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A model based on a harmonic oscillator describing human walking and balance with the sinusoidal trajectory of the center of mass
of a subject during gait is presented. This model allows overcoming the traditional drift due to the double integration of raw
acceleration data. The protocol uses a single 3D accelerometer worn at the pelvis level. The system computes the spatiotemporal
gait and balance parameters when the subject is walking with or without aids. An incremental methodological approach is
proposed and followed in the implementation and accuracy assessment. Eleven healthy subjects have participated to the study
performing 6 trials over a fixed linear walking path at a self-selected speed. For reference, the protocol has imposed the
execution of 52 steps whose length has been fixed at 60 cm. Different processing methods have been implemented and tested.
The model identifies steps, walking time, and stepping frequency with an excellent reliability (absolute percentage accuracy
error< 5%). When the information about the expected step length is given to the model, the percentage error in the measure of
walking distance and speed is 3.25%. Without this input, this error rises to 4.95%, while for the anthropometric method is 3.68%.

1. Introduction

Gait analysis with optoelectronic technology represents the
reference gold standard for functional tests. Despite its recog-
nized accuracy, it is complex and expensive in time and
equipment, only few steps in a path can be analyzed and it
requires a skilled operator to perform it. From a user’s per-
spective and for the rehabilitation follow-up, it would be very
useful to identify a way to perform gait analysis with nonin-
trusive technologies and to monitor for long time in natural
conditions. These aspects are very important both for ath-
letes (amateur and professionals) and for patients during
their rehabilitation at hospital or at home. Wearable devices
allow for monitoring subject’s motor behavior everywhere
and without affecting the natural and normal executions of
movements and activities [1, 2]. In the field of wearable
devices, we can also include smart textiles, that is, fabrics that
are themselves the sensors or that can embed miniaturized
and even flexible devices in their structure or layers [3, 4].
Big data are produced, and another challenge is the develop-
ment of software algorithms to process data and to compute

the quantitative parameters we are interested in. Fusion
methods to merge data from different accelerometers and
gyroscopes have been developed to obtain the kinematics of
body segments both in specific districts and in total body
configurations [3]. Today, gait analysis with wearable devices
is possible, and research is focusing on these methods given
that they have good reliability and user-friendliness. These
systems also allow for long-term monitoring in ecologic set-
tings, that is, for collecting data of patients at home, outdoor,
and everywhere [1–5]. The design of integration between
devices and smart textiles to produce products and services
requires an interdisciplinary approach where electronic com-
ponents together with different factors concerning clothes
(anthropometric, aesthetical, elasticity, and washability) and
the environment of use (on the ground, in the air, or in the
water) must be merged [6–8].

In this frame, we have considered that wearable devices
can represent an ideal platform supporting the remote execu-
tion of common clinical motor tests for continuity of care
models. For instance, the 6MWT (six-minute walking test),
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the TUG (timed up and go), and the 10-meter walking test
with normal or maximum self-selected speed are normally
used to evaluate subject’s performance. These tests can be
easily implemented with a wearable system and also capable
to provide quantitative automatic reporting instead of the
manual measurement of distance, or time or number of
steps that are the only reported data; this aspect is relevant
to increase the functional data that such protocols could
provide for clinical assessment and also to simplify clini-
cians and patients in their profession and life. This requires
the development of a simple and reliable biomechanical
model to have a quick and efficient data interpretation.

The development of fine biomechanical models and the
improvement of signal processing through advanced analysis
algorithms open new perspectives to enhance the interpreta-
tion of the output data of wearable sensors for decision mak-
ing [2, 9, 10]. In this context, the approach we follow is the
protocol simplicity to obtain the maximum usability, which
means to use only one 3D inertial measurement unit. The
corresponding kinematic model is designed to comply with
every walking mode (at different speeds, asymmetrical due
to pathology, and supported by assistive technologies like
stick or walker) due to its simplicity but strong adaptability,
thanks to the set of harmonic oscillators that can be imple-
mented. This model is intended not to extract the joint

kinematics, but it is limited to compute the standard gait
parameters. The complete path for the validation of the
model (and related IMU-based device) in healthy and patho-
logical gait analysis is presented in Table 1. Tasks 1–7 have
been completed. This paper focuses on the achievements
from task number 2, while results of task number 1 has been
presented in [11]. Processing methods are compared with
various parameters in order to propose the best setup for gait
kinematics assessment for single IMU-based systems.

2. Theoretical Model

2.1. Biomechanical Model. The biomechanical model intro-
duced in [11] simplifies the human anatomical structure into
a rigid body with the joints which are connected to the bars
that represent the legs. Also, the legs are considered as a rigid
body hinged on an axis passing through the center of mass
(COM) without oscillations in the mediolateral (coronal)
plane or in the anterior-posterior (transverse) plane. The
swinging movement of the legs in the execution of the steps
is assumed to be an oscillation of an equivalent pendulum,
and the natural balance is obtained with the legs aligned
along the vertical during standing. The COM is a single point
where it can be assumed that the whole mass of the body is
concentrated. When a subject is at rest in a standing posture,

Table 1: The segmented validation approach to test the wearable sensor in walking.

Task
number

Rationale Protocol setup

1
Healthy subject monitoring at self-selected

natural speed

Walking over a linear path, one healthy subject only, repeated tests,
fixed step length at the natural anthropometric step length value, fixed

total distance of a traveled path, and fixed total number of steps

2
Population of healthy subjects to be monitored

at self-selected natural speed
Extension of task number 1 to a population of healthy subjects

with different gender and BMI

3
Healthy subjects to be monitored at different

walking speeds
Walking on a treadmill to evaluate the model when the subject is

moving at different speeds

4
Monitoring of pathological subjects with asymmetrical

gait at self-selected natural speed
Identification of stroke as target pathology and tests with a small

population of subjects walking over a linear path

5 Validation with respect to gold standard technology
Comparison of simultaneous recordings using gold standard reference
(optoelectronic gait analysis, video recording, and ground reaction forces

with the Davis protocol) with healthy and poststroke patients

6
Implementation of automatic execution and

reporting of functional clinical tests

Walking over a linear path, a population of healthy subjects with different
gender and BMI, repeated tests, performing the 6MWT (six-minute
walking test), the TUG (timed up and go), and the 10-meter and
50-meter walking test at normal or maximum self-selected speed

7
Extension of automatic execution and reporting of
functional clinical tests to patients using specific aids

Extension of task number 6 to a small population of poststroke
subjects with different gender and BMI and using walking aids

(stick, quadripod stick, and walker)

8
Validation with respect to standard functional

protocols
Extensive validation of task number 7 to a population of poststroke

subjects with different gender, BMI, and walking aids

9 Automatic recognition of free gait Walking from a linear path to a variable path

10
Analysis of running patterns (extension from

walking to running)
Identification and analysis of the running pattern

11 Automatic recognition of free movements
Activity pattern recognition of categories of movement

(gait, running, sit-to-stand, stairs, …)

12 Integration of metabolic indexes Validation of energy expenditure

13 Application to large population Extension of the method to different clusters of subjects
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his/her COM position is about 10 cm lower than the navel, in
the sagittal plane and in correspondence of the anterior supe-
rior iliac crests (the top of the hipbones). The external forces
acting on subject’s body are equivalent to the same forces act-
ing on the COM, whose trajectory describes the motion of
the body (Figure 1). To better explain the basics of the pro-
posed biomechanical model, the COM trajectory and the
other related parameters are considered. In the vertical and
mediolateral planes, the COM moves along an oscillating
path following a quasi-sinusoidal pattern [12, 13]. In the pro-
posed study, only the sagittal plane is considered. The trajec-
tory of COM position during walking in the sagittal plane can
be assumed to have a sinusoidal pattern as illustrated in
Figure 1. Circles highlight the COM maximum/minimum
positions in the trajectory; L is the leg length, θ is the hip
angle in the sagittal plane, and S is the step length.

When the subject is in double stance phase, hip angle is
θmax, COM descends from its highest point to the lowest
one; hCOM is the amplitude of this oscillation. Each step
(both left and right) is carried out following this phenome-
non. A simple harmonic oscillator consists of a mass m,
which experiences a single force F, which pulls the mass in
the vertical direction of the point and depends only on the
mass’s position, and is constant without being driven or
damped. Its characteristic motion is the same trajectory of
COM as in Figure 1. The use of a harmonic oscillator model
allows for exploring the human locomotion and analyzing
the correlation between the cycle of COM positions and the
cycle of walking. A set of harmonic oscillators, one for each
step cycle, is then adopted. The oscillation time allows defin-
ing the frequency and cadence of stepping.

In order to describe the swinging movement of the legs,
according to the pendulum model [11, 14], the length of step
S is given by the following equation:

S = 2∗ 2∗L∗hCOM − hCOM2, 1
where

(i) S= length of the step;

(ii) L= length of the lower limb;

(iii) hCOM=maximum amplitude of the vertical varia-
tion of COM trajectory (vertical distance between
the maximum and the minimum position of the
COM during the cycle of the step);

(iv) θ=hip angle in the sagittal plane.

L is known for each subject by anthropometric measure;
when hCOM is evaluated from acceleration data measured
by the device, (1) allows for computing S value.

If the COM of the subject moves forward with a constant
speed, it has a null acceleration in the forward direction, but
it has no null acceleration along vertical and mediolateral
directions. A direct integration of the raw accelerometer data
gives the velocities; a direct integration of the velocities gives
the positions. This double direct integration can result in an
accumulation of drift error giving wrong velocity, wrong
position, and wrong distance and therefore wrong step
length. In the literature, there are solutions to solve the drift
error so that it is possible to integrate twice the raw accelera-
tion data and to measure distance [9, 15]. By integration, the
typical percentages of error over the walking distance are
between 2.5% and 5.0% [16]. Other studies face the interpre-
tation of 3D movements of the COM with more complex
models [17–21]. Actually, it is possible to measure hCOM
without carry out a double integration. The proposal of the
harmonic oscillator wants to overcome this drift, thanks to
its intrinsic properties; the acceleration of a harmonic oscilla-
tor is directly proportional to its position. For every walking
cycle, in evaluating the hCOM amplitude, the step length S is
obtained using (1). The incremental traveled distance is the
incremental sum of these steps [11]. We evaluated the step
length also through a correlation with anthropometric mea-
sures. It defines the parameter C as the proportional coeffi-
cient between subject’s height and step length in function of

S

hCOM

S

COMmax

COMmin

COMmax

L L L L
𝜃

Figure 1: The walking pattern of a single gait cycle: sinusoidal oscillation of the COM in the sagittal plane.
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gender and gait speed as shown in Table 2. We have pro-
duced the values of C from anthropometric data of Swedish
adult people reported in [22, 23] assumed as the representa-
tive of the Caucasian population. The reference values of
Table 1 to define low, normal, and fast speed are initially
derived from the same data. Equation (2) allows computing
the mean anthropometric step length Santh:

Santh = C ∗H 2
During data processing, in some algorithms, Santh is used

as an average reference value for model prediction as
described later in the proper section.

2.2. A Model for the Computation of the Base of Support
(BOS). The base of support is “the area of ground surface
(between and beneath the feet) covered by the body silhou-
ette in an erect subject; the wider the base of support, the
greater the stability of the erect body; the center of gravity
is more easily maintained within the base of support” [24].

In order to compute the base of support (BOS), we define
(Figure 2)

(i) S= length of the step;

(ii) LF= length of the single foot to the ground;

(iii) WF=width of the single foot to the ground;

(iv) EW=outer distance between the feet when the
subject is standing at rest with natural balance;

(v) EWstep = outer distance between the feet when the
subject is stepping.

When the subject is standing (Figure 2(a)), the BOS is

BOSrest = EW∗LF 3

When the subject makes a step (Figure 2(b)), the
BOSstep is

BOSstep = EWstep ∗LF + S∗WF 4

If the distance between the feet increases, then the BOS
and the stability of the subject increase.

When the speed increases, EWstep decreases. If we label
BOSstep0, the BOS associated with step0, and BOSstep1, the
BOS associated with the next step1, the following formula
can be obtained (Note: if the speed is constant, then P has a
value equal to 1 and the second component is null):

BOSstep1 = P∗BOSstep0 + 1 − P ∗ S∗WF , 5

where P = EWstep1/EWstep0.

2.3. BOSModel withWalking Aids: Stick in the Hand. The use
of a walking aid requires some adjustments in the calculation
of the BOS, with the request of some additional input param-
eters. If the subject uses a walking stick, we considered that
when the subject is standing (Figure 3(a)), it is placed on
the ground at a distance Wstick from the outer midpoint of
the corresponding foot; we regard Wstick as constant in all
the way. The stick contribution BOSstickrest to BOS is

BOSstickrest =Wstick ∗
LF
2 6

Initially, at rest, the total BOS is
BOStotstickrest = BOSrest + BOSstickrest 7

When the subject moves a step (Figure 3(b)), one of
the foot and the walking stick are in new positions so the
BOS changes:
BOStotstickstep = BOSstep + BOSstickstep, 8

BOSstickstep = BOSstickrest + BOSstickvar, 9

BOSstickvar =
1
2 ∗ EW −WF ∗ S −

LF
2

+Wstick ∗ S
10

For each step, in the computation of BOSstickvar (10), the
first term depends on the length and width of the steps and
the second one depends on how the walking stick is put on
the ground.

When the speed increases, EWstep decreases. If we label
BOSstickstep0, the BOSstickstep associated with step0, and BO
Sstickstep1, the BOSstickstep associated with the next step1,
the following formulas can be obtained:

Table 2: Coefficients to compute the step length from subject’s
stature depending on gait speed and gender.

Speed Low< 0.90m/s Normal (0.90–1.40m/s) Fast> 1.40m/s

Male 0.2928 0.3422 0.3956

Female 0.3102 0.3539 0.3994
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Figure 2: Evaluation of the base of support (BOS). The dark areas
are the projection at ground of left and right feet. (a) The subject
is standing. Equation (3) computes BOS. (b) The subject is
stepping. When the subject moves the foot to step, the BOS
presented in (a) changes. When the subject has complete support
in double stance, the feet take the positions as in (b) and (4)
computes new BOS.
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BOSstickstep1 = BOSstickstep0 + BOSstickstepP,

P =
EWstep1
EWstep0

,

BOSstickstepP = P − 1 ∗
EW
2 ∗ S −

FL
2

11

If the speed is constant, then P has a value equal to 1 and
the second factor is null. If the speed should unrealistically
increase (because the subject who uses the walking stick is
not healthy) until the feet are on the same line (running),
then EWstep1 =WF and

BOSstickvar =
1
2 ∗ Wstick ∗ S 12

2.4. BOS Model with Walking Aids: The Quadripod Stick.
If the subject uses a walking quadripod stick, it is consid-
ered that when the subject is standing (Figure 4(a)), it is
placed on the ground at a distance h from the outer mid-
point of the corresponding foot; therefore, h is assumed

constant. The stick contribution BOSstickrest to BOS is com-
puted as follows:

BOSqstickrest =
LF + b ∗ h + a

2 13

Initially, at rest, the total BOS is

BOStotqstickrest = BOSrest + BOSqstickrest 14

When the subject moves a step (Figure 4(b)), one of the
foot and the walking quadripod stick are in new positions
so the BOS changes:

BOStotqstickstep = BOSstep + BOSqstickstep,
BOSqstickstep = BOSqstickrest + BOSqstickvar,

BOSqstickvar =
1
2 ∗ EW −WF ∗ S −

LF
2 + b

2

+ h + a ∗ S

15
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Figure 4: Evaluation of the BOS when the subject walks using a walking quadripod stick (black rectangle). (a) The subject is standing. (b) The
subject is walking. The distance h between the walking quadripod stick and the foot is constant in all the way. The area 1 is the BOS without an
aid. Area 2 is the residual increased BOS because the walking quadripod stick is in use.
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Figure 3: Evaluation of the base of support (BOS) when the subject walks using a walking stick (circle). (a) The subject is standing. (b) The
subject is walking. The distanceWstick between the walking stick and the foot is constant in all the way. The area 1 is the BOS without an aid.
Area 2 is the residual increased BOS because the walking stick is in use.
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For each step, in the computation of BOSstickvar (10), the
first term depends on the length and width of the steps and
the second one depends on how the walking stick is put on
the ground.

When the speed increases, EWstep decreases. If we label
BOSstickstep0, the BOSstickstep associated with step0 and BO
Sstickstep1, the BOSstickstep associated with the next step1,
the following formulas can be obtained:

BOSstickstep1 = BOSstickstep0 + BOSstickstepP,

P =
EWstep1
EWstep0

,

BOSqstickstepP = P − 1 ∗
EW
2 ∗ S −

LF
2 + b

2

16

If the speed is constant, then P has a value equal to 1 and
the second factor is null. If the speed should unrealistically
increase (because the subject who uses the walking quadripod
stick is not healthy) until the feet are on the same line (run-
ning), then EWstep1 =WF and

BOSqstickvar =
1
2 ∗ h + a ∗ S 17

2.5. BOS Model with Walking Aids: The Walker. The evalua-
tion of the BOS when the subject walks using a walker is as
reported in Figure 5. The walker has the width Wwalker and
length Lwalker. We assumed that the walker only moves for-
ward. EW is constant (the movement is low and constant)
and Wwalker = EW. The area of the walker (Figure 5(a)) is
described by the following formulas:

BOSwalker =Wwalker ∗Lwalker 18
If the distance at rest between the foot line and the walker

is denoted da, we considered an area.

BOSwalker0 =Wwalker ∗da 19

When the subject moves the walker for a certain distance
ds (Figure 5(b)), BOS increases as follows:

BOSwalker1 = BOSwalker0 +Wwalker ∗ds 20

If the subject moves a step (Figure 4(c)), this area
becomes

BOSwalker2 = BOSwalker1 − Wwalker + LF ∗
S
2 21

Initially, in standing, the total BOS is
BOStotwalkerRest0 = BOSwalker0 + BOSwalker + BOSrest 22

When the subject moves only the walker standing still
with his feet, the area is

BOStotwalkerRest1 = BOSwalker1 + BOSwalker + BOSrest 23
When the subject moves a step, the total BOS becomes

BOStotwalkerStep = BOSwalker2 + BOSwalker + BOSstep 24

The width of footstep is measured while the subject is
standing at the starting point of the test; this initial value is
then multiplied with the coefficients obtained by the linear
interpolation of the factors depending on speeds provided
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Figure 5: Evaluation of the base of support (BOS) when the subject walks using a walker. The area 3 is the walker with dimensionWwalker (w)
and Lwalker (l); the area 1 is the BOS without the aid; the area 2 is the BOS between the subject and the walker. (a) The subject is standing. (b)
When the subject moves the walker forward a distance ds, the areas 1b and 3b are constant and the area 2b increases. (c) The subject is
walking. Areas 1a and 1b are BOSrest. Area 1c is BOSstep. Area 2a is BOSwalker0. Area 2b is BOSwalker1. Area 2c is BOSwalker2. Areas 3a, 3b,
and 3c are BOSwalker.
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by Orendurff et al. [12], with proper weighting coefficients
according to subject anthropometry.

2.6. Pace Evaluation. The pace parameters (Figure 6) are
computed according to the following formulas:

Pacei = S2i + EW −WF 2,

φi = arctan Si
EW −WF ,

φ = φlef t + φright ,

CWE = φ

180° ,

25

where i is the side of the body (left or right), φ is the pace
angle, and CWE is the coefficient of walking efficiency.

3. Materials and Methods

3.1. Experimental Setup. In order to measure the acceleration
of COM, the IMU must be placed near the COM itself.
For this reason, the experimental protocol uses a single
IMU—for the maximum simplification of the procedure
and equipment—with a triaxial accelerometer on the pelvis
of the subjects next to the second sacral vertebra (Figure 7).
An elastic belt with a pocket firmly fixes the device to the
body. This is done to avoid artifacts in raw data originating
frommovements of the device with respect to the COM posi-
tion. A properly sized element is used to align the device
along the vertical direction as gravity force acts.

The wearable 3D accelerometer [25] has size of 85 (l)× 53
(w)× 16 (h) mm, weight 70 g, 4 digits LCD, on board ARM7
microprocessor, and 128Hz sampling frequency of raw
accelerations. This device logs 3D accelerations signals into
the internal memory (up to three days of continuous
monitoring) which can be downloaded at the end of the
acquisition by Bluetooth® data transmission. Therefore,
data storage allows also for the recording of consecutive tests.
IMU calibration, data analysis, and data processing are
performed offline.

Eleven subjects (six males and five females whose anthro-
pometric data are reported in Table 3, aged between 24 and
55 years with mean value of 38 years) have been examined.
The weight of the subjects varies from 54 to 85 kg (mean
value 70 kg). Their height has ranged from 1.58 to 1.92m
(mean value 1.73m). Their BMI has ranged from 17.6 to
29.6 (mean value 23.4). Santh has been calculated with (2)
and the C coefficients of Table 2; it has ranged from 55.9 to
65.7 (mean value 60.0 cm).

Before starting the acquisitions, the subject has made
some practice walking along the testing path, according to
its need. When the subject feels ready and practiced with
the environment and the setup, the test can start. Each sub-
ject is asked to walk over a linear path of 31.2m at a self-
selected speed. 52 markers (60 cm apart) are placed on the
path to drive the position of the tip of the foot at each step.
This was done in accordance with the intersubject average
value of the step length and to have a standardization of this
parameter. Each test session is repeated six times with a rest
period of about 1 minute between the end of the recording
and the start of the next tests in which the subject is asked
to stand up still. The device is unworn when all six tasks
are completed, and data are downloaded. All subjects walk
with their shoes. The walking time is not constant depending
on the self-selected subject’s speed. The step length S has a
fixed value of 60 cm, so that 52 steps are necessary to com-
plete the linear path. These values are the true imposed values
used as reference for accuracy assessment with a controlled
setup. Shoes are included for anthropometric measurement
on the initial setup. The following anthropometric segments,
measured while the subject is standing, are given as input to
the model: lower limb (ground-greater trochanter), ground-
malleolus, lateral condyle-greater trochanter, malleolus-
lateral condyle, and fifth metatarsal-malleolus. The width of
the foot, length of the foot, and outer distance between the
feet are acquired to the ground when the subject is resting
in natural balance.

3.2. Data Processing. The raw acceleration processing is imple-
mented inMATLAB© software suite. Twomethods have been
implemented and analyzed: the only two differences concern

Stride

Right pace
Left pace

Left step

Right step

Direction of walking

Pace angle

Figure 6: Pace parameters when the subject walks.

IMU sensor (triaxial accelerometer)

Elastic belt with pocket

Vertical alignment element

Figure 7: The system setup on the back of the subject.
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the cut-off frequency of the Butterworth low-pass filter
applied to the raw signals and the cut-off threshold for the
hCOM amplitude. Raw data have showed that without
proper filtering and thresholding, the measurement of the
hCOM can be overestimated. The hCOM threshold works
only on the amplitude; the signal periodicity is preserved.
The hCOM is a distance and so we used a relative measure
unit to cut off its amplitude variation over time. Different
processing modes (with small difference among them) are
available and have been tested in reliability.

3.3. Processing Method A. Raw data has been filtered with a
5th-order passband Butterworth filter (band: 0.5–4Hz) to
identify the peaks. To assess S, we have applied the harmonic
oscillator model to the original raw signals filtered with a
low-pass 19th-order Butterworth filter. Anteroposterior, ver-
tical, and mediolateral acceleration have, respectively, the fol-
lowing cut-off frequencies: 6Hz, 7Hz, and 8Hz. The choice

of these values depends on the power spectrum analysis of
raw signals. The hCOM evaluation is carried out by applying
a cut-off threshold of 6 cm to the double of the maximum
amplitude of a COM pattern (Figure 8). The length distance
between the maximum and the minimum for every COM
oscillation is passed to the model as the identified amplitude.
The time between two consecutive vertical peaks is the
single-step time (Figure 9). The analysis of mediolateral
acceleration allows for the identification of the first right or
left leg support and the assessment of the asymmetry of right
and left steps [26].

3.4. Processing Method B. The processingmethod A fits to and
is applied to the analysis of data from subjects walking with a
constant step and a constant velocity. These constraints
imply a controlled setup, but normally subjects behave differ-
ently. To approach the natural walking setup in which the
step length and speed of the subject can be variable, we

Table 3: Anthropometric data of the subjects (legend: w=weight, h=height, A= age, BMI = body mass index, G= gender, Santh =mean
anthropometric step length).

Subj. number parameter 1 2 3 4 5 6 7 8 9 10 11

w (kg) 68 56 70 85 54 67 70 74 77 65 80

h (cm) 167 162 175 192 175 173 179 158 164 172 183

A (years) 46 25 24 31 38 48 40 32 55 44 35

BMI 24.4 21.3 22.9 23.1 17.6 22.4 21.8 29.6 28.6 22.0 23.9

G (m or f) m f m m f f m f f m m

Santh (cm) 57.1 57.3 59.9 65.7 61.9 61.2 61.3 55.9 58.0 58.9 62.6
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Figure 8: The amplitude cut-off threshold (green line) over the amplitude of the COM displacement pattern (left) and the final signal (right).
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Figure 9: Method A. The black asterisks are the detected peaks. The time between two consecutive vertical peaks is the single-step time.
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analyzed a single subject walking on a treadmill where pro-
gressively the speed increases from 0.5 to 1.7m/s. In these
tests (task number 3 in Table 1), the subject is free to move
as he wishes and we have a variation of both the step length
and velocity. The search of the peaks of acceleration has led
us to define the new filters to be applied to raw data. The
experiments carried out in our work [11] confirm that choice.
The same concept could be applied to pathological patients,
walking slower and asymmetrically, such as stroke patients
with walking speed< 0.5m/s (task number 3 in Table 1).
The peaks of raw signals identify the steps (Figure 10); the
low-pass filter used is different according to the walking
speed (high or low). At normal and high speed, we apply a
5th-order low-pass Butterworth filter. Anteroposterior, verti-
cal, and mediolateral acceleration have, respectively, the fol-
lowing cut-off frequencies: 1.8Hz, 1.8Hz, and 0.9Hz. At
low speed, we apply a 4th-order low-pass Butterworth filter.
Anteroposterior, vertical, and mediolateral acceleration have,
respectively, the following cut-off frequencies: 35Hz, 5Hz,
and 3Hz. Detecting the acceleration peaks allows identifying
number and timing of the steps, and, applying the harmonic
oscillator model to the original raw signals filtered by a 19th-

order Butterworth filter, it is possible to compute the step
length S. Anteroposterior, vertical, and mediolateral acceler-
ation have, respectively, the following cut-off frequencies:
6Hz, 35Hz, and 8Hz.

To compute S, as required by (1), the parameter is the
cut-off threshold of hCOM. We have tested six different
approaches (called modes) indexed from 0 to 5 as described
in Table 4.

One main difference among methods is that the expected
step length can be used as input to the model. If this value is
not available then method B cannot apply modes 1, 2, and 3.
Method A and method B mode 5 use a fixed amplitude
threshold independent from the subject. The anthropometric
method is obviously based on anthropometric data. Through
the proper choice of the mode according to subject’s feature
in his/her different scenarios, the model should calculate the
correct length values and the number of strides and steps.

3.5. Trials and Reference Values. The anthropometric
method for data processing has been selected for comparison
of the step length. All subjects have walked six trials. Each
trial was analyzed through different processing modalities:

Table 4: The six different approaches to define the amplitude hCOM threshold that characterize the six different processing modes.

Input to the model Mode index Definition of the amplitude of the hCOM threshold

Anthropometric step length 0
Median of twice the absolute value of the COM amplitude trend multiplied by

a coefficient depending on the average walking speed

Expected S 1
Expected hCOM according to the following formula:

hCOMexpected = L − L2 − S
2

2

Expected S 2 The same as in mode 1 increased by 20%

Expected S 3
The product of hCOM obtained by the linear interpolation and a set of weighting

coefficients depending on speeds, matching the value of COM displacement measured
by Orendurff et al. at different speeds [12], with the expected COM displacement

Anthropometric step length 4 The COM amplitude evaluated by Lulic and Muftic [13] with the weights used in mode 3

Anthropometric step length 5 Set to 6 cm
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Figure 10: Method B. Vertical acceleration (g) versus time (s). The upper black asterisks are the detected peaks. The time between two
consecutive vertical peaks is the single-step time.
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method A andmethod B.Method B has six differentmodes for
hCOM thresholding. In total, we have 11 subjects, 6 trials per
subject, and 7 processing techniques, producing finally 462
datasets; 11 datasets computed with the anthropometric
method are added, for a total of 473 datasets. The distance,
the steps, and the times obtained from the device were com-
pared with the true reference value, that is, that one taken
manually by the observing operator and/or defined by the
protocol setup.

4. Results

Tables 5 and 6 report the results of the data processing.
Method A detected correctly 52 steps in 3 subjects, one

step more in 2 subjects, two steps more in 5 subjects, and
three steps more in 1 subject. The absolute accuracy error
in the measurement of the step length has a maximum of
21.17% with a mean value of 8.48%. The absolute accuracy
error in the measurement of the total distance has a maxi-
mum of 17.89% with a mean value of 7.79%.

Method B always detected correctly 52 steps for all the
subjects and with all the modes. If the total distance traveled
is calculated by using the mean step length multiplied for the
number of steps, then the step length and the walked path
have the same percentage error in accuracy; because all the
steps are correctly detected and in a relative evaluation, the
number of steps is a multiplier constant simplified to 1. If
the variability of the step length is considered, then the mean
absolute accuracy percentage error between step length and
total distance can be different.

The mean absolute accuracy percentage error of the step
length using mode 0 is 6.07% and that of the total distance is
6.07% too, then mode 0 has good reliability. With this mode,
the relative percentage error values are positive and negative
in the subject population.

Instead, using mode 1, the mean absolute accuracy
percentage error in the measurement of the step length and
total distance are lower with values of 3.25% and 3.26%,
respectively. Mode 1 underestimates the step length in each
test and for all subjects.

Mode 2 and mode 5 have similar errors (average of
absolute percentage error for the step length are 4.63%
and 4.85%, resp., and that of the total distance are 4.62%
and 4.95%, resp.); the relative percentage error values are
both positive and negative; therefore, modes 2 and 5 have
excellent reliability.

Mode 3 has bigger values (mean absolute percentage
error is 6.89% for step length and 6.89% for total distance);
the relative percentage error values are both positive and neg-
ative, and mode 3 demonstrates a good reliability.

Using mode 4, the mean absolute percentage error in the
measurements of the step length and total distance are equal,
respectively, to 18.05% and 10.04%, which is only sufficient
reliability according to the selected criterion.

The anthropometric mode has excellent reliability (mean
absolute percentage accuracy error of the step length and
total distance are equal, respectively, to 3.70% and 3.68%);
also with this mode, the relative percentage error values are
both positive and negative.

The mean absolute percentage accuracy error for speed
measurement is 3.25% for mode 1, 4.62% for mode 2,
4.95% for mode 5, and 3.68% for anthropometric mode.
For the other modes, the error is bigger than 5%. Concern-
ing the walking time, the reliability of measurements is
excellent (Table 6). It has to be considered that the refer-
ence value is the one taken by an operator with a stop-
watch, so even if he is an expert, it can include a certain
implicit error due to the not null reaction time of the oper-
ator. For this reason, we used the time measured by the
model as true time. Data about step and stride frequency
(Table 6) are always very reliable for all modes of method
B (excellent), except for method A that shows errors in step
counting (good).

This study has also produced a first reference set of nor-
malized values and ratio for new parameters and indexes
related to gait and balance in standing and during walking
(base of support and step width). Tables 7–10 show these
data. The Supplementary Material (available here) contains
all recorded data processed withmethod A, method B—mode
0/1/2/3/4/5/anthropometric algorithms.

5. Discussion and Conclusions

This study proposes a novel system using a single-wearable
IMU to compute standard gait parameters and a set of novel
kinematic indexes, investigating also their accuracy in a pop-
ulation of healthy subjects walking over a fixed traveled path
with imposed step length to control the setup. A set of har-
monic oscillators is the biomechanical mode interpreting
the kinematics of 3D accelerations of COM. The method
includes geometrical models for the assessment of the base
of support in standing and during walking even when the
subject makes use of walking aids to match all walking
conditions for healthy and pathological subjects. Different
algorithms (methods A and B, and different computational
modes for this last method) have been developed and tested
in a population of eleven healthy subjects. Anthropometric
evaluation is also carried out.

Previous studies have no homogenous assessment grid.
For this reason, here, a structured set of thresholds for reli-
ability assessment is proposed, starting from the general
accepted value of 5% [16, 27–30]. A gradual scale of reliability
evaluation based on quantitative criteria for each spatiotem-
poral parameter and step number is used as acceptability cri-
teria to evaluate the results (Table 11). The reference
threshold applies to the mean percentage error in accuracy
(ε%) of step length and distance.

The proposed criteria have been applied only to the
absolute accuracy percentage error. This implies a stricter
evaluation of method reliability because the relative accu-
racy percentage error could introduce some compensations
(having both positive and negative values).

When using the processing method A, not all the steps
are detected (from one to three steps are lost in several
tests) and even if step length S error has a mean value of
8.48% (so sufficient) in some cases, it has a critical value of
21.17%. The same situation is shown by the total distance.
Then it is to be concluded that method A is questionable,
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good for some subjects only, but not for all. Therefore, it has
been abandoned.

Processing method B is providing better results: 100%
of the steps are always detected for all subjects and in all

trials with excellent reliability. Concerning the assessment
of step length S, among the different processing options,
only modes 1, 2, and 5 match the excellence for the reli-
ability criterion. Modes 0 and 3 are good, and mode 4 is

Table 6: Data of walking time, step frequency and stride frequency: mean and standard deviation using the processing methods A and B.

Parameter Reference Model Operator
Model accuracy error %

Reliability
Relative Absolute

Walking time (s) Self-selected 30.5± 1.9 30.4± 2.0 0.48± 0.64 0.64± 0.47 E

Method A: step frequency (step/s) 1.71 1.75± 0.12 1.76± 0.12 2.62± 1.97 2.62± 1.97 G

Method A: stride frequency (stride/s) 0.85 0.88± 0.06 0.88± 0.06 2.62± 1.97 2.62± 1.97 G

Method B: step frequency (step/s) 1.71 1.71± 0.11 1.72± 0.11 0.00± 0.00 0.00± 0.00 E

Method B: stride frequency (stride/s) 0.85 0.85± 0.05 0.86± 0.05 0.00± 0.00 0.00± 0.00 E

Table 7: Coefficients normalized to stature for the evaluation of the base of support area in standing (AS) and during walking (AW)
computed by processing modes B0–B5.

AS AW B0 AW B1 AW B2 AW B3 AW B4 AW B5

Min 0.0229 0.0391 0.0395 0.0391 0.0394 0.0392 0.0391

Mean± SD 0.0343± 0.0055 0.0470± 0.0049 0.0471± 0.0049 0.0470± 0.0049 0.0467± 0.0047 0.0469± 0.0049 0.0470± 0.0048
Max 0.0443 0.0546 0.0547 0.0545 0.0545 0.0558 0.0545

Table 8: Ratio AR=AW/AS computed by processing modes B0–B5.

AR B0 AR B1 AR B2 AR B3 AR B4 AR B5

Min 1.1410 1.1418 1.1487 1.1425 1.1256 1.1487

Mean± SD 1.3883± 0.1554 1.3928± 0.1587 1.3888± 0.1517 1.3811± 0.1537 1.3853± 0.1535 1.3879± 0.1522
Max 1.7037 1.7251 1.7066 1.7208 1.7080 1.7066

Table 9: Coefficients normalized to height for the evaluation of the step width in standing (LS) and during walking (LW) computed by
processing modes B0–B5.

LS LW B0 LW B1 LW B2 LW B3 LW B4 LW B5

Min 0.1000 0.9683 0.1091 0.7470 0.1218 0.7739 0.0923

Mean± SD 0.1526± 0.0254 1.2412± 0.2008 0.1624± 0.0381 1.1417± 0.2131 0.1745± 0.0488 1.3214± 0.2622 0.1413± 0.0399
Max 0.1883 1.5989 0.2543 1.4905 0.3017 1.6692 0.2385

Table 10: Ratio LR= LW/LS computed by processing modes B0–B5.

LR M0 LR M1 LR M2 LR M3 LR M4 LR M5

Min 0.5845 0.5693 0.5507 0.5845 0.6337 0.5507

Mean± SD 0.7165± 0.1108 0.7605± 0.1460 0.6911± 0.1016 0.7395± 0.1260 0.8532± 0.1470 0.6869± 0.1030
Max 0.9296 1.0000 0.8794 0.9811 1.1600 0.8794

Table 11: Reliability assessment grid.

Parameter
Reliability criteria

Excellent Good Sufficient Not acceptable

Step length and distance
ε% < 5%
(<1.56m)

5%≤ ε% < 10%
(1.56≤ ε% < 3.12m)

10%≤ ε% < 20%
(3.12≤ ε% < 1.8m)

ε% ≥ 20%
(≥6.24m)

Counting steps
ε% < 2%
(<1 steps)

2%≤ ε% < 4%
(1≤ ε% < 2 steps)

4%≤ ε% < 6%
(2≤ ε% < 3 steps)

ε% ≥ 6%
(≥3 steps)

Time
ε% < 4%
(<1.2 s)

4%≤ ε% < 6%
(1.2≤ ε% < 1.8 s)

6%≤ ε% < 8%
(1.8≤ ε% < 2.4 s)

ε% ≥ 8%
(≥2.4 s)
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only sufficient. It must be remembered thatmodes 1 and 2 are
usable if the information about the expected mean step
length is given to the model. In these cases, the mean absolute
accuracy error of step length is 3.26% and 4.64%, respec-
tively; similar data are shown by distance with errors of
3.25% and 4.62%, respectively. In particular, mode 1 always
underestimates the step length and the traveled distance; if
this fact will be confirmed over more large population and
constrains, a correction factor (weighting coefficient or off-
set) could be introduced to increase accuracy. This is an input
for future work. Onlymode 5 is subject-independent because
it uses a fixed amplitude threshold: in this case, the mean
absolute accuracy percentage error for step length and total
distance rises to the value of 4.85% and 4.95%, respectively.
In some subjects, this value reaches to 8.83%, which is only
good for reliability. The method based on anthropometric
step length Santh has excellent reliability with a mean absolute
accuracy percentage error of 3.70% and 3.68% for step length
and distance, respectively.

Generally, the proposed model demonstrates excellent
results for mode 1, mode 2, mode 5, and anthropometric
and good results for mode 2 and mode 3, but only suffi-
cient results for mode 4. Frequency of steps and stride
time also demonstrates excellent results when method B
is used as shown in Table 6. This allows us to choose
the processing method B as the best approach while fur-
ther investigation with a larger population will support
the identification of the most reliable mode among the
best performing ones.

Concerning the geometrical parameters of base of sup-
port (BOS), when the subject walks, generally the step width
LW during walking is lower than the step width in standing
LS. As the velocity increases, LW decreases. In standing, the
ratio LR=LW/LS is equal to 1. When the subject walks,
LR is lower than 1 and as the velocity increases, it is
reduced concurrently. The results of the proposed method
are coherent with this description. Again, the method is
reliable in gait description for AW, AS, and their ratio:
when the subject walks, generally the base of support AW
during walking is bigger than the base of support AS in
standing. As the velocity increases, the step width decreases
as well as the AW. In standing, the ratio AR=AW/AS is
equal to 1. When the subject walks, AR is generally bigger
than 1 and as the velocity increases, it is reduced accord-
ingly. These indexes (Table 7–10) will support the future
study of balance also for pathological subjects and represent
a first normality dataset for reference.

In conclusion, a theoretical biomechanical model to
describe human walking and balance has been presented
and a methodological approach to test the accuracy of the
proposed model has been adopted. Results show thatmethod
B is more general, better performing, and more flexible than
method A; therefore, it has been chosen for future use.

The next step of the study will include the comparison
with the gold standard reference of optoelectronic gait
analysis to complete the validation of the method.

In the present study, only the COM vertical oscillation is
considered (sagittal plane), but the same methodology can be
applied to COM mediolateral oscillation.

With the progressive use of the new miniaturized sys-
tems, this study supports the belief that wearable devices
are reliable for the ambulatory, long-term, and ecologic
kinematic gait analysis. The expectation is to develop a
dedicated tool for supporting diagnosis and rehabilitation
in the hospital and/or at home for elderly and frail sub-
jects. Use for sport people (amateur and professionals) is
also exploitable.
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Supplementary Materials

The following tables present data from the population for
eleven subjects processed, respectively, with all the proposed
algorithms (method A, method B—mode 0/1/2/3/4/5/anthro-
pometric). Table S1: accuracy assessment of step length and
distance. Method A. Table S2: accuracy assessment of step
length and distance. Method B—mode 0. Table S3: accuracy
assessment of step length and distance. Method B—mode 1.
Table S4: accuracy assessment of step length and distance.
Method B—mode 2. Table S5: accuracy assessment of step
length and distance. Method B—mode 3. Table S6: accuracy
assessment of step length and distance. Method B—mode 4.
Table S7: accuracy assessment of step length and distance.
Method B—mode 5. Table S8: accuracy assessment of step
length and distance.Method B—mode anthropometric. Table
S9: walking time accuracy assessment. Table S10: data of
walking time (T) and velocity V from all the processing
methods (A, B0, B1, B2, B3, B4, B5, and BAnthropometric).
Table S11: data of frequency of steps Fstep and frequency
of strides Fstride for methods A and B with respect to refer-
ence values. Table 12: data of relative percentage error of gait
speed for all the processing methods (A, B0, B1, B2, B3, B4,
B5, and BAnthropometric). Table 13: data of absolute per-
centage error of gait speed for all the processing methods
(A, B0, B1, B2, B3, B4, B5, and BAnthropometric). Table
14: data of base of support area in standing (AS (m2)) and
base of support area while walking (AW (m2)) obtained from
data processing with method B for the processing methods
B0, B1, B2, B3, B4, and B5. Table 15: data of AR=AW/AS
obtained from data processing withmethod B for the process-
ing methods B0, B1, B2, B3, B4, and B5. Table 16: data of step
width in standing (LS (cm)) and step width while walking
(LW (cm)) obtained from data processing with method B
for the processing methods B0, B1, B2, B3, B4, and B5. Table
17: data of LR=LW/LS obtained from data processing with
method B for the processing methods B0, B1, B2, B3, B4,
and B5. (Supplementary Materials)
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