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This paper is concerned with a delayed SVEIR worm propagation model with saturated incidence. The main objective is to
investigate the effect of the time delay on the model. Sufficient conditions for local stability of the positive equilibrium and
existence of a Hopf bifurcation are obtained by choosing the time delay as the bifurcation parameter. Particularly, explicit formulas
determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived by using the normal
form theory and the center manifold theorem. Numerical simulations for a set of parameter values are carried out to illustrate the
analytical results.

1. Introduction

Worms, as one kind of malicious codes, have become one of
the main threats to the security of networks. Since the first
Morris worm in 1998, new worms have come into networks
frequently, including Slammer worm [1], Commwarrior
worm [2], Cabir worm [3], and Chameleon worm [4]. Each
of them can cause enormous financial losses and social panic
[5–7]. Therefore, it is significant to explore effective methods
to counter against worms. To this end, we need to accurately
understand the dynamic behaviors of worm propagation in
networks. Considering that the process of worm propagation
in networks is similar to that of biological virus propagation
in the population, mathematical models have been important
tools used to analyze the propagation and control of worms
based on the theory of Kermack and McKendrick [8].

In [9], Kim et al. proposed the SIS (Susceptible-
Infectious-Susceptible)model in order to analyze the dynam-
ical behaviors of worm propagation on Internet. However,
the SIS model neglects the effect of the antivirus software.
Thus, the SIR (Susceptible-Infectious-Recovered) model is
proposed [9]. Although SIR model considered the immu-
nity of the nodes in which the worms have been cleaned,
however, it assumes that the recovered hosts have permanent

immunity. This is not consistent with the reality in networks,
because they may be infected by some new emerging worms
again. To overcome this drawback of the SIR model, Wang et
al. investigated the SIRS (Susceptible-Infectious-Recovered-
Susceptible) mode for analyzing the dynamics of worm
propagation in networks [10–12]. It should be pointed out
that both the SIR mode and the SIRS model assume that
the susceptible nodes become infectious instantaneously. As
we know, worms usually have a latent period. Based on this
consideration, the SEIR (Susceptible-Exposed-Infectious-
Recovered) model [13, 14] and the SEIRS (Susceptible-
Exposed-Infectious-Recovered-Susceptible) model [11, 15]
are proposed to describe the dynamics of worm propagation
in networks. Considering influence of the quarantine strategy
and the vaccination strategy on the propagation of worms,
some worm models with quarantine strategy [16–19] and
vaccination strategy [20–25] are formulated and analyzed.

It should be pointed out that all the models above use the
bilinear incidence rate 𝛽𝑆𝐼. As stated in [26], the dynamics
of a model system heavily depends on the choice of the
incidence rate. Gan et al. have considered the different inci-
dence rate functions 𝛽𝑆𝐼/𝑓(𝐼) in their work [27, 28]. It was
found that the saturated incidence rate 𝛽𝑆𝐼/(1 + 𝜂𝐼) is more
general than the bilinear incidence rate 𝛽𝑆𝐼. Based on this,
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Wang et al. [29] proposed the following model with partial
immunization to defend against worms:𝑑𝑆 (𝑡)𝑑𝑡 = (1 − 𝑝)𝐴 − 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝜂𝐼 (𝑡) − 𝜇𝑆 (𝑡) + 𝛾𝑉 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝑝𝐴 − 𝜎𝛽𝑉 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾)𝑉 (𝑡) ,
𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝜂𝐼 (𝑡) + 𝜎𝛽𝑉 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝜛) 𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝜛𝐸 (𝑡) − (𝜇 + 𝛼 + 𝛿) 𝐼 (𝑡) ,
𝑑𝑅 (𝑡)𝑑𝑡 = 𝛿𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) present numbers of the
susceptible, vaccinated, exposed, infectious, recovered hosts
at time 𝑡, respectively. The meanings of more parameters are
described and shown in “Parameters of the Model and Their
Meanings” section. Wang et al. [29] investigated the stability
of system (1).

One of the significant features of computer viruses is their
latent characteristics [30, 31]. In addition, time delays of one
type or another could cause the numbers of hosts in system (1)
to fluctuate. And worm propagation models with time delay
have been investigated by some scholars [14, 17, 19]. Based
on above discussions, in this paper, we extend system (1) by
incorporating the time delay due to the latent period of the
worms in the exposed hosts into system (1) and obtain the
following delayed worm propagation model:𝑑𝑆 (𝑡)𝑑𝑡 = (1 − 𝑝)𝐴 − 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝜂𝐼 (𝑡) − 𝜇𝑆 (𝑡) + 𝛾𝑉 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 𝑝𝐴 − 𝜎𝛽𝑉 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾)𝑉 (𝑡) ,

𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽𝑆 (𝑡) 𝐼 (𝑡)1 + 𝜂𝐼 (𝑡) + 𝜎𝛽𝑉 (𝑡) 𝐼 (𝑡) − 𝜇𝐸 (𝑡)− 𝜛𝐸 (𝑡 − 𝜏) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝜛𝐸 (𝑡 − 𝜏) − (𝜇 + 𝛼 + 𝛿) 𝐼 (𝑡) ,
𝑑𝑅 (𝑡)𝑑𝑡 = 𝛿𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(2)

where 𝜏 is the latent period of the worms in the exposed
nodes.

The remainder of this paper is organized as follows.
Local stability of the positive equilibrium and existence of
a Hopf bifurcation at the positive equilibrium are analyzed
in the next section. Properties of the Hopf bifurcation
such as direction and stability are investigated in Section 3.
Numerical simulations are carried out in Section 4 to support
the obtained theoretical results. Finally, conclusions are given
in Section 5 to end our work.

2. Existence of Hopf Bifurcation

By direct computation, we know that if the condition (𝐻1):(𝜇 +𝜛)(𝜇 +𝛼+𝛿)(𝜎𝛽𝐼∗ +𝜇+ 𝛾) > 𝜛𝜎𝛽𝑝𝐴 holds, then system
(2) has a positive equilibrium 𝑃∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗), where𝑆∗
= (1 + 𝜂𝐼∗) [(𝜇 + 𝜛) (𝜇 + 𝛼 + 𝛿) (𝜎𝛽𝐼∗ + 𝜇 + 𝛾) − 𝜛𝜎𝛽𝑝𝐴]𝛽𝜛 (𝜎𝛽𝐼∗ + 𝜇 + 𝛾) ,
𝑉∗ = 𝑝𝐴𝜎𝛽𝐼∗ + 𝜇 + 𝛾 ,
𝐸∗ = 𝜇 + 𝛼 + 𝛿𝜛 𝐼∗,
𝑅∗ = 𝛿𝜇𝐼∗.

(3)

And 𝐼∗ is the positive root of the following equation:𝑃2𝑥2 + 𝑃1𝑥 + 𝑃0 = 0, (4)

where𝑃0 = 𝜇 (𝜇 + 𝜛) (𝜇 + 𝛾) (𝜇 + 𝛼 + 𝛿)− 𝐴𝜛𝛽 (𝛾 + 𝑝𝜇𝛿 + (1 − 𝑝) 𝜇) ,𝑃1 = (𝜇 + 𝜛) (𝜇 + 𝛼 + 𝛿) [𝜎𝛽𝜇 + (𝜇 + 𝛾) (𝜇𝜂 + 𝛽)]− 𝐴𝜛𝜎𝛽 (𝛽 + 𝑝𝜇𝜂) ,𝑃2 = 𝛽𝜎 (𝜇 + 𝜛) (𝜇 + 𝛼 + 𝛿) (𝛽 + 𝜇𝜂) .
(5)

The Jacobi matrix of system (2) about 𝑃∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗) is
given by

𝐽 (𝑃∗) =((
(

𝑚11 𝑚12 0 𝑚14 00 𝑚22 0 𝑚24 0𝑚31 𝑚32 𝑚33 + 𝑛33𝑒−𝜆𝜏 𝑚34 00 0 𝑛43𝑒−𝜆𝜏 𝑚44 00 0 0 𝑚54 𝑚55
))
)

, (6)

where 𝑚11 = −( 𝛽𝐼∗1 + 𝜂𝐼∗ + 𝜇) ,𝑚12 = 𝛾,
𝑚14 = − 𝛽𝑆∗(1 + 𝜂𝐼∗)2 ,𝑚22 = − (𝜇 + 𝛾 + 𝜎𝛽𝐼∗) ,𝑚24 = −𝜎𝛽𝑉∗,
𝑚31 = 𝛽𝐼∗1 + 𝜂𝐼∗ ,𝑚32 = 𝜎𝛽𝐼∗,𝑚33 = −𝜇,
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𝑚34 = 𝛽𝑆∗(1 + 𝜂𝐼∗)2 + 𝜎𝛽𝑉∗,𝑚44 = − (𝜇 + 𝛼 + 𝛿) ,𝑚54 = 𝛿,𝑚55 = −𝜇,𝑛33 = −𝜛,𝑛43 = 𝜛.
(7)

The characteristic equation of that matrix (6) is𝜆5 +𝑀4𝜆4 +𝑀3𝜆3 +𝑀2𝜆2 +𝑀1𝜆 +𝑀0+ (𝑁4𝜆4 + 𝑁3𝜆3 + 𝑁2𝜆2 + 𝑁1𝜆 + 𝑁0) 𝑒−𝜆𝜏 = 0, (8)

with𝑀0 = −𝑚11𝑚22𝑚33𝑚44𝑚55,𝑀1 = 𝑚11𝑚22𝑚33𝑚44 + 𝑚55 [𝑚11𝑚22 (𝑚33 + 𝑚44)+ 𝑚33𝑚44 (𝑚11 + 𝑚22)] ,𝑀2 = − [𝑚11𝑚22 (𝑚33 + 𝑚44) + 𝑚33𝑚44 (𝑚11 + 𝑚22)]− 𝑚55 [𝑚11𝑚22 + 𝑚33𝑚44+ (𝑚11 + 𝑚22) (𝑚33 + 𝑚44)] ,𝑀3 = 𝑚11𝑚22 + 𝑚33𝑚44 + (𝑚11 + 𝑚22) (𝑚33 + 𝑚44)+ 𝑚55 (𝑚11 + 𝑚22 + 𝑚33 + 𝑚44) ,𝑀4 = − (𝑚11 + 𝑚22 + 𝑚33 + 𝑚44 + 𝑚55) ,𝑁0 = 𝑚11𝑚22𝑚55𝑛43 (𝑚34 − 𝑚44)+ 𝑚55𝑛43 (𝑚14𝑚22𝑚31 − 𝑚11𝑚24𝑚32− 𝑚12𝑚24𝑚31) ,𝑁1 = 𝑛43 [𝑚11𝑚22 (𝑚44 + 𝑚55) + 𝑚44𝑚55 (𝑚11 + 𝑚22)+ 𝑚12𝑚24𝑚31] + [𝑚24𝑚32𝑛43 (𝑚11 + 𝑚55)− 𝑚14𝑚31𝑛43 (𝑚22 + 𝑚55)] − 𝑚34𝑛43 (𝑚11𝑚22+ 𝑚11𝑚55 + 𝑚22𝑚55) ,𝑁2 = 𝑛43 (𝑚14𝑚31 − 𝑚24𝑚32) + 𝑚34𝑛43 (𝑚11 + 𝑚22+ 𝑚55) − 𝑛43 [𝑚11𝑚22 + 𝑚44𝑚55+ (𝑚11 + 𝑚22) (𝑚44 + 𝑚55)] ,𝑁3 = 𝑛43 (𝑚11 + 𝑚22 + 𝑚44 + 𝑚55 − 𝑚34) ,𝑁4 = −𝑛43.

(9)

When 𝜏 = 0, (8) becomes𝜆5 +𝑀04𝜆4 +𝑀03𝜆3 +𝑀02𝜆2 +𝑀01𝜆 +𝑀00 = 0, (10)

where 𝑀00 = 𝑀0 + 𝑁0,𝑀01 = 𝑀1 + 𝑁1,𝑀02 = 𝑀2 + 𝑁2,𝑀03 = 𝑀3 + 𝑁3,𝑀04 = 𝑀4 + 𝑁4.
(11)

Thus,𝑃∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗, 𝑉∗) is locally asymptotically stable
when 𝜏 = 0 if the condition (𝐻2) is satisfied and (𝐻2) is
defined as follows:𝑀00 > 0,𝑀04 > 0,𝑀03𝑀04 > 𝑀02,𝑀02 (𝑀01 +𝑀03𝑀04) > 𝑀01𝑀204 +𝑀202,𝑀02𝑀03 (𝑀00 +𝑀01 +𝑀02) + 2𝑀00𝑀01𝑀04> 𝑀200 +𝑀01𝑀202 +𝑀04 (𝑀201𝑀04 +𝑀00𝑀203) .

(12)

For 𝜏 > 0, let 𝜆 = 𝑖𝜔 (𝜔 > 0) be the root of (8).Then, we have(𝑁1𝜔 − 𝑁3𝜔3) sin 𝜏𝜔 + (𝑁4𝜔4 − 𝑁2𝜔2 + 𝑁0) cos 𝜏𝜔= 𝑀2𝜔2 −𝑀4𝜔4 −𝑀0,(𝑁1𝜔 − 𝑁3𝜔3) cos 𝜏𝜔 − (𝑁4𝜔4 − 𝑁2𝜔2 + 𝑁0) sin 𝜏𝜔= 𝑀3𝜔3 − 𝜔5 −𝑀1𝜔.
(13)

Thus, we can get the following equation:

𝜔10 + ℎ4𝜔8 + ℎ3𝜔6 + ℎ2𝜔4 + ℎ1𝜔2 + ℎ0 = 0, (14)

where ℎ0 = 𝑀20 − 𝑁20 ,ℎ1 = 𝑀21 − 2𝑀0𝑀2 − 𝑁21 + 2𝑁0𝑁2,ℎ2 = 𝑀22 + 2𝑀0𝑀4 − 2𝑀1𝑀3 + 2𝑁1𝑁3 − 𝑁22− 2𝑁0𝑁4,ℎ3 = 𝑀23 − 2𝑀2𝑀4 + 2𝑀1 − 𝑁23 + 2𝑁2𝑁4,ℎ4 = 𝑀24 − 2𝑀3 − 𝑁24 .
(15)

Let V = 𝜔2; then (14) becomes

V5 + ℎ4V4 + ℎ3V3 + ℎ2𝜔2 + ℎ1V + ℎ0 = 0. (16)

Based on the discussion about the distribution of the roots
of (16) in [32], we suppose that (𝐻3): (16) has at least one
positive root V0.
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If the condition (𝐻3) holds, then (16) has a positive root𝜔0 = √V0 and (8) has a pair of purely imaginary roots ±𝑖𝜔0.
For 𝜔0, we have

𝜏0 = 1𝜔0 × arccos{𝐺1 (𝜔)𝐺2 (𝜔)} , (17)

with𝐺1 (𝜔)= (𝑁3 −𝑀4𝑁4) 𝜔8+ (𝑀2𝑁4 +𝑀4𝑁2 −𝑀3𝑁3 − 𝑁1) 𝜔6+ (𝑀3𝑁1 +𝑀1𝑁3 −𝑀0𝑁4 −𝑀2𝑁2 −𝑀4𝑁0) 𝜔4+ (𝑀0𝑁2 +𝑀2𝑁0 −𝑀1𝑁1) 𝜔2 +𝑀0𝑁0,𝐺2 (𝜔)= 𝑁24𝜔8 + (𝑁23 − 2𝑁2𝑁4) 𝜔6+ (𝑁22 + 2𝑁0𝑁4 − 2𝑁 − 1𝑁3) 𝜔4+ (𝑁21 − 2𝑁0𝑁2) 𝜔2 + 𝑁20 .

(18)

Differentiating on both sides of (8) with respect to 𝜏, we
can obtain

[𝑑𝜆𝑑𝜏]−1
= (5𝜆4 + 4𝑀4𝜆3 + 3𝑀3𝜆2 + 2𝑀2𝜆 +𝑀1) 𝑒𝜆𝜏𝜆 (𝑁4𝜆4 + 𝑁3𝜆3 + 𝑁2𝜆2 + 𝑁1𝜆 + 𝑁0)− 𝜏𝜆 .

(19)

Further, we have

Re [𝑑𝜆𝑑𝜏]−1𝜏=𝜏0 = 𝑓󸀠 (V0)𝐺2 (𝜔0) , (20)

where 𝑓(V) = V5 + ℎ4V4 + ℎ3V3 + ℎ2𝜔2 + ℎ1V + ℎ0.
Obviously, if the condition (𝐻4) : 𝑓󸀠(V0) ̸= 0 is satisfied,

then Re[𝑑𝜆/𝑑𝜏]−1𝜏=𝜏0 ̸= 0. Based on the discussion above and
the Hopf bifurcation theorem in [33], we have the following
results.

Theorem 1. For system (2), if the conditions (𝐻1)–(𝐻4)
hold, then the positive equilibrium 𝑃∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗) is
locally asymptotically stable when 𝜏 ∈ [0, 𝜏0); system (2)
undergoes aHopf bifurcation at the𝑃∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗)when𝜏 = 𝜏0 and a family of periodic solutions bifurcate from𝑃∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼∗, 𝑅∗).
3. Properties of the Hopf Bifurcation

Let 𝑢1(𝑡) = 𝑆(𝑡) − 𝑆∗, 𝑢2(𝑡) = 𝑉(𝑡) − 𝑉∗, 𝑢3(𝑡) = 𝐸(𝑡) − 𝐸∗,𝑢4(𝑡) = 𝐼(𝑡) − 𝐼∗, and 𝑢5(𝑡) = 𝑅(𝑡) − 𝑅∗, and normalize
the time delay with the scaling 𝑡 → (𝑡/𝜏). Let 𝜏 = 𝜏0 +󰜚 (󰜚 ∈ 𝑅); then 󰜚 = 0 is the Hopf bifurcation value of
system (2). System (2) can be transformed into the following
form:

𝑢̇ (𝑡) = 𝐿󰜚 (𝑢𝑡) + 𝐹 (󰜚, 𝑢𝑡) , (21)

where 𝑢(𝑡) = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5)𝑇 ∈ 𝐶 = 𝐶([−1, 0], 𝑅5) and𝐿󰜚: 𝐶 → 𝑅5 and 𝐹: 𝑅 × 𝐶 → 𝑅5 are given, respectively,
by

𝐿󰜚𝜙 = (𝜏0 + 󰜚) (𝑀1𝜙 (0) + 𝑀2𝜙 (−1)) ,
𝐹 (󰜚, 𝜙) =((

(

𝑚15𝜙1 (0) 𝜙4 (0) + 𝑚16𝜙24 (0) + 𝑚17𝜙1 (0) 𝜙24 (0) + 𝑚18𝜙34 (0) + ⋅ ⋅ ⋅𝑚25𝜙2 (0) 𝜙4 (0)𝑚35𝜙1 (0) 𝜙4 (0) + 𝑚36𝜙24 (0) + 𝑚37𝜙1 (0) 𝜙24 (0) + 𝑚38𝜙34 (0) + 𝑚39𝜙2 (0) 𝜙4 (0) ⋅ ⋅ ⋅00
))
)

, (22)

with

𝑀1 =(((
(

𝑚11 𝑚12 0 𝑚14 00 𝑚22 0 𝑚24 0𝑚31 𝑚32 𝑚33 𝑚34 00 0 0 𝑚44 0𝑎51 0 0 𝑚54 𝑚55
)))
)

,
𝑀2 =(

(

0 0 0 0 00 0 0 0 00 0 𝑛33 0 00 0 𝑛43 0 00 0 0 0 0
)
)

,
𝑚15 = − 𝛽(1 + 𝜂𝐼∗)2 ,
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𝑚16 = 𝛽𝜂𝑆∗(1 + 𝜂𝐼∗)3 ,
𝑚17 = 𝛽𝜂(1 + 𝜂𝐼∗)3 ,
𝑚18 = − 𝛽𝜂2𝑆∗(1 + 𝜂𝐼∗)4 ,𝑚25 = −𝜎𝛽,
𝑚35 = 𝛽(1 + 𝜂𝐼∗)2 ,
𝑚36 = − 𝛽𝜂𝑆∗(1 + 𝜂𝐼∗)3 ,
𝑚37 = − 𝛽𝜂(1 + 𝜂𝐼∗)3 ,
𝑚38 = 𝛽𝜂2𝑆∗(1 + 𝜂𝐼∗)4 ,𝑚39 = 𝜎𝛽.

(23)

According to the Riesz representation theorem, there
exists a 5 × 5 matrix function 𝜂(𝜃, 󰜚): 𝜃 ∈ [−1, 0] → 𝑅5 such
that

𝐿󰜚𝜙 = ∫0
−1
𝑑𝜂 (𝜃, 󰜚) 𝜙 (𝜃) , for 𝜙 ∈ 𝐶. (24)

In fact, choosing𝜂 (𝜃, 󰜚) = (𝜏0 + 󰜚) (𝐴max𝛿 (𝜃) + 𝐵max𝛿 (𝜃 + 1)) (25)

and 𝛿(𝜃) is the Dirac delta function.
For 𝜙 ∈ 𝐶([−1, 0], 𝑅5), define
𝐴 (󰜚) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,
∫0
−1
𝑑𝜂 (𝜃, 󰜚) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (󰜚) 𝜙 = {{{
0, −1 ≤ 𝜃 < 0,𝐹 (󰜚, 𝜙) , 𝜃 = 0.

(26)

Then system (21) can be transformed into the following
operator equation:𝑢̇ (𝑡) = 𝐴 (󰜚) 𝑢𝑡 + 𝑅 (󰜚) 𝑢𝑡. (27)

For 𝜑 ∈ 𝐶1([0, 1], (𝑅5)∗), we further define the adjoint
operator

𝐴∗ (𝜑) = {{{{{{{
−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,
∫0
−1
𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0 (28)

and the bilinear inner product as follows:⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = 𝜑 (0) 𝜙 (0)
− ∫0
𝜃=−1

∫𝜃
𝜉=0
𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (29)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Based on the discussion above, we know that ±𝑖𝜔0𝜏0

are eigenvalues of 𝐴(0). Thus, they are also eigenvalues of𝐴∗. Let 𝑞(𝜃) = (1, 𝑞2, 𝑞3, 𝑞4, 𝑞5)𝑇𝑒𝑖𝜏0𝜔0𝜃 be the eigenvector
of 𝐴(0) corresponding to +𝑖𝜔0𝜏0 and 𝑞∗(𝑠) = (1/𝐷)(1, 𝑞∗2 ,𝑞∗3 , 𝑞∗4 , 𝑞∗5 )𝑇𝑒𝑖𝜏0𝜔0𝑠 be the eigenvectors of 𝐴∗ corresponding to−𝑖𝜏0𝜔0. By direct computation, we can obtain

𝑞2 = 𝑚24 (𝑖𝜔0 − 𝑚11)𝑚12𝑚24 + 𝑚14 (𝑖𝜔0 − 𝑚22) ,
𝑞3 = 𝑖𝜔0 − 𝑚44𝑛43𝑒−𝑖𝜏0𝜔0 𝑞4,
𝑞4 = 𝑖𝜔0 − 𝑚22𝑚24 𝑞2,
𝑞5 = 𝑚54𝑖𝜔0 − 𝑚55 𝑞4,𝑞∗2 = −𝑚12 + 𝑚32𝑞3𝑖𝜔0 + 𝑚22 ,
𝑞∗3 = −𝑖𝜔0 + 𝑚11𝑚31 ,
𝑞∗4 = −𝑖𝜔0 + 𝑚33 + 𝑛33𝑒𝑖𝜏0𝜔0𝑛43𝑒𝑖𝜏0𝜔0 ,
𝑞∗5 = −𝑚24𝑞∗2 + 𝑚34𝑞∗3 + (𝑖𝜔0 + 𝑚11) 𝑞∗4𝑚54 ,
𝐷 = 1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝑞4𝑞∗4 + 𝑞5𝑞∗5+ 𝜏0𝑒−𝑖𝜏0𝜔0𝑞3 (𝑛33𝑞∗3 + 𝑛43𝑞∗4 ) .

(30)

Then we have ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, 𝑞⟩ = 0.
Next, we can obtain the coefficients which can determine

the properties of the Hopf bifurcation at 𝜏0 by following the
algorithms given in [33] and using the computation process
similar to those in [34–36]:

𝑔20 = 2𝜏0𝐷 [𝑚15𝑞4 + 𝑚16𝑞24 + 𝑚25𝑞2∗𝑞2𝑞4 + 𝑞∗3 (𝑚35𝑞4
+ 𝑚36𝑞24 + 𝑚39𝑞2𝑞4)] ,𝑔11 = 𝜏0𝐷 [𝑚15 (𝑞4 + 𝑞4) + 2𝑚16𝑞4𝑞4 + 𝑚25𝑞∗2 (𝑞2𝑞4+ 𝑞2𝑞4) + 𝑞∗3 (𝑚35 (𝑞4 + 𝑞4) + 2𝑚36𝑞4𝑞4+ 𝑚39 (𝑞2𝑞4 + 𝑞2𝑞4))] ,
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𝑔02 = 2𝜏0𝐷 [𝑚15𝑞4 + 𝑚16𝑞24 + 𝑚25𝑞2∗𝑞2𝑞4 + 𝑞∗3 (𝑚35𝑞4
+ 𝑚36𝑞24 + 𝑚39𝑞2𝑞4)] ,

𝑔21 = 2𝜏0𝐷 [𝑚15 (12𝑊(4)20 (0) + 𝑊(4)11 (0) + 12𝑊(1)20 (0)
+ 𝑊(1)11 (0) 𝑞4) + 𝑚16 (𝑊(4)20 (0) 𝑞4 + 2𝑊(4)11 (0) 𝑞4)
+ 𝑚17 (𝑞24 + 2𝑞4𝑞4) + 3𝑚18𝑞24𝑞4 + 𝑚25𝑞∗2 (12
⋅ 𝑊(2)20 (0) 𝑞4 +𝑊(2)11 (0) 𝑞4 + 12𝑊(4)20 (0) 𝑞2
+𝑊(4)11 (0) 𝑞2) + 𝑞∗3 (𝑚35 (12𝑊(4)20 (0) + 𝑊(4)11 (0)
+ 12𝑊(1)20 (0) + 𝑊(1)11 (0) 𝑞4) + 𝑚36 (𝑊(4)20 (0) 𝑞4+ 2𝑊(4)11 (0) 𝑞4) + 𝑚37 (𝑞24 + 2𝑞4𝑞4) + 3𝑚38𝑞24𝑞4
+ 𝑚39 (12𝑊(2)20 (0) 𝑞4 +𝑊(2)11 (0) 𝑞4 + 12𝑊(4)20 (0) 𝑞2
+𝑊(4)11 (0) 𝑞2))] ,

(31)

with𝑊20 (𝜃)
= 𝑖𝑔20𝜌 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔02𝜌 (0)3𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸1𝑒2𝑖𝜏0𝜔0𝜃,

𝑊11 (𝜃) = −𝑖𝑔11𝜌 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔11𝜌 (0)𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸2,
𝐸1

= 2((((
(

𝑚󸀠11 −𝑚12 0 −𝑚14 00 𝑚󸀠22 0 −𝑚24 0−𝑚31 −𝑚32 𝑚󸀠33 −𝑚34 00 0 −𝑛43𝑒−2𝑖𝜏0𝜔0 𝑚󸀠44 00 0 0 −𝑚54 𝑚󸀠55
))))
)

−1

×((((
(

𝐸(1)1𝐸(2)1𝐸(3)100
))))
)

,

𝐸2
= −((

(

𝑚11 𝑚12 0 𝑚14 00 𝑚22 0 𝑚24 0𝑚31 𝑚32 𝑚33 + 𝑛33 𝑚34 00 0 𝑛43 𝑚44 00 0 0 𝑚54 𝑚55
))
)

−1

×(((
(

𝐸(1)2𝐸(2)2𝐸(3)200
)))
)

,
(32)

where 𝑚󸀠11 = 2𝑖𝜔0 − 𝑚11,𝑚󸀠22 = 2𝑖𝜔0 − 𝑚22,𝑚󸀠33 = 2𝑖𝜔0 − 𝑚33 − 𝑛33𝑒−2𝑖𝜏0𝜔0 ,𝑚󸀠44 = 2𝑖𝜔0 − 𝑚44,𝑚󸀠55 = 2𝑖𝜔0 − 𝑚55,𝐸(1)1 = 𝑚15𝑞4 + 𝑚16𝑞24,𝐸(2)1 = 𝑚25𝑞2𝑞4,𝐸(3)1 = 𝑚35𝑞4 + 𝑚36𝑞24 + 𝑚39𝑞2𝑞4,𝐸(1)2 = 𝑚15 (𝑞4 + 𝑞4) + 2𝑚16𝑞4𝑞4,𝐸(2)2 = 𝑚25 (𝑞2𝑞4 + 𝑞2𝑞4) ,𝐸(3)2 = 𝑚35 (𝑞4 + 𝑞4) + 2𝑚36𝑞4𝑞4+ 𝑚39 (𝑞2𝑞4 + 𝑞2𝑞4) .

(33)

Then, one can obtain

𝐶1 (0) = 𝑖2𝜏0𝜔0 (𝑔11𝑔20 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212
𝜇2 = − Re {𝐶1 (0)}Re {𝜆󸀠 (𝜏0)} ,𝛽2 = 2Re {𝐶1 (0)} ,
𝑇2 = − Im {𝐶1 (0)} + 𝜇2 Im {𝜆󸀠 (𝜏0)}𝜏0𝜔0 .

(34)

In conclusion, we have the following results.

Theorem 2. For system (2), 𝜇2 determines the direction of the
Hopf bifurcation: if 𝜇2 > 0 (𝜇2 < 0), then the Hopf bifurcation
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is supercritical (subcritical); 𝛽2 determines the stability of the
bifurcating periodic solution: the bifurcating periodic solutions
are stable (unstable) if 𝛽2 < 0 (𝛽2 > 0); 𝑇2 determines the
period of the bifurcating periodic solutions: the period increases
(decreases) if 𝑇2 > 0 (𝑇2 < 0).
4. Numerical Simulation

In this section, some numerical simulations are carried out
for qualitative analysis by using Matlab software package.
By extracting some values from [29] and considering the
conditions for the existence of the Hopf bifurcation, we
choose a set of parameters as follows: 𝐴 = 100, 𝑝 = 0.5,𝛼 = 0.0001, 𝛽 = 0.003, 𝛾 = 0.0001, 𝛿 = 0.4, 𝜂 = 1,𝜎 = 0.05𝜛 = 0.02, and 𝜇 = 0.001. Then, we can get the
following specific case of system (2):𝑑𝑆 (𝑡)𝑑𝑡 = 50 − 0.003𝑆 (𝑡) 𝐼 (𝑡)1 + 𝐼 (𝑡) − 0.001𝑆 (𝑡)

+ 0.0001𝑉 (𝑡) ,𝑑𝑉 (𝑡)𝑑𝑡 = 50 − 1.5000𝑒 − 004𝑉 (𝑡) 𝐼 (𝑡)
− 0.0011𝑉 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 0.003𝑆 (𝑡) 𝐼 (𝑡)1 + 𝐼 (𝑡) + 1.5000𝑒 − 004𝑉 (𝑡) 𝐼 (𝑡)
− 0.001𝐸 (𝑡) − 0.02𝐸 (𝑡 − 𝜏) ,𝑑𝐼 (𝑡)𝑑𝑡 = 0.02𝐸 (𝑡 − 𝜏) − 0.4011𝐼 (𝑡) ,

𝑑𝑅 (𝑡)𝑑𝑡 = 0.4𝐼 (𝑡) − 0.0001𝑅 (𝑡) .

(35)

By some computations, we can obtain the following equation
with respect to 𝐼:5.0539𝑒 − 009𝐼2 − 1.0117𝑒 − 006𝐼 − 4.7907𝑒 − 006= 0. (36)

It follows that system (35) has a unique positive
equilibrium 𝑃∗(12723, 1571.3, 4107.5, 204.8103, 81924) and
we can verify that 𝑃∗(12723, 1571.3, 4107.5, 204.8103, 81924)
is locally asymptotically stable when 𝜏 = 0. Further, we have𝜔0 = 0.5508 and 𝜏0 = 69.6986. According toTheorem 1, it can
be concluded that𝑃∗(12723, 1571.3, 4107.5, 204.8103, 81924)
is locally asymptotically stable when 𝜏 ∈ [0, 𝜏0 = 69.6986).
This property can be shown as in Figures 1 and 2. However, a
Hopf bifurcation will occur and a family of periodic solutions
bifurcate from 𝑃∗(12723, 1571.3, 4107.5, 204.8103, 81924)
when the value of 𝜏 passes through the Hopf bifurcation
value 𝜏0, which can be illustrated by Figures 3 and
4.

In addition, we obtain𝐶1(0) = −4.3990+2.9057𝑖, 𝜆󸀠(𝜏0) =0.7014 − 0.0212𝑖 by some complicate computations. Thus,
we get 𝜇2 = 7.8776 > 0, 𝛽2 = −8.798 < 0, and 𝑇2 =−0.0713 < 0 based on (34). It follows from Theorem 2 that
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Figure 1: Dynamic behavior of system (35): projection on S-E-R
with 𝜏 = 65.85 < 𝜏0.
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Figure 2: Dynamic behavior of system (35): projection on V-E-I
with 𝜏 = 65.85 < 𝜏0.
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Figure 3: Dynamic behavior of system (35): projection on S-E-R
with 𝜏 = 76.65 > 𝜏0.
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Figure 4: Dynamic behavior of system (35): projection on V-E-I
with 𝜏 = 76.65 > 𝜏0.
the Hopf bifurcation is supercritical and the bifurcating peri-
odic solutions are stable and decrease. Since the bifurcating
periodic solutions are stable, then the five classes of hosts
in system (35) may coexist in an oscillatory mode from
the view of the biological point, which is not welcome in
networks.



8 Advances in Mathematical Physics

5. Conclusions

In this study, the dynamical behaviors of a delayed SVEIR
worm propagation model with saturated incidence are dis-
cussed based on the work in literature [29]. The dynamical
behaviors of the model are investigated from the point of
view of local stability and Hopf bifurcation both analytically
and numerically. The threshold of the time delay 𝜏0 at which
the model causes a Hopf bifurcation is obtained by using
eigenvalue method. We found that characteristics of the
propagation of worms in the model can be predicted and
controlled when the value of delay is suitably small (𝜏 ∈[0, 𝜏0)). However, propagation of the worms in the model
will be out of control once the value of the time delay is
above the threshold value 𝜏0. Accordingly, we can know that
the propagation of worms in the model can be controlled by
postponing occurrence of the Hopf bifurcation. Moreover,
the properties of the Hopf bifurcation are investigated by
applying the normal form theory and the center manifold
theorem. Numerical simulations are also presented in order
to testify our obtained theoretical results.

Parameters of the Model and Their Meanings𝐴: Recruitment rate of the susceptible host𝑝: Vaccinated rate of the susceptible host𝛽: Infection rate of the susceptible host𝜎𝛽: Infection rate of the vaccinated host𝜂: Efficient measuring the inhibitory effect𝜇: Natural death rate of all the hosts𝛼: Death rate of the infectious host due to worm attack𝛿: Recovery rate of the infectious hosts𝜛: Rate of the exposed hosts that become infectious𝛾: Rate of the vaccinated hosts that become susceptible.
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All data can be accessed in the numerical simulation section
of this article.
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