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Abstract

We present a model which explains several experimental observations relating
contact angle hysteresis with surface roughness. The model is based on the balance
between released energy and dissipation, and it describes the stick–slip behavior of
drops on a rough surface using ideas similar to those employed in dry friction, elasto–
plasticity and fracture mechanics. The main results of our analysis are formulas
giving the interval of stable contact angles as a function of the surface roughness.
These formulas show that the difference between advancing and receding angles is
much larger for a drop in complete contact with the substrate (Wenzel drop) than
for one whose cavities are filled with air (Cassie-Baxter drop). This fact is used as
the key tool to interpret the experimental evidence.
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1 Introduction

We consider liquid drops resting on a rough solid surface. The angle at which the liq-
uid/vapor interface meets the solid is the contact angle. While Young’s law gives one

value of this angle, the one associated with a drop minimizing the total interfacial energy,
contact angle hysteresis shows that there exists a whole interval of stable contact angles.
Both the end points and the width of this interval depend in a non–monotone way on the
roughness of the solid, see the reviews [dG], [Q], and [dBQ]. Figure 1, taken from [DJ],
shows some well known measurements of advancing and receding angles which bound the
interval of stable contact angles (the hysteresis interval).
More recent experiments show that, even at constant roughness, there may be more than
one value for the receding angle, depending on the details of the drop deposition process,
see [LQ]. In fact, in Figure 2, a large pressure is exerted on a Cassie–Baxter (CB) drop
(i.e., a drop which has vapor-filled cavities underneath) which turns it into a Wenzel (W)
drop (i.e., a drop with complete contact with the underlying surface) inducing a dramatic
change in the measured receding angle.
Furthermore, plants use roughness to make the surfaces of their leaves ultrahydrophobic
(see [BN]) although their constitutive material might in principle even be hydrophilic.
A mechanism by which roughness may lead to CB–drops with large contact angles on
hydrophilic surfaces, in spite of their high cost in terms of surface energy, is discussed in
[H].

We introduce a new model to capture these phenomena. It predicts a much narrower
hysteresis interval for CB–drops than for W–drops. This can explain both the downward
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Figure 1: Experimental dependence of ad-
vancing and receding contact angles on
the surface roughness. Reprinted with
permission from [DJ]. Copyright (1964)
American Chemical Society.

Figure 2: Experimental dependence of
receding contact angles on the pressure
pushing the drop onto the surface. Drops
are of CB–type at low pressure and of
W–type at high pressure. Reprinted from
[LQ] with permission.

jump at large pressures of the experimental points in Figure 2, and the non–monotone
behavior of Figure 1. The main result of this paper is the quantitative dependence of the
hysteresis interval on the surface roughness and the type of drop. It is given both in terms
of formulas (see Equations (7)–(9)) and in terms of stability diagrams (see Figures 6–8).
Our model also leaves the possibility of metastable drops. That is, drops can be stable
without minimizing surface energy. In fact, CB–drops can even be stable on hydrophilic
surfaces and exhibit on them the large contact angles typical of super–hydrophobicity.

Our new model shares with similar ones used in dry friction [MT], fracture and damage
mechanics [FM], [FG], and elasto–plasticity [DM] two main features. First, there is a criti-
cal “loading” that needs to be overcome before the system starts to dissipate energy. In our
case, adding liquid to an existing stable drop (or tilting the surface on which a heavy drop
sits) at first only changes the contact angle and the drop does not move. Surface energy is
only dissipated after the drop starts moving. Second, the model is rate independent, i.e.,
the response of the system does not depend on the loading rate. Loading the system at a
doubled rate will lead to the same response, at twice the speed.

The main idea behind our model is that the stability of a drop is not related to global or
local minimality of its interfacial energy, but rather to the fact that the energy–landscape
seen by a stable drop should not be too steep. More precisely: if the energy that would be
gained by moving (i.e., the slope of the energy landscape) is smaller than the energy that
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would be dissipated through the motion, then the drop will not move. Once the drop starts
moving, the dynamics is controlled by the balance between available energy and energy
dissipated through motion. Of course, we are here focusing on the quasi-static limit (no
inertia) and on small drops (no gravity, and viscous dissipation inside the drop negligible
with respect to dissipation at the moving contact line). On the other hand, we assume that
the size of the asperities is much smaller than the size of the drops. In order to implement
these ideas, we use the derivative–free framework proposed in [MM] (see also the review
[M]).

Our model implies four different diagrams of stable contact angles, depending on the type
of drop (W– or CB–type) and on the state of the surface in the vicinity of the contact line
(dry or with puddles). It turns out that CB–drops are never stable when surrounded by
water-filled cavities, while the three nontrivial diagrams are shown in Figures 6–8.
The model can also predict the time evolution under slowly changing external loads (e.g.
the adding or removing of liquid). It identifies the microstructure (i.e., the microscopic
pattern of contacts) with which the drop will advance or recede, which corresponds to the
most unstable direction in the given energy landscape.

Our approach gives a qualitative explanation of the experiments mentioned above. Figure
1 can be understood as a superposition of the two stability diagrams for a dry surface.
The highly non–monotone behavior of the width of the hysteresis interval comes from a
transition from W–drops (Figure 6) to CB–drops (Figure 7). Indeed, using a notion of
stability introduced in Section 3.2, one can show that, for the case of a dry surface, the
stable configurations at low roughness are of W–type. At higher roughness, the stable
configurations are instead CB , see Figure 9, and they display a much narrower hysteresis
interval.
Figure 2 reflects the fact that the stability interval depends on the type of drop. Assuming
that the corresponding surface is dry and has sufficiently large roughness (r > r∗ in the
notation of Section 3), we see from Figures 6 and 7 that forcing a transition from a CB to
W drop (by applying a large enough pressure) may reduce the lower end of the stability
interval (i.e., the receding contact angle) from well above to well below 90◦.
Our model can also reproduce the arguments in [H] in so far that CB–drops can be stable
on a hydrophilic surface, although they do not minimize surface energy.

The rest of the paper is organized as follows. In Section 2, we describe the model in detail.
In Sections 3 and 4, our results and their physical implications are discussed without proofs.
These are deferred to Section 5.

4



2 A new model for contact angle hysteresis

2.1 Setup and notation

In the following we assume a 2–d setup, i.e., both surface and drops are infinitely extended
along one direction (perpendicular to the plane of Figure 3). Although this assumption is
not necessarily valid in experiments, see [dG], it is very useful in a first attempt to build
some intuition.
The solid surface is described by a periodic step function S : [−R, R] → (−∞, 0] for some
sufficiently large R ∈ R+. S(x) is the height of the solid at position x ∈ [−R, R]. The two
relevant parameters for S are its roughness r (i.e. the length of the surface divided by the
length of its horizontal projection) and its proportion of tops ϕ < 1, see Figure 3. It is
normalized such that at the tops S(x) = 0, and its period is of length ε � 1.

0
S

< >εϕ< >ε(1 − ϕ)

∧

ε
2
(r − 1)

∨

Figure 3: Microscopic roughness of the solid

This gives a generic surface, for which the area of contact with a drop can be easily
determined: It is either the whole surface, or the tops without the cavities. This is a
simplification with respect to smooth surfaces for which the wetted area needs to be com-
puted by finding configurations meeting the wall cavities at the right microscopic contact
angles. In this case, the proportion of wetted area ϕ does depend on the exact shape of
the surface. This, however, does not introduce new features to the model: it will lead to
the same results, but with a variable ϕ.

Furthermore, we introduce a region near the solid: RS := {(x, y) | x ∈ [−R, R] , y ∈
(S(x), 0]}, see Figure 4, and the box: B := [−R, R]× (0, 1]. Note that the height of B can
be chosen arbitrarily as long as it is much bigger than the periodicity of the microstructure
of the solid (i. e. ε � 1). At time t a drop is given by some subset L(t) ⊂ {B∪RS}, where
the liquid is located. A time dependent drop configuration is described by the function L
from [0,∞) into the subsets of {B ∪ RS}.
We restrict our attention to drops which are of the following form (see Figure 4): The
liquid is situated at the left side of {B ∪ RS}. Inside B the boundary of L(t) forms a liq-
uid/vapor interface which consists of a straight line. This line meets the solid at position
X(L(t)) and the upper boundary of B at position Z(L(t)). We call X(L(t)) the triple
point and Z(L(t)) the upper interface point. The angle formed between the boundary of
B and the liquid/vapour interface at position Z(L(t)) is the contact angle θ(L(t)). In the
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θ(L(t))

X(L(t))

1

0

Z(L(t)) R−R

RS

L(t)

RSRS

Figure 4: Drop configuration

region near the solid L(t) can have two possible configurations: either W–type (the cavities
{RS|x<X(L(t))} are all nonempty) or CB–type (the cavities {RS|x<X(L(t))} are all empty).
These are according to Section 2.3 the only relevant drop configurations.
The boundary of L(t) at the solid forms the solid/liquid interface ΣS/L. The rest of S is
the solid/vapour interface ΣS/V . And the rest of the boundary of L(t) is the liquid/vapour
interface ΣL/V .

2.2 Energy and dissipation distance

The relevant free energy is the surface energy which consists of the energies of the three
different interfaces. We consider this energy in nondimensional form, so that ΣL/V has
energy per unit area one. The liquid/solid interface has energy per unit area: − cos θY .
Here θY is the Young contact angle, which minimizes the surface energy on a flat solid.
The solid/vapour interface has zero energy. Thus, the energy is given by

E
(

L
)

:=
(

|ΣS/L|(− cos θY ) + |ΣL/V |
)

, (1)

where |Σ| denotes the area of Σ. In the geometry of Figure 4, Equation (1) reads

E
(

L
)

=
(

|ΣS/L ∩ RS|(− cos θY ) + |ΣL/V ∩ RS|
)

+

√

1 +
(

X(L) − Z(L)
)2

.

To introduce an external loading we force the upper interface point to move in time. The
time dependent energy is then

E
(

t, L
)

:=
(

|ΣS/L ∩ RS|(− cos θY ) + |ΣL/V ∩ RS|
)

+

√

1 +
(

X(L) ± t
)2

.

We describe dissipation through the change in wetted solid area. This seems reasonable as
it is well known that dissipation occurs mostly along the moving triple contact line. Thus,
we define the energy dissipation in the time interval [t0, t1] as

Diss
(

L, [t0, t1]
)

:= λ

∫ t1

t0

∫ R

−R

∣

∣

∣

d

dt
χ
(

ΣS/L(t)
)

∣

∣

∣
dSdt (2)
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where λ ≥ 0 is a phenomenological material parameter, χ(ΣS/L(t)) is the characteristic
function of the time dependent solid/liquid interface and dS denotes integration along the
solid surface. The distance between two configurations is the minimal energy dissipated
along a path joining them:

dist(L0, L1) := inf
L

{

Diss
(

L, [0, 1]
)
∣

∣ L(0) = L0, L(1) = L1

}

.

The infimum is achieved for monotone L. Thus, the distance between two drops is the
length of the solid wetted by only one of them:

dist(L0, L1) = λ

∫ R

−R

∣

∣χ(ΣS/L(L1)) − χ(ΣS/L(L0))
∣

∣ dS

= λ
∣

∣

∣

{

ΣS/L(L1) ∪ ΣS/L(L0)
}

\
{

ΣS/L(L1) ∩ ΣS/L(L0)
}

∣

∣

∣
, (3)

where ΣS/L(Li) denotes the solid/liquid interface of the configuration Li. This distance is
macroscopically proportional to the usual distance between the two triple points.

2.3 Model for the stability of contact angles

We look at a single drop L0. To model the observed hysteresis we relax the condition that
a stable drop is a local minimizer of the energy (leading to Young’s law). Instead we only
require L0 to be stable in the following sense:

E(L0) − E(L̃) ≤ dist(L0, L̃) (4)

for all L̃ which agree with L0 on the upper boundary of B, i.e. on ∂B \ {[−R, R] × 0},
but can have different contact angles. This is a global condition on the amount by which
the energy can be reduced by changing L0. Locally it says that the slope of the energy
landscape at L0 must not be too steep for L0 to be stable. In fact, E(L0)−E(L̃) has to fit
under the cone dist(L0, L̃), see Figure 5. It is crucial for dist to be homogeneous of degree
one. This leaves some freedom for the slope at a stable point to be non zero.

E(L)

L

dist(Lu, L̃)

LsL̃L̃

E(Lu) − E(L̃)

dist(Ls, L̃)

E(Ls) − E(L̃)

Lu

Figure 5: Energy landscape and dissipation distance

Furthermore, it is now clear that it suffices to consider drops whose liquid/vapour interfaces
are straight lines. Drops with curved interfaces are unstable in the sense of (4) since
straightening the interface reduces the energy without creating new distance.
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2.4 Model for quasistatic evolution

External loading induces a change in the droplet configuration, as the energy becomes
time dependent. This may lead to instabilities, and the system will jump to a new stable
configuration. Following [MM, Definition 2.1], we consider time evolutions L satisfying
two conditions. First, at every time t ∈ [0,∞) the drop L(t) has to be stable, i.e.:

E
(

t, L(t)
)

− E
(

t, L̃
)

≤ dist
(

L(t), L̃
)

(5)

for all L̃ which agree with L(t) on the upper boundary of B.
Second, the dissipation of energy has to balance the energy difference together with the
change in external loading:

E
(

t1, L(t1)
)

− E
(

t0, L(t0)
)

+ Diss
(

L, [t0, t1]
)

=

∫ t1

t0

∂tE
(

s, L(s)
)

ds (6)

for all t0, t1 ∈ [0,∞), and for Diss as defined in (2).

3 Results

3.1 Stable contact angles

The model introduced in Section 2.3 gives four different diagrams for stable contact angles
depending on the type of drop (Wenzel or Cassie–Baxter) and on the state of the surface
on which it is resting (dry surface or surface with puddles). These diagrams (Figures 6–8)
are plotted for the most interesting case, namely, under the assumption that − cos θY −λ <
0 < − cos θY +λ. It will turn out that this assumes for the flat surface the advancing resp.
receding contact angle to be above resp. below 90◦. We use the following notation

r∗ :=
1 − ϕ

− cos θY + λ
+ ϕ,

r∗∗ :=
1 − ϕ

cos θY + λ
+ ϕ,

which gives r∗ < r∗∗ for the hydrophobic case − cos θY > 0 (the case shown below) and
vice versa.
Figure 6 shows the negative cosines of the stable contact angles depending on the roughness
r for the case of W–drops on a dry surface. The region of stability is obtained from four
bounds, which come from (4) by comparing with different types of test drops L̃. For the two
upper boundaries, W/D and CB/D, the instability arises because the contact angle is too
big. Therefore it is energetically advantageous to advance along the solid, i.e. the relevant
comparison configurations L̃ in (4) are drops which have already advanced. The newly wet-
ted area can have two different types of microstructure: either W– or CB–type. Advancing
with W–type microstructure gives instability if − cos θ ≥ W/D := r(− cos θY +λ). Whereas
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CB/D

P/W

D/W

W/D

0

1

− cos θ

r
−1

− cos θY + λ

− cos θY
− λ

region of stability

r∗ r∗∗

Figure 6: Stable contact angles for Wenzel drops on a dry surface

advancing with CB–type implies instability if − cos θ ≥ CB/D := ϕ(− cos θY +λ)+1−ϕ.
The two lower bounds, D/W and P/W , arise because the contact angle is too small.
It is energetically better to recede from some area previously wetted. There are two
possibilities to dewet area. Either the surface left behind is dry (D/W ) or there are
puddles on it (P/W ). This gives instability if − cos θ ≤ D/W := r(− cos θY − λ) and
− cos θ ≤ P/W := ϕ(− cos θY − λ) − 1 + ϕ.

Summarizing, the hysteresis interval for a Wenzel drop on a dry surface is given by

− cos θ ∈











(

r(− cos θY − λ) , r(− cos θY + λ)
)

if r ≤ r∗ ,
(

r(− cos θY − λ) ,− cos θCB + λϕ
)

if r∗ ≤ r ≤ r∗∗ ,
(

− 1 + ϕ + ϕ(− cos θY − λ) ,− cos θCB + λϕ
)

if r∗∗ ≤ r ,

(7)

where − cos θCB := 1 − ϕ − ϕ cos θY . Notice that (7) provides λ with a physical interpre-
tation, namely, that of half the hysteresis interval for an ideally flat (r = 1) surface.
Our model implies a different diagram for CB–drops on a dry surface, see Figure 7. The
advancing (upper) bounds are the same as for W–drops, as the microstructure under the
drop does not play a role for advancing variations. The bound for advancing with W–
type microstructure is not relevant as we get a new bound I which comes from interior
variations. That is, we compare the drop L0 of CB–type with a drop L̃ which wets the
cavities underneath L0, and obtain that CB–drops are never stable for r < r∗. For receding
variations it is only relevant to recede with a dry surface. We get instability if − cos θ ≤
D/CB := ϕ(− cos θY − λ) + 1 − ϕ.

Summarizing, the hysteresis interval for a Cassie–Baxter drop on a dry surface is given by

− cos θ ∈
(

− cos θCB − λϕ ,− cos θCB + λϕ
)

for r ≥ r∗, (8)

which gives a narrower hysteresis interval than for the flat surface, as 2λϕ < 2λ. In the
limit ϕ → 1 we have r∗ → 1 and the hysteresis interval tends to (− cos θY −λ,− cos θY +λ)

9



I

CB/D

D/CB

− cos θ
1

r
−1

− cos θY
− λ

− cos θCB
− λϕ

− cos θCB + λϕ

r∗

region of stability

Figure 7: Stable contact angles for Cassie–Baxter drops on a dry surface

which is the interval for the flat surface (r = 1). On the other hand in the limit ϕ → 0
of small areal density of solid tops, − cos θCB → 1 and the width of the hysteresis interval
tends to zero. The material behaves ultrahydrophobic. Notice that Diagram 7 and Equa-
tion (8) are valid independent of the sign of cos θY (hydrophobic or hydrophilic material).

We now turn to drops on a surface with puddles. Figure 8 shows the stable contact angles
for W–drops on such a surface.

W/P

P/W

E

r

− cos θ

1

−1

− cos θY + λ

r∗∗

region of stability

Figure 8: Stable contact angles for Wenzel drops on a surface with puddles

The bound W/P := ϕ(− cos θY +λ)−1+ϕ comes from advancing with W–type microstruc-
ture. For receding from wetted area we get the same bounds as for the dry surface because
the surface structure is unimportant for receding from wetted area. The bound D/W does
not play any role since there exist destabilizing exterior variations E (i.e., removing one of
the puddles on the surface) which imply that puddles on a surface are instable for r < r∗∗.

Summarizing, the hysteresis interval for a Wenzel drop on a surface with puddles is given
by

− cos θ ∈
(

− 1 + ϕ(− cos θY − λ + 1) ,−1 + ϕ(− cos θY + λ + 1)
)

for r ≥ r∗∗ . (9)
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CB–drops on a surface with puddles are never stable because they have the advancing
bounds as for W–type on a surface with puddles, i.e. W/P = ϕ(− cos θY + λ) − 1 + ϕ.
On the other hand the receding bound is as for CB–drops on a dry surface, i.e. D/CB =
ϕ(− cos θY − λ) + 1 − ϕ > W/P .

The diagrams in Figures 6–8 are plotted under the assumption − cos θY − λ < 0 <
− cos θY + λ, for which λ can be adjusted. Notice that, they show the hydrophobic case,
− cos θY > 0. The same diagrams hold for a hydrophilic material but with r∗ > r∗∗. In
the case − cos θY − λ > 0, W–drops become unstable for r > ϕ−1

cos θY +λ
+ ϕ and puddles on

the surface are never stable. For − cos θY + λ < 0, CB–drops are never stable.

3.2 Quasistatic evolution

Our model describes the time evolution of a drop driven by some external force. This force
is represented by moving the upper interface point in time, see Section 2.2. The system
responds in two steps. First the contact angle changes, with no motion of the contact
line as long as the contact angles satisfy criterion (5). Then the triple point jumps to the
next cavity. Hereby it exhibits the microstructure with respect to which the contact angle
became unstable. That is the microstructure which gives the relevant bound in Section
3.1.
Advancing and receding the drop more than once gives a hysteresis loop in the configu-
rations of the drop and it finally leads to configurations that are stable with respect to
further movements along the solid. The configurations shown in Figure 9 are the ones
stable in this sense. To be more explicit: For fixed r, e.g. r ∈ (r∗, r∗∗) start with any kind
of configuration, e.g. W–type on a dry surface. Then force the drop to recede. It will
stay W leaving a dry surface behind. When forced to advance, however, the advancing
front will turn to CB. If the whole drop starts moving, it will become a CB drop on a dry
surface, and subsequent loading cycles will produce a stable (and smaller) hysteresis cycle
with respect to the one exhibited during the first loading cycle.

Wenzel type drop

on dry surface

Cassie–Baxter type drop

on dry surface

or

1 rr∗ r∗∗

Cassie–Baxter type drop on dry surface

Wenzel type drop on surface with puddles

Figure 9: Stable configurations in the hydrophobic case

4 Connection with experiments

Figures 6 and 7 are in close qualitative agreement with the experiments in [LQ], which
are done on a dry surface. The authors find a strong dependence of the stable contact
angles on the type of drop: W–drops show a much stronger contact angle hysteresis than
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CB–drops, which is also predicted by our model. Figure 2 shows the separation of receding
contact angles depending on the pressure pushing the drop onto the surface. The authors
conjecture that high pressures induce W–drops, which have low receding contact angles.
Whereas low pressures lead to CB–drops with high receding contact angles. Notice that
the surface material used in [LQ] satisfies the condition valid for our diagrams, namely,
− cos θY +λ > 0 > − cos θY −λ, which is that the receding (resp. advancing) contact angle
for the flat surface are below (resp. above) 90◦.

Our model sees the metastability of CB–drops pointed out in [LQ]. Here, as well as in the
more recent studies [ME] and [BM], a transition from a CB–drop to a W–drop is observed,
accompanied by a decrease in the contact angle. It is by now well known that the decrease
of contact angle signals a transition from a higher to a lower energy state (see [P], [AD]).
Our model can reproduce this transition in so far as it allows for metastable drops. By
defining r̄ as the roughness where W and CB drops are of same energy, we get

r̄ :=
1 − ϕ

− cos θY
+ ϕ > r∗,

which leaves a range (r∗, r̄) where CB drops are stable but do not minimize surface energy.
Similarly for r > r̄, W drops are stable in spite of their high surface energy.

The dependence of the stable contact angles on the drop type also explains the highly
non–monotone behavior in Figure 1. The non–monotonicity comes from a jump in the
type of drop. Figure 1 can be seen as a superposition of the diagrams in Figures 6 and
7. The choice of which diagram is valid can be done with the same arguments leading to
Figure 9. For a dry surface the valid diagram changes at r∗, where we get a jump in the
receding contact angle. This is because the hysteresis interval for a CB–drop, the stable
one for r > r∗, is much narrower than the hysteresis interval for a W–drop, the stable type
for r < r∗.
Note that our model predicts a roughness–induced decrease of the receding contact angle
for W–drops only in the case − cos θY − λ < 0. This is not in agreement with the exper-
iments in [DJ], which show a reduction of the receding contact angle with roughness also
for surfaces which, when flat, exhibit contact angles slightly above 90◦.

Our model can also reproduce the arguments in [H], that CB–drops can even be stable
on a hydrophilic surface. Figure 7 is valid independent of the sign of cos θY hence, in
particular, it applies to the hydrophilic case cos θY > 0. The surface then behaves as
ultra–hydrophobic for CB–drops with very little microscopic contact, since − cos θCB :=
1−ϕ(1+cos θY ) > 0 for small ϕ. Multiscale features in the surface roughness, suggested by
the structure of some plants (see [BN]), are sometimes invoked to explain this phenomenon
(see [H]). However, hydrophobicity may come just as well from metastable configurations
with very little contact with the surface, and it is possible to induce little contact through
spikes standing far apart in the surface, without multiscale asperities.

12



5 Proofs

5.1 Stable contact angles

We look at a fixed drop L0. Without loss of generality assume Z(L0) = 0. According to
(4) we compare L0 to all drops L̃ which agree with L0 on the non–solid boundary of B.
Rewrite (4) as

0 ≤ fL0(L̃, X(L̃)) := E(L̃) − E(L0) + dist(L̃, L0) . (10)

We consider drops L̃ whose microstructure agrees with L0 inside its contact area but L̃ has
advanced resp. receded. The area advanced resp. receded by L̃ contains many cavities as
we are considering macroscopic variations. Therefore

fL0(L̃, X(L̃)) =
(

X(L̃) − X(L0)
)

C(L0, L̃) +

√

1 + (X(L̃))2 −
√

1 + (X(L0))2 ,

where C(L0, L̃) is the cost (i.e., the energy difference plus the dissipation distance) to
pay for one cavity. We estimate this cost by a suitable average, in the same spirit of the
homogenized surface tensions defined in [AD], where the interfacial energy is evaluated
rigorously by homogenization methods in the limit of small scale asperities.
Look at C(L0, L̃) for advanced area. This does not depend on the drop type L0 but on
the surface (with or without puddles) and the microstructure of L̃ on the advanced area.
There is the possibility to advance with:

1. W–type on a dry surface: C(L0, L̃) = r(− cos θY + λ) = W/D

2. CB–type on a dry surface: C(L0, L̃) = ϕ(− cos θY + λ) + 1 − ϕ = CB/D

3. W–type on a surface with puddles: C(L0, L̃) = −1 + ϕ + ϕ(− cos θY + λ) = W/P .

Similarly the cost for receded area does not depend on the surface type but on the mi-
crostructure of L0 and the surface that is left behind:

1. W–type leave behind a dry surface: C(L0, L̃) = r(− cos θY − λ) = D/W

2. CB–type leave behind a dry surface: C(L0, L̃) = ϕ(− cos θY − λ) + 1 − ϕ = D/CB

3. W–type leave puddles behind: C(L0, L̃) = −1 + ϕ + ϕ(− cos θY − λ) = P/W

4. CB–type leave liquid tops behind: C(L0, L̃) = 1 − 2ϕ.

These costs are the bounds for the cosines of the stable contact angles. To see this note
that fL0(L0, X(L0)) = 0. We show that this is not a local minimum of fL0 , if − cos θ(L0)
is above resp. below C(L0, L̃). This implies instability by (4) and (10).

d

dX(L̃)
fL0(L̃, X(L̃)) = C(L0, L̃) +

X(L̃)
√

1 + (X(L̃))2

= C(L0, L̃) + cos θ(L̃).
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But fL0 has no local minimum at L0 if the derivative for X(L̃) > X(L0), i.e. for advancing
variations, is negative. Since we take the derivative at position X(L0) it is negative for one
of the microstructures if − cos θ(L0) > min{C(L0, L̃)}. Analogously, L0 is unstable with
respect to receding variations if − cos θ(L0) < max{C(L0, L̃)}. This gives the bounds on
the regions of stability in Section 3.1. Note that the receding bound for CB–drops which
leave liquid tops behind (these configurations were suggested in [RF]) is not relevant in
our model because

max{1 − ϕ − ϕ(cos θY + λ) , 1 − 2ϕ} = 1 − ϕ − ϕ(cos θY + λ).

The vertical bounds I and E in Section 3.1 come from interior and exterior variations.
This means that we compare the drop L0 with a drop L̃ having the same contact angle
and microstructure as L0 but one of the cavities interior or exterior to the contact area
filled with vapor or liquid different from L0. For example, for the I bound, the stability
criterion (4) (applied to a cavity L0 filled with vapor, which is compared to a water-filled
cavity L̃) reduces to

0 ≤ E(L̃) − E(L0) + dist(L̃, L0)

= −r cos θY −
(

1 − ϕ − cos θY ϕ
)

+ λ(r − ϕ) .

This is satisfied if and only if

r ≥
1 − ϕ

− cos θY + λ
+ ϕ = r∗ .

The argument for the E bound is analogous, and it leads to the inequality r ≥ r∗∗ involving
the second critical roughness coefficient r∗∗.

5.2 Quasistatic evolution

To prove that the time evolution described in 3.2 is consistent with our model we have to
check (5) and (6).
Condition (5) is satisfied by construction. As long as the triple point does not move no
energy is dissipated, therefore Diss(L, [t0, t)) = 0. This turns (6) into:

E
(

t, L(t)
)

− E
(

t0, L(t0)
)

=

∫ t

t0

∂tE
(

s, L(s)
)

ds,

which is satisfied as E is t-differentiable. Now look at a jump, and let t∗ be the jump time.
At t∗ equation (6) turns into

E
(

t∗, L(t∗+)
)

− E
(

t∗, L(t∗−)
)

+ Diss(L, [t∗, t∗]) = 0. (11)

By definition,
Diss(L, [t∗, t∗]) = dist

(

L(t∗+), L(t∗−)
)

.

Therefore (11) is nothing but (5) written with equality, which is satisfied at the boundaries
of the stability region. Here L(t∗+) has the microstructure of L̃ with respect to which
L(t∗−) became unstable. Finally, notice that (6) is an additive equation.
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