → (P � R → (P � Q\R)) ′′ 2 15 3381 730

P � Q → P � P−1 � Q �Q−1 ′′ 2 25 6067 1586

Inc4 1l � P \ P = Ø
Ax, I1,C1,G1,

N1,U1,4,Y1

25 87 18861 1713

P � 1l � P
Ax, I1,2,C1,2,3′ ,G1,

N1,2,Ui,Y1

1 4 201 104

P � P � 1l ′′ 1 6 164 99

P \Q � (1l � P)\Q Ax, Inc1,2,3 3 5 818 235

P � ((1l �Q)\R) = (1l �Q)\ (P �R) Ax, lAbs1.10 77 1.57s 17442 2695

Inc5 (P \Q) �R � P �R\Q �R Ax, Inc1,2,3 6 18 5199 281

P � (Q\R) � P �Q\ P �R Ax, Inc1,2,3 6 18 5199 281

Fig. 9. Laws on map inclusion

among hypotheses.

There are also cases of laws whose proofs become easier if some additional
lemmas are given in input (cf., for instance, U3 or lAbs1). This is a motivation
for our choice of splitting in several groups the laws regarding a particular map
construct.

Otter exhibited different behaviors even in proving the same thesis when
formulated at different levels of our ‘layered architecture’. For example, con-
sider the two laws

1l◦ P ∩P = Ø and P ⊆ 1l◦ P

17

Formisano, Omodeo and Temperini

law premises len. time gen. kept

lAbs1 lAbs(1l)
Ax, I1,C1,G1,

N1,U1,4,Y1

1 1 48 48

lAbs(Ø) ′′ 1 2 11 47

lAbs(1l � P) ′′ 3 6 958 188

lAbs(P) → lAbs(P) ′′ 16 24.38s 257235 10844

lAbs(P) → lAbs(P)
Ax, I1,C1,G1,

N1,U1,4,Y1, lAbs1
21 76 18640 1525

lAbs(P) → lAbs(P �Q) ′′ 6 12 2831 314

lAbs(P) ∧ lAbs(Q) → lAbs(P [Q) Ax,U4, lAbs1 5 99 8229 5234

lAbs(P) ∧ lAbs(Q) → lAbs(P \Q) Ax,N4,U4, lAbs1 4 21 3114 2159

1l�P = P → (R�Q)\P = R� (Q\P)
Ax,C1,G1,

N1,U1,4,Y1, lAbs1
139 18.75s 172397 13368

lAbs(P) → (R�Q)\P = R� (Q\P) ′′ 6 65 7659 4056

lAbs(P) ∧ lAbs(Q) → 1l� (P \Q) = P \Q Ax, lAbs1 2 32 4942 4733

Fig. 10. Laws on left absoluteness of maps

listed in Fig. 9, or the following two:

1l◦P = P → (R ◦ Q)∩P = R ◦ (Q∩ P)

and

lAbs(P)→ (R ◦ Q)∩P = R ◦ (Q∩P),

taken from Fig. 10. Experimentation revealed that, in general, the proof turns
out to be easier when the thesis is expressed by employing the constructs of
the higher layer (e.g. ⊆ instead of and ∩, or lAbs(·) instead of ‘1l◦·’).
Clearly, this is because the higher the layer, the greater is the expressiveness of
the constructs/operators involved and, obviously, the larger is the set of previ-
ously proved laws that can be usefully exploited by Otter. This fact strongly
supports our choice of developing experimentation in a ‘layered’ fashion.

It is sometimes convenient to add to the axioms of Fig. 1 one further axiom:

(Simpl) R 	= Ø → 1l◦R ◦ 1l = 1l.

It can be shown that any theorem that is proved under this ‘simplicity’ as-
sumption is also provable without it. Fig. 7 lists some of the consequences of
simplicity, proved by Otter.

5 Set-reasoning in map calculus (case studies)

An alternative formulation of extensionality.

A useful variant of the extensionality axiom we stated in Sec. 3, is the scheme
Func(F(P)), where P ranges over all map expressions.

18

Formisano, Omodeo and Temperini

law premises len. time gen. kept

Tot1 Total(1l) Ax, I1,C1,G1,Y1 1 < 1 99 34

Total(�)
Ax, I1,C1,

G1,Y1,Tot1
1 < 1 98 33

Total(�) Ax,N4,U1,4, lAbs1 5 1.37s 21280 2311

Total(P \Q) → Total(Q)
Ax, I1,C1,G1,

Y1,N1,U1,Tot1
7 12 3530 133

Total(P �Q) → Total(P) ′′ 8 11 3530 128

Total(P [P � 1l) ′′ 22 1.07s 25650 1791

Total(P 4 P � 1l) ′′ 53 85 9111 1277

Total(P−1) ∨ Total(P)
Ax,C1,G1,

N1,Tot1,Simpl
4 2 275 92

Total(P) ∨ Total(P
−1

) ′′ 4 2 349 107

Total(P) ∨ Total(1l � P−1) ′′ 6 5 531 132

P \ P−1 = Ø→ Total(P)
Ax, I1,C1,G1,

Y1,N1,U1,Tot1
7 6 1148 225

Total(P) ∧ Total(Q) → Total(P �Q) ′′ 7 11 1584 419

Total(P) ∧ Total(Q)→Total((P�1l)\(Q�1l)) ′′ 3 2 8 40

Total(P) ∧ Total(Q) ∧ Total(R)

→Total((P �Q)\ (R� 1l))

′′ 5 13 1705 651

P�Q = 1l→ Total(P) ∨ Total(Q) ′′ 2 < 1 80 50

P�Q−1 = 1l→ Total(P) ∧ Total(Q) ′′ 5 56 3130 1718

P�Q = 1l→ Total(P) ∧ Total(Q−1) ′′ 5 5 334 114

P\Q = P ∧ Total(P) → Total(Q) ′′ 2 4 89 76

P�Q−1 = 1l ∧ Total(R)→P�(Q−1�R−1) = 1l ′′ 5 3 189 83

P�Q−1 = 1l→Total(P\Q) ′′ 2 1 11 8

P�Q−1 = 1l ∧ Total(R)→Total(P\(R�Q)) ′′ 7 31 10191 568

Total(P) ∧ Q� (R�S) = 1l

→ Total(P � (Q� (R�S)))

′′ 2 1 8 23

P�Q−1 = 1l ∧ Total(R) ∧ Total(S)

→Total((S�P)\ (R�Q))

′′ 45 9m 12s 6.6 · 106 30429

lAbs(P) → (P = Ø) ∨ Total(P) Ax,C1, lAbs1,Simpl 7 1.91 44040 1809

Func1 Func(Ø) Ax, I1,C1,G1 2 2 92 39

Func(�) Ax, I1,C1,G1 2 2 110 44

Func(P)→Func(P \Q) Ax, I1, Inc1,2,3 9 74 20065 913

Func(P) ∧ Func(Q) ∧ P �Q ∧ Q� P�1l

→P = Q

Ax, I1,2,C1,2,

S1,N1,2,Y1

288 51m 36s 3.4 · 107 24052

Fig. 11. Totality and functionality of maps

Our first task in automated set-reasoning consists in proving the equiva-
lence of the two formulations of (E), i.e., that:

F(
)= ι �
× Func(F(P)) .

Otter was unable to prove this theorem in a single shot. Hence we had to

19

Formisano, Omodeo and Temperini

split the theorem into two. First, we got a proof of

Func(F(P))
× F(
)= ι,(5)

via the sequence of intermediate results listed in Fig. 12.

law length timing note

ι ⊆ F(
) 3 4 by using I1,C1,3,G1,N1,U1,2,3,4,Y1

Func(F(
)) −− −− immediately from the hypotheses

F(
) ⊆ ι◦1l 3 2 by Ax, Inc1,Func1

F(
) = ι 0 < 1 immediately from Func1

Fig. 12. Automated proof of (5)

The converse, i.e.

F(
)= ι
× Func(F(P)),(6)

was proved as shown in Fig. 13.

law length timing note

F(P)−1◦F(P) ⊆ 	
◦P−1◦P◦∈ 10 12.29s by Ax,G1,N1

F(P)−1◦F(P) ⊆ 	
◦P−1◦P◦	∈ 9 12.38s by Ax,G1,N1

F(P)−1◦F(P) ⊆ F(
) 3 2 by Inci

F(P)−1◦F(P) ⊆ ι 1 < 1 by Inci

Fig. 13. Automated proof of (6)

Designing pairs of conjugated projections.

In [10] it was shown that the axioms of a weak theory of sets —namely, the
extensionality , null set , single-element addition, and single-element removal
axioms recapitulated in Fig. 14— 5 suffice to enable Otter to prove that two
specific maps λ,ρ satisfy (Pair)1,2,3. In that context, the approach to experi-
mentation was aimed at ‘miniaturizing’ the obtained proofs, i.e., at developing
the proofs by starting with the raw axiomatization of Fig. 1, without the ex-
plicit introduction of defined constructs, and by strictly interacting with and
guiding Otter, to make it perform only the essential inference steps.

The main result of [10] consisted in proving within map algebra (under
minimal assumptions on membership), that λ and ρ designate conjugated

5 A first-order statement of the binomial (WL) is
(WL) ∃ d

(
Y ∈d ∧ ∀u

(
u = X↔∃ v ∃w (u∈v∈d ∧ u	∈w∈d)

))
(where it goes without saying that X, Y are universally quantified). It turns out that in
first-order logic this sentence yields —with the determinant contribution of (E), too— (N)
as a derivable consequence.

20

Formisano, Omodeo and Temperini

(E) ∀ v (v∈X↔v∈Y)→X =Y ,

(N) ∃ z ∀ v v 	∈z,

(W) ∃w ∀ v (v∈w↔ v∈X∨v =Y),

(L) ∃ �∀ v (v∈�↔ v∈X ∧ v 	=Y)

(E)
	∈ ∩ 	
∈ ⊆ ι

(N) 1l∈ ◦ 1l = 1l

(WL) (∈∈ ∩ valve(∈∈, 	∈∈)) ◦
 = 1l

with valve(P, Q) ≡Def P\ι◦(P\Q)

Fig. 14. Specification of a weak set theory in first-order logic and in map algebra

projections. As already mentioned, the important consequence is that the
equational specification of our assumptions on membership has the same de-
ductive power as its counterpart formulated in quantified first-order logic; this
follows from results in [34].

The experimentation reported in [10] proceeded through a number of inter-
mediate lemmas ultimately yielding the desired result. Most crucial, among
them, is the following:

Lemma 1 (Functionality)

Q ◦ Q−1 ⊆ ι entails valve(P,Q) ◦ valve−1(P, Q) ⊆ ι.

✷

This lemma mainly relies on various elementary Boolean identities, and
on some obvious consequences of the Peircean axioms (i.e., the logical axioms
regarding ◦,−1, and ι). The only non-obvious laws on maps needed are the
so-called cycle law (cf. Fig. 7) and Dedekind law (cf. [32]):

P ◦ Q ∩ R ⊆ (P ∩ R ◦ Q−1) ◦ (Q ∩ P−1◦ R).

A ‘miniaturized’ derivation of the Dedekind law was obtained from the
bare axioms in Fig. 1. It consists in 25 verifications of the average CPU-time
cost of 6 to 8 seconds (depending on the machine). 6 It is worth stressing that
these 25 steps included the proofs of basic facts such as some of the laws on
symmetric difference, intersection, and composition already seen in Figures 3
and 4.

While the functionality lemma easily allowed Otter to prove (Pair)2,3,
in order to prove (Pair)1 it was necessary to proceed as follows. First, the
temporary assumption was added to (WL) that a singleton set {a} can be
formed out of any given a. This assumption can be stated formally as follows:

(Sng) sng ◦ 1l = 1l, where sng ≡Def ∈\ι∈.

Then the following lemma was obtained:

Lemma 2 Assume (Sng) and (WL). It follows that ν ◦ ρ = 1l. ✷

6 These verifications were run on a G3 Macintosh and under Linux.

21

Formisano, Omodeo and Temperini

It turned out that in order to prove this result Otter had to make extensive
use of map-inclusion laws drawn from the ones listed in Fig. 9.

The next step consisted in proving that it is actually possible to do without
a postulate of singleton formation. Verifying this claim amounted to getting
an automated proof of the derivability of (Sng) from (WL) and (N). In this
case, an analysis of Otter’s proof showed that the most useful intermediate
results (implicitly proved in the main proof) were the laws on totality.

Totality of some elementary relations on sets.

By using the laws of Sec. 4, Otter was able to prove the totality of a number
of relations on sets. We give below an excerpt of the results we obtained. The
laws of Fig. 11 intervene in these proofs crucially.

• Total(∈
). Thanks to (Pair), this thesis reduces to proving that Total(1l)
holds. It was immediately derived from the laws on totality.

• Total(∈1l) follows from the previous result and from the laws in Fig. 11. It
was proved in 0.02 seconds; the proof-length is 3.

• Total(∈) follows from the previous results and from the laws in Fig. 11. It
was proved in 0.02 seconds; the proof-length is 1.

A general technique for proving totality of set constructors.

The next task consists in obtaining the proof of a general law for deriving
the totality of expressions of the form Total(F(R)). This law will give us the
capability of defining a number of set-constructs (cf. [11, Sec. 5]). Let us start
with two useful lemmas.

Lemma 3 For any P,Q such that

P−1 ◦ Q ⊆
 and Func(ρ)(7)

it holds that:

(P ◦ λ−1 ∩ ρ−1) ◦ F(λ ◦
 ∩ ρ ◦ Q) ⊆ F(Q).(8)

✷

In the following we describe Otter’s proof. The thesis (8) can be rewritten as

(P ◦ λ−1 ∩ ρ−1) ◦ F(λ ◦
 ∩ ρ ◦ Q) ⊆ Q ◦ 	∈ ∩ Q ◦ ∈(9)

By assuming the hypothesis (7).1, Otter was able to prove the following
intermediate result: (λ ◦ P−1 ∩ ρ ◦ Q) ⊆ λ ◦
 ∩ ρ ◦ Q. Otter proved
this result in 0.31 seconds; it generated 4162 clauses (the number of kept
clauses was 915). The proof-length was 4. The proof was easily obtained by
extensive use of the map-inclusion laws (cf. Fig. 9). The main settings used to
drive Otter imposed any generated clause consisting of more than two literals,
or having more than two distinct variables, to be discarded. From (9), by

22

Formisano, Omodeo and Temperini

exploiting the cycle law and the laws on inclusion, Otter easily proved that:

(P ◦ λ−1 ∩ ρ−1) ◦ F(λ ◦
 ∩ ρ ◦ Q) ⊆ Q ◦ 	∈(10)

The proof was found in 1.30 seconds (its length was 9), by generating 13729
unit clauses (max literals=1 and max distinct vars=3) and keeping 2652
clauses.

On the other hand, the following map inclusion was proved by assuming
the functionality of ρ (cf. hypothesis (7).2), in 0.81 seconds. The proof-length
was 13, the numbers of generated and the kept clauses were 9848 and 2097,
respectively:

(P ◦ λ−1 ∩ ρ−1) ◦ F(λ ◦
 ∩ ρ ◦ Q) ⊆ Q ◦ ∈(11)

Putting together the two results (10) and (11), in order to obtain the
thesis (8), took 0.08 seconds (two inference steps, by hyper-resolution).

Lemma 4 Assume (Pair)1,2 and (S). Then for any P, Q

Total(P)
× Total((P◦λ−1∩ρ−1)◦ F(λ◦
∩ρ◦Q)).

✷

Otter proved this lemma (by proving two intermediate results) in a total time
of 0.24 seconds. On this ground, the following proposition was proved.

Proposition 1 Assume (Pair)1,2,3 and (S). Then for any P,Q,

Total(P), P−1◦Q ⊆

× Total(F(Q)).(12)

✷

This proposition was proved in two stages. We first drew from the hypotheses
a series of intermediate lemmas yielding

(P◦λ−1∩ρ−1)◦F(λ◦
∩ρ◦Q) ⊆ F(Q).

The thesis then readily followed, with the help of the laws on totality. The
overall time of this proof was 3.57 seconds.

By using this general tactic, Otter proved the totality of several map ex-
pressions, certifying in this way that these expressions characterize legal op-
erations on sets:

• Total(F(ι)). The expression F(ι) defines the singleton operation a �→ {a}.
Its totality was proved in 0.05 seconds (length:7, generated:768, kept:108),
by using the result previously obtained: Total(∈) (Otter instantiated P ≡ ∈
and Q ≡ ι in proposition (12)).

• Total(F(Ø)). The expression F(Ø) characterizes the nullset construction:
a �→ { }. As in the previous case, its totality was proved in 0.04 seconds
(length:3, generated:335, kept:52). Notice that this thesis was proved also

23

Formisano, Omodeo and Temperini

without resorting to the above proposition, but in this case Otter’s task was
more difficult: the proof was produced in much more time: 1.15 seconds.
Otter used the laws in C1, I1,2,G1,N1,2 and in particular those in Tot1; it
generated 21521 clauses, keeping 343 of them.

• Consider the two axioms Total(∂(
∈)) and Total(∂(

)) in Fig. 2.
Otter was able to prove their strengthened versions Total(F(
∈)) and
Total(F(

)) by using, among others, the law (12) and the cycle law.
The first proof was generated in 0.11 seconds (length:4, generated:2616,
kept:265). The strong version of the second axiom was proved in 17.88
seconds (length:6, generated:386130, kept:5070).

• A more general result was also proved. Namely, under the axioms (Pair)
and (S), Otter proved this property of totality:

Total(∂(P))
× Total(F(P)).

The proof was found in 0.12 seconds (length:4, generated:2616, kept:265)
by using the above proposition, the cycle law, and the laws of Fig. 11.

A lemma on transitive sets

The basic fact, stated in Example 3, that there is a void set in any non-void
transitive set, ensues from the law

R ⊆ P → 1l ◦ R \ Q ◦ P ⊆ Q ◦ R ,(13)

which Otter was able to derive in 2 steps and 21.63 seconds from the two laws

R ⊆ P → Q ◦ P ⊆ Q ◦ R ,

R ⊆ P → 1l ◦ R \ Q ◦ P ⊆ 1l ◦ R \ Q ◦ R .

In turn, proving these required 19 steps and 15.44 seconds, and 5 steps and
4.94 seconds, respectively.

In consequence of (13), and since by virtue of the general law T \ S ⊆ T
and of the monotonicity of ◦ the inclusion

∈ ◦ (∈ \
∈) ⊆ ∈∈

holds (Otter proved it in 2 steps and 0.98 seconds), we get

1l∈ ◦ (∈ \ ∈
) \ 	
∈∈ ⊆
∈ ◦ (∈ \
∈)

(1 step, 0.05 seconds); therefore

(1l∈ ◦ (∈ \
∈) \ 	
∈∈) ∩ ι ⊆
∈ ◦ (∈ \
∈) ∩ ι

⊆
∈ ◦
∈ ∩ ι = Ø .
(14)

24

Formisano, Omodeo and Temperini

These intermediate lemmas have been obtained in different runs, in an overall
time of 5.08 seconds.

On the basis of the definition of trans, of the law R∩(S\T) = (R\T)∩S,
and of (14), we then have

1l∈ ◦ (∈ \
∈) ∩ trans = 1l∈ ◦ (∈ \
∈) ∩ (ι \ 	
∈∈)

= (1l∈ ◦ (∈ \
∈) \ 	
∈∈) ∩ ι = Ø .
(15)

The proof that the first member of this chain equals the null map Ø was
obtained directly, in 1.43 seconds; it consists of 2 steps.

At this point we can easily obtain the desired thesis by means of the
following chain of equalities and inclusions (making use of (R) to get the first
equality, and exploiting (15) subsequently):

1l∈ ∩ trans = 1l ◦ (∈ \
∈) ∩ trans

= (1l∈ ∪ 1l∈) ◦ (∈ \
∈) ∩ trans

= (1l∈ ◦ (∈ \
∈) ∪ 1l∈ ◦ (∈ \
∈)) ∩ trans

= 1l∈ ◦ (∈ \
∈) ∩ trans ∪ 1l∈ ◦ (∈ \
∈) ∩ trans

= Ø ∪ 1l∈ ◦ (∈ \
∈) ∩ trans

= 1l∈ ◦ (∈ \
∈) ∩ trans

⊆ 1l∈ ◦ (∈ \
∈)

⊆ 1l∈ ◦ ∈ ,

These eight equalities and inclusions were proved by Otter with the following
respective proof-lengths and times: 8 steps, 0.07 seconds; 4 steps, 0.09 seconds;
4 steps, 0.01 seconds; 24 steps, 3.57 seconds; 4 steps, 0.16 seconds; 3 steps,
0.04 seconds; 3 steps, 4.97 seconds; 3 steps, 9.03 seconds.

6 Conclusions

The language L× may look distasteful to reading, but it ought to be clear
that techniques for moving back and forth between first-order logic and map
logic exist and are partly implemented (cf. [34,19,6,17,8]); moreover they can
be ameliorated, and can easily be extended to meet the specific needs of set-
theories. Thanks to these, the automatic crunching of set-axioms of the kind
discussed in this paper can be hidden inside the back-end of an automated
reasoner.

Anyhow, we think that it is worthwhile to riddle through experiments our
expectation that a few basic machine reasoning layers designed on top of L×

may significantly raise the degree of automatizability of set-theoretic proofs.
This expectation relies on the merely equational character of L× and on the

25

Formisano, Omodeo and Temperini

good properties of the map constructs; moreover, when the calculus of L× gets
emulated by means of first-order predicate calculus, we see an advantage in
the finiteness of the axiomatization of the set-theoretic framework.

Acknowledgements

Annalisa Chiacchiaretta, and four students of an Artificial Intelligence class,
contributed to the first phase of the experimentation with Otter reported
above.

References

[1] Aureli, F., A. Formisano, E. G. Omodeo and M. Temperini, Map calculus: Initial
application scenarios and experiments based on Otter, Technical Report 466,
IASI-CNR (1998).

[2] Bailin, S. C. and D. Barker-Plummer, Z-match: An Inference Rule for
Incrementally Elaborating Set Instantiations, Journal of Automated Reasoning
11 (1993), pp. 391–428, (Errata in 12(3):411–412 1994).

[3] Belinfante, J. G. F., On a modification of Gödel’s algorithm for class formation,
AAR Newsletter 34 (1996), pp. 10–15.

[4] Bell, J. L. and A. B. Slomson, “Models and Ultraproducts: An Introduction
(third revised printing),” North-Holland/American Elsevier, Amsterdam/New
York, 1974.

[5] Boyer, R., E. Lusk, W. McCune, R. Overbeek, M. Stickel and L. Wos, Set
theory in first-order logic: Clauses for Gödel’s axioms, Journal of Automated
Reasoning 2 (1986), pp. 287–327.

[6] Cantone, D., A. Cavarra and E. G. Omodeo, On existentially quantified
conjunctions of atomic formulae of L+, in: M. P. Bonacina and U. Furbach,
editors, Proceedings of the FTP97 International workshop on first-order theorem
proving, 1997, pp. 45–52, RISC-Linz Report Series No. 97-50.

[7] Cantone, D., A. Ferro and E. G. Omodeo, “Computable Set Theory. Vol. 1,”
Oxford University Press, 1989, Int. Series of Monographs on Computer Science.

[8] Cantone, D., A. Formisano, E. G. Omodeo and C. G. Zarba, Compiling dyadic
first-order specifications into map algebra, in: Proceedings, of the 16th Twente
Workshop on Language Technology—2nd AMAST Workshop Algebraic Methods
in Language Processing (AMILP 2000), TWLT 16, University of Twente, 2000,
pp. 35–54.

[9] Cantone, D., E. G. Omodeo and A. Policriti, “Set Theory for Computing —
From decision procedures to declarative programming with sets,” Springer-
Verlag, 2001, Texts and Monographs in Computer Science.

26

Formisano, Omodeo and Temperini

[10] Chiacchiaretta, A., A. Formisano and E. G. Omodeo, Benchmark #1 for
equational set theory, in: Giornata “Analisi Sperimentale di Algoritmi per
l’Intelligenza Artificiale”, Roma, 1999.
URL http://www.dis.uniroma1.it/~rcra/roma99

[11] Chiacchiaretta, A., A. Formisano and E. G. Omodeo, Map reasoning through
existential multigraphs, Technical Report 05/00, Dipartimento di Matematica
Pura ed Applicata, Università di L’Aquila (2000).

[12] Chin, L. H. and A. Tarski, Distributive and modular laws in relation algebras,
University of California Publications in Mathematics 1 (1951), pp. 341–384.

[13] Cohen, P. J., “Set Theory and the Continuum Hypothesis,” Benjamin, New
York, 1966.

[14] Düntsch, I., Rough relation algebras, Fundamenta Informaticae 21 (1994).

[15] Formisano, A. and E. G. Omodeo, An equational re-engineering of set theories,
in: R. Caferra and G. Salzer, editors, Automated Deduction in Classical and
Non-Classical Logics, LNCS 1761 (LNAI) (2000), pp. 175–190.

[16] Formisano, A. and E. G. Omodeo, Equational set-reasoning by automated
map calculus, Technical Report 16/00, Dipartimento di Matematica Pura ed
Applicata, Università di L’Aquila (2000).

[17] Formisano, A., E. G. Omodeo and M. Temperini, Goals and benchmarks for
automated map reasoning, Journal of Symbolic Computation 29 (2000).

[18] Frias, M. F., A. M. Haeberer and P. A. S. Veloso, A finite axiomatization for
fork algebras, Journal of the IGPL 5 (1997), pp. 311–319.

[19] Haeberer., A. M., G. A. Baum and G. Schmidt, On the smooth calculation of
relational recursive expressions out of first-order non-constructive specifications
involving quantifiers, in: D. Bjørner, M. Broy and I. Pottosin, editors, Formal
Methods in Programming and Their Applications, LNCS 735 (1993), pp. 281–
298.

[20] Jónsson, B. and A. Tarski, Representation problems for relation algebras, Bull.
Amer. Math. Soc. 54 (1948), pp. 80,1192.

[21] Kwatinetz, M. K., “Problems of expressibility in finite languages,” Ph.D. thesis,
University of California, Berkeley (1981).

[22] Lyndon, R. C., The representation of relational algebras, Ann. of Math., Ser 2
51 (1950), pp. 707–729.

[23] McCune, W. W., “OTTER 3.0 Reference Manual and Guide,” Argonne
National Laboratory/IL, USA (1994).

[24] Noël, P. A. J., Experimenting with Isabelle in ZF set theory, Journal of
Automated Reasoning 10 (1993), pp. 15–58.

27

Formisano, Omodeo and Temperini

[25] Omodeo, E. G. and A. Policriti, Solvable set/hyperset contexts: I. Some decision
procedures for the pure, finite case, Comm. Pure App. Math. 48 (1995),
pp. 1123–1155, Special Issue in honor of J.T. Schwartz.

[26] Orlowska, E., Relational semantics for nonclassical logics: Formulas are
relations, in: J. Wolenski, editor, Philosophical Logic in Polland, 1994 pp. 167–
186.

[27] Parlamento, F. and A. Policriti, Expressing Infinity without Foundation, Journal
of Symbolic Logic 56 (1991), pp. 1230–1235.

[28] Paulson, L. C., Set Theory for Verification: I. From Foundations to Functions,
Journal of Automated Reasoning 11 (1993), pp. 353–389.

[29] Paulson, L. C., Set Theory for Verification. II: Induction and Recursion, Journal
of Automated Reasoning 15 (1995), pp. 167–215.

[30] Quaife, A., “Automates development of fundamental mathematical theories,”
Kluwer Academic Publishers, 1992.

[31] Quine, W. V., “Set theory and its logic.” The Belknap Press of Harvard
University Press, Cambridge, Massachussetts, 1971, revised edition, 3rd

printing.

[32] Schmidt, G. and T. Ströhlein, Relation algebras: Concept of points and
representability, Discrete Mathematics 54 (1985), pp. 83–92.

[33] Tarski, A., Sur les ensembles fini, Fundamenta Mathematicae VI (1924),
pp. 45–95.

[34] Tarski, A. and S. Givant, “A formalization of Set Theory without variables,”
Colloquium Publications 41, American Mathematical Society, 1987.

[35] Wos, L., “Automated Reasoning. 33 basic research problems,” Prentice Hall,
1988.

[36] Wos, L., The problem of finding an inference rule for set theory, Journal of
Automated Reasoning 5 (1989), pp. 93–95.

[37] Zermelo, E., Untersuchungen über die Grundlagen der Mengenlehre I, in: From
Frege to Gödel - A source book in Mathematical Logic, 1879-1931, Harvard
University Press, 1977 pp. 199–215, 3rd printing.

28

