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A B S T R A C T

For many years elastin was considered as the matrix component structurally required to provide tissue elasticity. However, the expanded knowledge on the reg-
ulation of connective tissue homeostasis has revealed that elastic fibers also represent a source of elastokines and are the target of a number of signaling pathways
mainly involving the TGF-β/BMP axis. A better understanding of these complex regulatory networks may pave the way for targeted therapeutic strategies in a
number of genetic as well as acquired diseases and for the development of new functionalized biomaterials.

Elastin is present in all vertebrates and consists of a three-dimen-
sional network of fibers or lamellae spread through the extracellular
matrix of many connective tissues, being particularly abundant in
elastic vessels, ligaments, lungs and skin [1]. It is one of the longest-
lived protein in humans and metabolically stable over a lifetime [2].

Elastic fibers are principally composed of a crosslinked elastin core
deposited on a scaffold of fibrillin-rich microfibrils which requires, for
its initial formation, the assembly of fibronectin molecules [3]. To be
noted is that the soluble precursor tropoelastin is deposited onto mi-
crofibrils with the help of many other matrix components such as
proteoglycans [4,5], fibulins 4 and 5 [6], as well as latent TGF-β
binding protein-4 [7]. Thereafter, lysyl oxidase and lysyl oxidase-like 1
enzymes promote the crosslinking of newly formed elastic fibers in
order to guarantee the long-lasting mechanical stability of the fibers
[8]. This remarkable property, together with its elasticity, makes elastin
a valuable matrix constituent to be used as a tunable biomaterial for a
variety of tissue engineering applications [9–11].

In vivo, elastin synthesis is developmentally and functionally regu-
lated: tropoelastin appears during the embryonic phase (i.e. vessels
formation) up to the last period of gestation (i.e. skin and lung growth)
and increases around and immediately after birth [12].

During life, degradative processes seem to outweigh synthesis and
the altered ratio with other components, as collagen, is responsible for
changes in tissue biomechanical properties as clearly evident in the age-
related modifications of the vascular system where reduced vessel ex-
tension and arterial pulse wave reflections may contribute to increase
pulse pressure, thus redisposing to heart failure [13].

Moreover, aged elastin is degraded and other molecules progres-
sively substitute for elastin within the fiber, thus dramatically affecting
tissue elasticity and contributing to the maintenance of a chronic in-
flammatory state, i.e. inflamm-aging [14]. Inflammatory cells and

alveolar macrophages, for instance, are mainly responsible for de-
gradative processes in lungs, whereas lipid deposition, inflammatory
reactions and elastase release are more likely involved in blood vessels.

Interestingly, it has been demonstrated that elastic fiber degradation
can release elastin fragments named elastokines due to their cytokine-
like signaling properties [15], as they exhibit potent chemotactic ac-
tivities for leukocytes, stimulate fibroblast and smooth muscle cell
proliferation and display proangiogenic activity, thus sustaining the use
of these peptides, as substitutes of the whole molecule, for bioengi-
neering applications [16], including the generation of bio-inspired
materials based on the repetitive sequence XGGZG (X,Z=V,L or A)
forming amyloid-like nanostructures [17,18]. A typical elastokine is the
VGVAPG peptide, found in the exon 24-encoding sequence [19], but
also longer peptides were shown to be bioactive [20] and the analysis of
fragments generated by atherosclerosis-related elastases brought into
light new bioactive GXXPG-related peptides as GVYPG, GFGPG and
GVLPG [21]. For biological activity of elastin peptides, binding to
specific receptors is needed. These include galectin-3 [22] and αvβ3 and
αvβ5 integrins [23–25], but mainly relies on the elastin receptor com-
plex [26,27]. This complex comprises three subunits: the elastin
binding protein, the protective protein/cathepsin A (PPCA) and the
membrane bound neuramidase-1. The elastin binding protein binds
elastin-derived peptides, but also has a binding site for a galactosugar.
Upon binding of a galactosugar, the elastin binding protein releases
from the complex preventing further biological effects of elastin-de-
rived peptides. PPCA exhibits enzymatic activity that is needed for
correct elastic fiber formation [28]. Neuraminidase-1 exhibits sialidase
activity needed for signal transduction. It may desialylate various re-
ceptors, as was demonstrated for e.g. platelet-derived growth factor
receptor, insulin-like growth factor receptor 1 [29] and recently CD36
[30]. Due to the general desialylation activity of Neuraminidase-1,
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effects on other membrane-bound receptors are anticipated. In-
tracellularly, elastin-derived peptides are able to activate multiple sig-
naling pathways, including protein kinase C (PKC), phosphoinositide 3-
kinase (PI3K) and phospholipase Cg (PLCγ) [27] and to drive tumor
development by regulating cell proliferation, invasion, survival, an-
giogenesis, and matrix metalloproteinase expression or to regulate
diabetes outcome and thrombosis [26].

Recent investigations have demonstrated that loss of fibrillin mi-
crofibrils is the hallmark of early photodamage since in vitro UVB ir-
radiation induces reactive oxygen species-driven structural changes to
both fibrillin-microfibrils and fibronectin, thus enhancing protein da-
mage [31]. Interestingly, fibrillin-microfibrils are relatively resistant to
proteolysis by matrix metalloproteases (MMP) as MMPs −1, −3, −7
and− 9, but, as it was underlined in the present issue, MMPs may exert
also a positive role selectively removing damaged microfibril assem-
blies [31]. At the same time, fibrillin fragments containing an RGD site
can upregulate MMP-1 and MMP-3 expression [32] and mutations in
fibrillin peptides associated with Marfan syndrome are responsible for
increased susceptibility of elastic tissues to MMP degradation [33]. This
finding supports the concept that photodynamic production of ROS
represents a key mechanism for non-enzymatic protein damage and
MMP proteolysis especially effective on already damaged microfibrils
[31].

As mentioned, elastic fibers undergo irreversible alterations during
aging and in several pathological conditions such as in rare genetic
disorders [34], where elastin is poorly synthesized (i.e. Cutis laxa),
scarcely polymerized (i.e. Menkes) or progressively mineralized (i.e.
Pseudoxanthoma elasticum). The expanded knowledge on elastin
synthesis and deposition [35] and a better understanding of the com-
plex composition of elastic fibers [36] is disclosing a number of pa-
thogenic signaling pathways, thus opening new therapeutic perspec-
tives. For instance, absence or reduced expression of fibulin-4
negatively affects the recruitment of lysyl oxidase, thus inhibiting tro-
poelastin to properly crosslink [6]. Consistently, mutations in fibulin-4
have been associated with a form of cutis laxa, an autosomal recessive
disorder characterized by loose skin, aneurysms and vessel structural
abnormalities [37]. In the light of data obtained in vascular smooth
muscle cells with reduced or absent fibulin-4 expression and increased
or unaltered TGF-β signaling [38], it has been suggested in the present
issue that, in addition to TGF-β signaling, cytoskeleton structure and
dynamic organization [39] can play a pathogenic role in the develop-
ment of aneurysms. In particular, increased TGF-β signaling can exert a
protective role in early stages of the disease, whereas it may have a
damaging effect in later stages of the disorder and, as proposed by the
authors, cytoskeleton dynamics could represent a causative factor
contributing to aortic aneurysmal disease.

In vitro, it has been shown that elastin gene expression can be sti-
mulated in smooth muscle cells if these cells are periodically stretched,
suggesting that mechanical forces from the extracellular matrix, pos-
sibly transmitted through the integrin system to the cytoskeleton and to
the nucleus, may exert additional regulatory function [40]. Among
exogenous factors known to modulate elastin deposition, vitamin C has
been demonstrated to negatively affect elastin gene expression and
tropoelastin synthesis by altering mRNA stability and post-translational
mechanisms [41], whereas cytokines such as TGF-β [42] and drugs as
minoxidil, an ATP-dependent K+ channel opener [43], can stimulate
elastin deposition by a complex interplay of signaling pathways. Min-
oxidil has been shown to stimulate elastin mRNA expression in vitro in
skin fibroblasts [44] and smooth muscle cells conceivably through a
Ca2+- ERK (extracellular signal-regulated kinases)–dependent pathway
[45]. In vivo, minoxidil increased the elastin content in arteries of young
adult hypertensive rats [46] and induced the differential expression of
127 extracellular matrix related genes in Eln+/− mice [47]. In the
present issue, a study demonstrates that minoxidil not only promotes
the formation of newly synthesized elastic fibers, but also preserves
elastic lamellae integrity [48], thus significantly improving arterial

biomechanical properties. The authors state that minoxidil may coun-
teract the consequences of arterial aging by acting as an “anti-arterial-
aging” agent due to reducing elastase activities, AGE-dependent cross-
linking and possibly inflamm-aging. Interestingly, the effects were more
prominent in female mice, suggesting that elastin regulation can also be
influenced by gender, possibly through hormone-driven mechanisms
[49].

Although the elastogenic capabilities of TGF-β have been demon-
strated since the late eighties [50], the signaling pathways modulated
by the cytokine have been explored into depth more recently, including
its involvement in the pathogenesis of a number of diseases mainly
affecting bone, lungs and the cardiovascular system [51].

TGF-β is synthesized in form of a precursor protein that is proteo-
lytically processed and secreted by cells in an inactive form. Latent-
TGF-β (LTBP) is bound to fibrillin-1 and this complex constitutes a
reservoir of the cytokine that can be rapidly released in response to
specific stimuli. TGF-β activates signaling pathways through type I and
type II Ser/Thr kinase receptors and intracellular SMAD effectors [52].
Within this context, bone morphogenetic protein (BMP) can play a
major regulatory role, since altered TGF-β/BMP signaling pathways
have been linked to a variety of clinical conditions, i.e. skeletal and
extra-skeletal abnormalities, autoimmune and cardiovascular diseases
and cancer [53].

Investigations focusing on the effects of BMP-induced signaling in
bone dynamics revealed that these pathways are spatiotemporally
modulated by the transcription factor RUNX2 as well as by MAPK, Wnt,
Hedgehog (Hh), Notch and Akt/mTOR [52]. Moreover, TGF-β and BMP
signaling can contribute to diseases characterized by progressive elastin
calcification [54], as in Pseudoxanthoma elasticum (PXE) and PXE-like
disorders, rare inherited diseases due to mutations in either ABCC6
[55], GGCX [56] and/or ENPP1 [57] genes. Interestingly, TGF-β can
modulate ABCC6 promoter activity [58] and, as suggested in the pre-
sent issue, ABCC6 deficiency may be related to the increased TGF-β
expression observed in PXE cells and possibly to the upregulation of the
osteogenic BMP2 - SMAD1/5/8 - RUNX2 and ALP pathways [59]. To-
gether with the increased activity in the MSX2-Wnt signaling, these
changes promote the osteogenic transdifferentiation of PXE fibroblasts,
favoring increased ANKH expression and PPi release through activation
of ERK1/2 and PKCα pathways [59].

In line with these findings is the observation, also reported in the
present issue, that, in beta thalassemic patients affected by ectopic
calcification, a modified microfibrillar scaffold can contribute to the
activation of pSMAD2/3 and pSMAD1/5/8 signaling pathways, further
supporting the role of TGF-β/BMP pathways in elastic fiber calcification
[60]. Furthermore, data from whole exome sequencing in these patients
revealed changes in mitochondrial metabolic pathways, in agreement
with previous data indicating that a persistent chronic oxidative stress
[61] can further influence extracellular matrix homeostasis [62]. In
particular, the presence of rare sequence variants in the solute carrier
family 25 member 5 (SLC25A5) gene is suggestive of the role of this
gene as a key factor linking mitochondrial metabolism, ADP/ATP ratio
and oxidative stress, thus activating pro-osteogenic factors that lead to
elastic fiber calcification [60].

In conclusion, the progressively growing literature in the area of
matrix biology has largely expanded the knowledge on elastic tissues,
nevertheless an urgent demand remains for studies further addressing
the importance of elastin and of elastic fiber components in terms of
developmental requirements, structural and mechanical properties,
signaling pathways and the role of the elastin receptor complex in
physiologic as well as in pathologic context. Researchers are sincerely
encouraged to share their expertise and most recent results in con-
ferences specifically dedicated to “Elastin and elastic tissues” every
year, alternately, at the Gordon Research Conferences and at the
European Elastin Meeting.
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