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a b s t r a c t

Modal curvatures have been claimed to contain local information on damage and to be less
sensitive to environmental variables than natural frequencies. However, simply using the
difference between modal curvatures in the undamaged and damaged states can result into
localization errors, due to the complex pattern that this quantity presents when consider-
ing broad damages or higher order modes. In this paper, we consider weakly damaged con-
tinuous beam and we exploit a perturbative solution of the beam equation of motion to
obtain an analytical expression of the modal curvature variations in terms of damage dis-
tribution. The solution is then used to introduce a filtering technique of the modal curva-
ture variation and to set up the inverse problem of damage localization based on modal
curvatures only. Using numerical examples and experimental tests, we show that modal
curvatures can be used for precise damage localization, once properly filtered.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Structural health monitoring techniques based on the measurement of modal response have been the subject of much
research in the last decades [1–4] fostered by the availability of low-cost, reliable sensors suitable to monitor large civil con-
structions including buildings, bridges and aqueducts [5–10].

The change of natural frequencies has been one of the first approaches used in damage detection [11–16], thanks to the
easiness and robustness of their measurement in comparison to other modal quantities. The intrinsic drawback in the use of
modal frequencies is, though, their limited sensitivity to local damage of moderate severity, which might lead to significant
errors in the identified damage parameters. This can be particularly critical in the presence of environmental factors like
variations of temperature or humidity, which can cause changes of natural frequencies of the same order of magnitude of
those induced by damage [17,10]; as such, frequency changes can be erroneously related to the presence of damage. What
is more, the inverse problem of damage detection techniques based on eigenfrequencies is often ill-conditioned [2].

Some of these limitations can be overcome by using the changes of modal displacements [18] and curvatures [19,20],
which are claimed to be more sensitive to local damage. Such an approach was explored in the last decade of the last century
by Pandey et al. [21] and, since then, has given rise to quite a number of follower studies investigating the use of modal cur-
vatures as to solve the problem of damage localization and assessment in beams [19,22–26], arches [27], and beam-like
structures [28–31].
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Compared to other localization techniques, modal curvatures have several advantages. In fact, for narrow damage, such as
a notch, the variation of modal curvatures localizes in the neighborhood of the damage [21,27]. Moreover, curvatures are less
sensitive to environmental factors than natural frequencies. These favorable properties lead us to examine more in-depth the
effectiveness of modal curvature variations and to extend a procedure for damage localization initially proposed in [20] for
single span beams, and based on the change of modal curvatures between the undamaged and damaged states. Although
appealing, the use of curvatures for damage localization has to be pursued carefully. To begin with, an important point is
their actual measurement. The derivation of modal curvatures from modal displacements by means of numerical differen-
tiation is an ill-conditioned problem. In the literature, several procedures have been presented to deal with this issue, includ-
ing spline interpolation [32], wavelet transform [33], modified Laplace operator [34] or space-wavenumber Fourier
transform [35]. All these techniques require a high number of measurement points to obtain reliable values of modal cur-
vatures and to be accurate in damage localization [29,33]. A direct measurement of curvatures can be substantially obtained
through the time-history of strains on the surface of the beam, which may be related to curvatures by accepting the hypoth-
esis that cross-sections remain plane. However, in this case, due to the expression of the frequency response function, nor-
malized mode shapes can be obtained only with some approximation [29,36].

In this paper, a perturbative solution of the dynamics of the damaged Euler–Bernoulli beam is used to determine an ana-
lytical approximation of the relationship between the difference of modal curvatures in the undamaged and damaged states
and the damage distribution. In this way, the obtained closed form expression highlights the different contributions that
make the modal curvature difference not concentrated at the damage location as, indeed, one would expect [21,37], and
point out the necessity of the modal curvatures to be filtered by these spurious terms. Several damage cases are considered
including single and multiple damages as well as narrow and extended. The applicability of the proposed procedure is
demonstrated with reference to experimental tests carried out by the authors.
2. A perturbative solution for the dynamics of continuous beams

An analytical expression of the transverse modal response of a weakly damaged continuous beam governed by dynamic
Euler-Bernoulli equation is derived by a perturbative approach. A straightforward expansion of the solution is carried out in
terms of the smallness parameter e that represents the damage intensity.

The governing equations of the transverse motion of the n-spans beam shown in Fig. 1 in dimensionless form are
v ivð Þ
1 s; tð Þ þ a4

1 €v1 s; tð Þ ¼ 0
. . .

1� eg sð Þð Þv 00
i s; tð Þ� �00 þ a4

i
€v i s; tð Þ ¼ 0

. . .

v ivð Þ
n s; tð Þ þ a4

n
€vn s; tð Þ ¼ 0

8>>>>>><>>>>>>:
; s 2 0;1½ �; t 2 0;þ1½ Þ ð1Þ
in terms of the parameters a4
i ¼ qi‘

2
i =EIi, and of the damage function g sð Þ (maxs2 0;1ð Þg sð Þ ¼ 1), representing a stiffness varia-

tion, here assumed localised in the i-th span. It is also assumed that g sð Þ is a smooth function with compact support, i.e.,
it is non-zero only in the damaged region. Here and henceforth, an overimposed prime will denote differentiation with
respect to the dimensionless abscissa s, whereas an overimposed dot will indicate the time derivative.

The boundary conditions are prescribed to guarantee continuity of displacements/rotations and balance of forces/mo-
ments at each internal node whereas at the two ends of the beam hinged support or free boundary conditions are prescribed
(Fig. 1); namely
v1 0; tð Þ ¼ 0; v 00
1 0; tð Þ ¼ 0 or v 00

1 0; tð Þ ¼ 0; v 000
1 0; tð Þ ¼ 0

. . .

v i�1 1; tð Þ ¼ v i 0; tð Þ ¼ 0; v 0
i�1 1; tð Þ ¼ v 0

i 0; tð Þ; v 00
i�1 1; tð Þ ¼ EIi

EIi�1

‘i�1
‘i
v 00
i 0; tð Þ;

v i 1; tð Þ ¼ v iþ1 0; tð Þ ¼ 0; v 0
i 1; tð Þ ¼ v 0

iþ1 0; tð Þ; v 00
i 1; tð Þ ¼ EIiþ1

EIi

‘i
‘iþ1
v 00

iþ1 0; tð Þ;
. . .

vn 1; tð Þ ¼ 0; v 00
n 1; tð Þ ¼ 0 or v 00

n 1; tð Þ ¼ 0; v 000
n 1; tð Þ ¼ 0:

8>>>>>>>>><>>>>>>>>>:
ð2Þ
In view of the positiveness of the coefficient of the leading order terms, the solution of the PDE system (1) can be obtained
by separation of variables; namely the transverse displacement of the i-th span can be written as
Fig. 1. Geometry of the continuous beam with nþ 1 supports and n segments.
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v i s; tð Þ ¼ /i sð Þ ejxt ; j ¼
ffiffiffiffiffiffiffi
�1

p
; ð3Þ
which upon substitution in (1), by simple passages, gives the following system of ODEs
I � eN sð Þð Þ/00 sð Þ½ �00 �x2K/ sð Þ ¼ 0 ð4Þ

which is written for the sake of conciseness in matrix form, by defining: / sð Þ ¼ /1 sð Þ; . . . ;/n sð Þf g the mode shape, x the
vibration frequency, I the n � n identity matrix and K and N two diagonal matrices given by
Khk ¼
a4
h if k ¼ h

0 otherwise

(
; Nhk sð Þ ¼ g sð Þ if h ¼ k ¼ i

0 otherwise

�
: ð5Þ
One normally looks for a solution of (4) in the form
/i sð Þ ¼ ai cos aix2 s
� �þ bi sin aix2 s

� �þ ci cosh aix2 s
� �þ di sinh aix2 s

� �
; i ¼ 1; . . . ;n ð6Þ
that represents the deflected shape of the i-th span. On substituting (6) into (2), one obtains a homogeneous system of equa-
tions in the 4�n unknowns a1; b1; c1; d1; . . . :; an; bn; cn; dnf g whose non-trivial solution is found if and only if the determinant
of the coefficient matrix vanishes. This condition gives a transcendental equation in x2 whose infinite solutions represent
the modal frequencies of the continuous system. Once these characteristic frequencies are computed, one can rewrite (4)
in terms of the k-th mode shape /k and modal frequency xk:
I � eN sð Þð Þ/00
k sð Þ� �00 �x2

k K/k sð Þ ¼ 0: ð7Þ

In the following developments, we assume that both the mode shape /k and the frequencyxk are analytic function of the

damage intensity e and that xk is a simple eigenvalue. Following a classical procedure of perturbation techniques, one can
carry out a straightforward expansion for small damage intensity (see for instance [38,20]):
/k sð Þ ¼ e/k sð Þ � e/k sð Þ þ o eð Þ
x2

k ¼ ex2
k � ex2

k þ o eð Þ ð8Þ
which, upon substitution into (4), lead to the following cascade of ODEs
e/ ivð Þ
k sð Þ � ex2

k K e/k sð Þ ¼ 0 ð9Þ
/

ivð Þ
k sð Þ � ex2

k K/k sð Þ ¼ x2
k K e/k sð Þ � N sð Þe/ 00

k sð Þ
� 	00

ð10Þ
together with the boundary conditions (2) expanded in series as well.
Eqs. (9) and (10) follow the classical structure of amultiscale differential problem: the zero-th order Eq. (9) represents the

modal response of the undamaged beam; the first order Eq. (10), is governed by the same differential operator of the intact

system, but has a forcing term dependent on the zero-th order solution e/k. The solution of first order Eq. (10) /k can be
expressed as sum of a homogeneous solution, that still satisfies the boundary conditions of the zero-th order problem,

and a particular solution. On passing we also note that the mode shape vectors of the intact system e/k sð Þ satisfy the orthog-
onality condition (see A)
e/k; e/l

D E
¼

Xn
i¼1

Z 1

0

e/ki sð ÞKii
e/li sð Þds ¼ 0; if k– l ð11Þ
and that the differential operator in (9) is self-adjoint with respect to the scalar product �; �h i just introduced; thus the eigen-
vectors are an orthogonal basis in the space of continuous and differentiable vector functions with support in 0;1ð Þ. With this

in hand, the solution of the first order problem can be expanded in terms of the eigenvector basis e/1; e/2; . . .
n o

as
/k sð Þ ¼ e/k sð Þ þ
X
l–k

bkl
f/l sð Þ ð12Þ
where the coefficients of the series bkl define the contribution of the l-th mode of the undamaged structure to the first order
variation of the k-th mode. The expression of /k in Eq. (12) leads to a norm of the first order approximation /k equal to 1� e.
In addition, it is a matter of simple calculations to show that (12) satisfies the boundary conditions (2).

In view of (12), the solution of the differential problems (9) and (10) can be computed once the coefficients bkl of the ser-
ies and the first order eiqenfrequency variation xk are known. The following derivations are devoted to calculate these two
quantities.

We start by substituting Eq. (12) into (10) and noting that Eq. (9) holds for e/k, we obtain:
X
l–k

bk l
e/ IVð Þ

l sð Þ � ex2
k

X
l–k

bklK e/ l sð Þ ¼ x2
k Ke/k sð Þ � N sð Þ e/ 00

k sð Þ
� 	00

ð13Þ
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By multiplying the previous equation by e/T
j sð Þ and integrating between 0 and 1, we get
X

l–k

bkl

Z 1

0

e/T
j sð Þe/ IVð Þ

l sð Þds� bkj ex2
k

e/j; e/j

D E
¼ x2

k
e/j; e/k

D E
�
Z 1

0

e/T
j sð Þ N sð Þe/00

k sð Þ
� 	00

ds ð14Þ
having taken into account the mode orthogonality condition (11). The integral on the right hand side of the equation is
rewritten as
Z e/T

j sð Þ N sð Þe/ 00
k sð Þ

� 	00
ds ¼ e/j q g e/ 00

k q

� 	0
� e/0

q jg e/00
k q

h i1
0
þ
Z 1

0

e/ 00 T
j sð ÞN sð Þe/00

k sð Þds ð15Þ
where the boundary term vanishes because the damage shape function g sð Þ and its derivatives vanish at the boundaries. By

using such a result together with Eq. (9) written for e/l, we arrive at
bkj ex2
j � ex2

k

� 	 e/j; e/j

D E
¼ x2

k
e/j; e/k

D E
�
Z 1

0

e/00 T
j sð ÞN sð Þe/ 00

k sð Þds ð16Þ
which gives, for j ¼ k,
x2
k ¼

R 1
0
e/00 T

k sð ÞN sð Þe/ 00
k sð Þdse/k; e/k

D E ð17Þ
and when j– k
bkj ¼
R 1
0
e/00 T

j sð ÞN sð Þe/ 00
k sð Þdsex2

k � ex2
j

� 	 e/j; e/j

D E ð18Þ
the coefficients of the series (12).
Eq. (17) expresses the requirement that the zero-th order solution must be orthogonal to the forcing term of the first

order equation, i.e., right-hand side of (10), which is a singular equation for /k; this requirement indeed represents the Fred-
holm solvability condition for the first order problem (see [38]).

Eqs. (17) and (18) give the first order perturbative solution of the direct problem for an assigned damage function N sð Þ,
which allows us to obtain an analytical expression of the modal curvature variations due to damage.

3. Damage localization through modal curvatures

The inverse problem of damage localization based on the experimental measurements of the modal curvatures is intro-
duced in this section. It is shown that one can determine the k-th modal damage shape, that is the damage shape multiplied
by the k-th modal curvature, and not the damage shape itself, that must be reconstructed from the modal contributions.

In the following, we will indicate the k-th modal curvature, i.e., the second derivative of the k-th mode shape, as
wk sð Þ :¼ /00

k sð Þ, whereas the k-th modal damage shape as
gk sð Þ ¼ eN sð Þ
ewk sð Þ
kewkk

; ð19Þ
where we have followed the notation of previous section for the modal curvature perturbation wk sð Þ ¼ ewk sð Þ � ewk sð Þ þ o eð Þ.
By exploiting a result presented in Eq. (A.3) of A, we note that the boundary terms in (A.3) cancel out for the boundary

conditions (2); accordingly the modal curvatures satisfy the orthogonality condition:
Z 1

0

ewT
l sð Þ ewk sð Þds ¼ ~x2

k
e/l; e/k

D E
¼ 0; k– l ð20Þ
that is an immediate consequence of the modes orthogonality. Therefore one can compute the norm of the modal curvatures
of the undamaged beam as:
ewk




 


2
¼

Z 1

0

ewT
k sð Þewk sð Þds ¼ ex2

k
e/k; e/k

D E
: ð21Þ
Eqs. (17) and (18) can then be written in terms of modal curvatures only:
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x2
k ¼ ex2

k

R 1
0
ewT

k sð ÞN sð Þewk sð Þds
kewkk2

ð22Þ

bkj ¼
R 1
0
ewT

j sð ÞN sð Þewk sð Þdsex2
kex2
j

� 1
� �

kewjk2
; j – k: ð23Þ
From the experimental perspective, it is particularly advantageous to deal with normalised quantities. Thus, by using (21),
we can compute
wk

kwkk
¼

ewk

kewkk
� e

1

kewkk
wk � ewk

� 	
þ o eð Þ; ð24Þ
that in view of (12) allows us to write the k-th normalised modal curvature difference as
Dwk ¼
ewk

kewkk
� wk

kwkk
¼ e

X
l–k

bkl

ewl

kewkk
: ð25Þ
Indeed by exploiting the fact that modal curvatures are an orthonormal basis, we can write the function N sð Þewk sð Þ as
N sð Þ ewk sð Þ ¼
X1
l¼1

Z 1

0

ew l sð ÞTN sð Þewk sð Þds
ewl sð Þ
kewlk2

ð26Þ
that represents a projection of the damage function over the k-th curvature. Eq. (26) can be multiplied by ewT
i ; i – k, and inte-

grated between 0 and 1 to give
e
Z 1

0

ewT
i sð ÞN sð Þewk sð Þds ¼ ex2

kex2
i

� 1
� �

kewkk
Z 1

0

ewT
i sð ÞDwk sð Þds ð27Þ
in which we made use of the norm (21) and of the definition (18).
By using the definition (19) together with (27), we can write (26) as
gk ¼ �Dwk þ
Z 1

0

ewT
k sð ÞDwk sð Þds

ewk

kewkk2
þ e

Z 1

0

ewT
k sð ÞN sð Þewk sð Þds

ewk

kewkk3
þ
X
l–k

ex2
kex2
l

Z 1

0

ewT
l sð ÞDwk sð Þds

ewl

kewlk2
: ð28Þ
Due to (25) the first integral vanishes, whereas the second can be rewritten by using the definition of x2
k in Eq. (17), that

yields
gk ¼ �Dwk þ
Dx2

kex2
k

ewk

kewkk
þ
X
l–k

ex2
kex2
l

Z 1

0

ewT
l sð ÞDwk sð Þds

ewl

kewlk2
; ð29Þ
where Dx2
k ¼ ex2

k �x2
k is k-th modal frequency variation, between the undamaged and damaged systems. Eq. (29) highlights

that the modal damage shape is related to the modal curvature variation, the measured quantity, but several other contri-
butions are present. In general, the modal curvature variation is sensitive to the damage position, the same way as for the
frequency variations; in particular, if the damage occurs in a region where the k-th modal curvature vanishes, the k-th modal
curvature variation does not give any information on the damage shape. In addition, Eq. (29) shows that the damage shape
can be evaluated only after the k-th modal curvature difference is filtered as that equation suggests; interestingly, all the
quantities that appear on the right hand side of the equation are indeed easy to measure: Dwk is the difference between
the normalised k-th modal curvatures of the damaged and undamaged beam, Dx2

k is the difference of the corresponding

modal frequencies, ewl is the l-th undamaged modal curvature divided by its norm kewlk. Dealing with normalised quantities
has the further advantage that one does not need to calculate the modal mass of the system which is often difficult to assess.

In order to evaluate the different terms that cause the modal curvature difference to have multiple peaks outside the
damage region, one can apply the same technicalities to invert Eq. (29) and obtain the expression of Dwk in terms of gk.
By making use of (25), we can write
Dwk ¼ gk �
Dx2

kex2
k

ewk

kewkk
þ
X
l–k

ex2
kex2

l � ex2
k

Z 1

0

ewT
l sð Þgk sð Þds

ewl

kewlk
; ð30Þ
which again highlights the fact that apart from the damage shape gk, the k-th modal curvature difference contains the con-
tributions of all modal curvatures. In particular, by writing Eq. (30) for the q-th span in which no damage occurs, one obtains
Dwkq ¼ �Dx2
kex2
k

ewkq

kewkk
þ
X
l–k

ex2
kex2

l � ex2
k

Z 1

0

ewli sð Þg sð Þewki sð Þds
ewlq

kew lk
; ð31Þ
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which once more shows that the modal curvature difference in the q-span is non-zero despite the damage being located at
the i-th span. This result further highlights our statement that, without proper filtering, the modal curvature difference is not
an effective quantity to be directly used for damage localization.

The accuracy in evaluation of the modal damage shape depends on the accuracy in evaluating the three terms of the right
hand side of Eq. (29), which is mainly related to the available eigenfunctions to be used in the summation (third term).
Before applying the introduced filtering technique to experimental data on a continuous beam, the simple pseudo-
experimental problem of a free-free beam is considered. For this problem most of the quantities in Eq. (29) can be obtained
in closed form, avoiding the additional numerical errors of computing the modal curvatures from the modal displacements,
thus focusing on the number of modes in the summation in Eq. (29).

In Fig. 2 three damage cases are considered whose shapes are represented by the grey area and whose intensity was
e ¼ 0:05 for all damages. For each case, selected modal damage shapes are reported for an increasing number of modes in
the summation (coloured thin lines), together with the absolute value of the unfiltered modal curvature difference (thick
blue line). In the first damage case considered, the direct use of the variation of modal curvature still gives a satisfactory
result, whereas, in all the other cases, significant peaks arise in the undamaged area, whose values are comparable with those
occurring at the correct location of damage. In most cases, the filtering technique yet reduces these spurious peaks leading to
a unique definition of the modal damage shape and a unique localization. In particular, for the case of two damages (Fig. 2
(b)), the first modal curvature variation has a significant peak in the undamaged area between the two damages that the
filtering technique eliminates. The filtered second and third modal damage shapes are shown in Fig. 2(c) and (d) in the case
of a broader damage. For case (c), the observation of g2 would be enough to localise the damage, yet g3 is reported to stress
that the modal damage shape is zero where the corresponding modal curvature (the third in this case) vanishes, leading to a
double peak in the filtered quantity. This also causes that, whatever number of modes is used to reconstruct g3, the correct
location of the damage, i.e., the maximum in the modal damage shape, is slightly shifted with respect to the actual damage
location.

All these circumstances suggest to introduce a damage index which combines the available modal damage shapes, as pro-
posed in the next section.
4. Experiments

The proposed procedure was experimentally verified by testing ABS 3D-printed beams at the laboratory of the Depart-
ment of Structural and Geotechnical Engineering, Sapienza University of Rome. Four identical specimen were 3D-printed
with different notches to simulate different damaged configurations (see the details in Table 1).

The geometry of the beam, as well as the material properties are displayed in Fig. 3, whereas pictures of the actual spec-
imen and a detail of the damage are shown in Fig. 4(a) and (b). The beam was suspended with a soft rubber band and con-
nected to an electrodynamic shaker for excitation by a metallic stinger with a circular cross-section 1 mm in diameter (Fig. 4
(c)). The ratio between the beam and the stinger bending stiffnesses was about 100 and, hence, the stinger acted like a hinge,
meaning that the rotational constraint practically vanishes and the specimen can be modelled as a continuous beam.
Fig. 2. Damage modal shapes reconstructed through Eq. (29) for an increasing number of terms in the series for (a) the first mode and a damage located at
s ¼ 0:15 and width 0:1; (b) first mode and two damages at s ¼ 0:15 and s ¼ 0:65 with widths 0:2 and 0:3, respectively; (c) and (d) second and third modes
and damage at s ¼ 0:35 and width 0:4; in all cases e ¼ 0:05. The greyed area represents the actual damage shape g sð Þ, the continuous lines represent the
absolute values of the functions gk and Dwk (thick blue line), respectively.



Table 1
Damage position xD and residual height hD of the beam cross-section in the four damage cases considered. In all cases the width of the damage was 1 mm.

D1 D2 D3 D4

xD [mm] 42.5 42.5 116.5 42.5 116.5
hD [mm] 6 4 4 4 4

Fig. 3. Geometry of the beam and ABS material properties.

Fig. 4. (a), (b) and (c) show the details of the specimen: strain gauges (a), damage (b) and stinger used to connect the beam to the shaker (c). (d) shows the
component H1 p of the Frequency Response Function in terms of strains in the undamaged (U) and damaged (D2) cases.
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The shaker was driven by a white noise input signal up to a frequency of 2500/3000 Hz. To measure the proper frequency
response function, the input force was recorded with a load cell installed at the base of the stinger. The response was mea-
sured using seven strain gauges equally spaced along the beam axis, in the damaged and undamaged cases. The beam was
slender enough (h=L < 0:1, with h height of the cross section and L beam span), to relate the strain ei measured by the i-th
strain gauge at the top flange to the curvature of the center line by wi ¼ 2ei=h. The sensors TML FLAB-6–11 foil resistance
strain gauges, with a resistance of 120 Ohm and maximum strain 5%, were installed in a quarter-bridge circuit. The sensitive
pattern of the strain gauge was 6 mm long, which permits to recover a precise measurement of local strain. This gauge length
has a frequency response limit of around 250 kHz; the data were recorded using an acquisition system with a 16-bit A/D
converter, at a sampling frequency f s ¼ 25600 Hz.

The experimental frequency response function of the system was obtained by computing the cross-power spectral den-
sity between the measured input and output signals with a resolution of 0.78 Hz, corresponding to a windowing length of
1.28 s. The frequency response function in terms of strains is tied to the modal parameters as follows:
Hij xð Þ ¼
X1
k¼1

wk xið Þ/k xj
� �

=qLx2jj/kjj2
1� x2

k þ ifrx2
k

� �
=x2

: ð32Þ
where fk is the damping of the k-th mode. Assuming that damage does not affect mass distribution, q is constant, and

mk ¼ q
R
/k xð Þ2dx ¼ qLjj/kjj2 represents the modal mass. Differently from what happens when the response is measured

in terms of accelerations, only an approximate mass normalization is obtainable if strains are measured [29,36]. However,
the use of modal curvatures normalized to unit unbinds us from these approximations.
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To summarize, the proposed damage identification methodology relies on the following steps:

1. the time-history of the modal strains is measured through strain gauges by exciting the structure with a broad spectrum
white-noise;

2. the frequency response function is calculated and the modal curvatures and modal frequencies are extracted from it;
3. the modal curvature difference Dwk is computed and used into Eq. (29) to obtain the damage shape function gk.

The different damage cases are described in Table 1, with s location of damage and hD residual height (see Fig. 3). Cases D1
and D2 include damage located just under the strain gauge #2 with two different depths of the notch, respectively with
residual height hD ¼ 3h=4 and hD ¼ h=2 of the undamaged height. Case D3 includes one damage located in between strain
gauges #5 and #6 with hD ¼ h=2. Case D4 has two notches, one located under strain gauge #2, plus a second notch located
between strain gauges#5 and#6, both with hD ¼ h=2. The values of the first four identified natural frequencies are reported
in Table 2 for the undamaged case (U), and the four cases of damage. Notice that a reduction of natural frequencies with
increasing damage is observed, but for mode 2, with the slightest damage D1. Such an increase is sometimes observed for
a low stiffness reduction, which inevitably accompanied by a reduction of mass. The combination of these two effects, along
with the experimental errors, may conceal the reduction of frequency. The reduction of the natural frequencies is also shown
by the shift of the second peak in Fig. 4 (d), which compares the modulus of the frequency response function in terms of
strains in the undamaged and damaged (D2) cases.

Fig. 5 shows the normalized modal curvatures for the first four identified modes, in the undamaged and damaged states.
Also in this case, the increase in modal curvature is rather evident when the damage is located under the strain gauge, while
it is less prominent when damage is located in-between two strain gauges (cases D3 and D4). However, the curvature not
only increases locally in the neighbourhood of damage, but presents a complex pattern, especially for higher order modes.
This is shown in the left column of Fig. 6, which reports the differences between modal curvatures in the undamaged and
damaged states for the four identified modes. In fact, modes 2 and 4 for the case D1 present peaks under strain gauge #5,
where there is no damage, moreover, mode 4 for the case D2 has a peak under strain gauge #6, where again no damage
is present, together with a shift of the first peak. What is more, when damage is located in between two strain gauges (cases
D3 and D4), the change of curvature tends to peak in a very large area between strain gauges #4–6, so that a precise damage
localization becomes difficult; this pattern may become even more involved for broad damages as shown in [20,25]. The
modal damage shape, computed through Eq. (29), is reported on the right column of Fig. 6 for the first four modes. When
compared with the left column, the peaks of the modal damage shape exhibit smaller amplitudes outside the damaged area
and, in general, present narrower peaks.

In order to use the information available from all modes and to reconstruct the damage shape g sð Þ, we introduce an over-
all index of damage, that we call Damage Index (DI):
Table 2
Natural

U
D1
D2
D3
D4
DIk ¼
XL

l¼1

1
l
gk lð Þ2 ð33Þ
that at position k weighs the modal damage shape multiplied by the inverse mode number. This approach privileges the
information from low order modes that are, in general, more reliable. A similar function was used in [39,40] for the unfiltered
modal curvatures.

In Fig. 7, the results obtained by applying Eq. (33) to the experimental data are compared with other localization tech-
niques: a Pandey-like approach based on the application of Eq. (33) to the unfiltered modal curvature differences (second
row in the array plot), an energy-based approach proposed in [41] which we call Energy Index (third row) and the Coordinate
Modal Assurance Criterion (COMAC) (see for instance Ref. [42]) (fourth row). All indices have been rescaled between 0 and 1
to properly compare them; as such, the identified location of damage is at the position where the value of the index is closer
to 1.

In accordance to the results in Fig. 6, the proposed approach gives a clear indication of the damage position in all cases.
For damage D1, which is the weakest damage examined, the procedure gives an accurate localization of the damage, whereas
all other techniques give a false indication of the damage in other position, most probably due to the peaks in the second and
frequencies in the undamaged and damaged states and their corresponding relative variations.

Mode 1 Mode 2 Mode 3 Mode 4

[Hz] % [Hz] % [Hz] % [Hz] %

324 – 721 – 1102 – 1776 –
326 �0.6 733 1.7 1049 �4.8 1746 �1.7
313 �3.4 719 �0.3 973 �11.7 1699 �4.3
300 �7.4 718 �0.4 1042 �5.4 1689 �4.9
308 �4.9 718 �0.4 1020 �7.4 1692 �4.7



Fig. 5. Experimental normalised modal curvatures for the first (a), second (b), third (c), and fourth (d) modes in the undamaged and damaged cases.
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fourth unfiltered modal curvature differences seen in Fig. 6. This problem is partially overcome in the case D2 of a more
intense damage for all the identification techniques but COMAC being non-zero in an area much wider than the actual dam-
age width. When the damage is in-between two strain gauges (case D3), both the Damage Index and the modal curvature
difference have a maximum in correspondence of the strain gauge 5; however the Damage Index has the further advantage
of being more concentrated around the actual damage location, whilst the modal curvature difference predicts a wider dam-
aged area. In the case of two damages (D4), the proposed index locates both the damaged region whereas all the other tech-
niques failed.
5. Conclusions

Curvature variation is a quantity that has recently gained interest in damage detection procedures for its local informa-
tion content and its limited sensitivity to environmental effects. Nowadays, thanks to the availability of low-cost sensors,
modal curvatures can be measured directly. However, each modal curvature has its own sensitivity to damage location,
the same way as for modal frequencies. To clarify some of the theoretical problems underlying the use of modal curvatures
in damage localization, we have obtained a perturbative solution of the equation of motion of a continuous damaged Euler-
Bernoulli beam. With this in hand, we have derived an explicit relationship between modal curvature variation and modal
damage shape. The latter is the damage function multiplied by the modal curvature shape and is apparently related to the
variation of modal curvatures, yet it contains other terms that could play a significant role. This is particularly important in
damage localization procedures based on curvatures only, as significant localization errors can occur, if the modal curvature
variation is not properly filtered. The relevance of these spurious terms depends mainly on the extension of the damage, and
its location with respect to the position of measurement points. The former is assessed by considering a pseudo-
experimental case on a free-free beam, that can be fully treated analytically, thus avoiding the additional numerical errors
introduced by the discretization. For what concerns the latter, experiments have been carried out on a beam with different
damage configurations. Several localization techniques have been compared and their capabilities in terms of damage loca-
tion were assessed.

In conclusion, when the damage is narrow and the modal curvatures are measured close to the damage, as done in
[21,37], the modal curvature variation gives accurate enough localization of the damage. In all other cases, modal curvature
variations have to be properly filtered by applying the proposed technique.



Fig. 6. Absolute value of the modal curvature difference (left column) against the modal damage shape (right column) for the four damage cases and the
four modes considered.

Fig. 7. Comparison of damage indices in the four damage cases examined.
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Appendix A. Derivations

We define on the space of continuously differentiable n-dimensional vector functions with support in 0;1ð Þ, i.e.,
C1 0;1ð Þ � . . .� C1 0;1ð Þ, that satisfy the zero-th order boundary conditions, the following scalar product
u;gh i ¼
Xn
i¼1

Z 1

0
ui sð ÞKi igi sð Þds: ðA:1Þ
with Ki i ¼ qi‘
2
i =EIi. We prove that two modal functions /k and /l that satisfy (9) are orthogonal. On doing so, we begin by

multiplying Eq. (9) by /T
l sð Þ and integrating between 0 and 1, we get:
Z 1

0
/T

l sð Þ/ ivð Þ
k sð Þds�x2

k

Z 1

0
/T

l sð ÞK/k sð Þds ¼ 0: ðA:2Þ
The first term can be rewritten as
Z 1

0
/T

l sð Þ/ ivð Þ
k sð Þds ¼

Xn

i¼1

/l i/
000
k i � /0

l i/
00
k i

� �1
0 þ

Xn

i¼1

Z 1

0
/00

l i sð Þ/00
k i sð Þds; ðA:3Þ
whereas the second term can be rewritten by multiplying Eq. (9) for /l by /T
k (k– l) and integrating between 0 and 1; by

subtracting the result with (A.2), one obtains
x2
k �x2

l

� �
/l;/kh i ¼

Xn

i¼1

/l i/
000
k i � /k i/

000
l i � /0

l i/
00
k i þ /0

k i/
00
l i

� �1
0 ðA:4Þ
in which the last term vanishes in view of the boundary conditions (2). As such, Eq. (A.4) proves the orthogonality of the
eigenmodes. On the contrary, Eq. (A.3) shows that the modal curvatures are orthogonal if and only if the boundary terms
vanish, which is indeed the case for the continuous beam on fixed supports considered in this paper.

Hereafter, we prove that the differential operator that defines the modal equation of the intact beam:
D �ð Þ ¼ d
ds4

�ð Þ �x2K �ð Þ ðA:5Þ
is self-adjoint with respect to the scalar product (A.1). In fact,
Dv;wh i ¼ v ivð Þ �x2Kv ;w
 � ¼ Ki iv 000

i wi �Ki iv 00
i w

0
i

� �1
0þR 1

0 Ki iv 00
i sð Þw00

i sð Þds�x2Ki i
R 1
0 v i sð Þwi sð Þds ¼ v;Dwh i:

ðA:6Þ
and hence, by the Spectral Theorem, D �ð Þ posses an orthogonal basis of eigenvectors
Z
/
�
j sð ÞT/

� IV

k sð Þds ¼ x
� 2

k

Z
/
�T

j K/
�
k sð Þds: ðA:7Þ
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