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ABSTRACT
This brief contribution provides a quantification of the terms of the turbulent kinetic energy transport equation for a round steady turbulent
free jet. The analysis is based on the assumption of flow self-similarity, and it is performed by means of a simple analytical asymptotic analysis.
The results are in good agreement with the experimental findings of Panchapakesan and Lumley [J. Fluid Mech. 246, 197–223 (1993)] and
with the large eddy simulations of Bogey and Bailly [J. Fluid Mech. 627, 129–160 (2009)], hence providing a theoretical interpretation of such
findings.
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Freely-evolving turbulence is ubiquitous in nature;1–3 jets,4

mixing layers,5,6 and wakes7 are used as models for a wide range of
natural flows.

We focus on the evolution of round steady turbulent free jets
and highlight the relationships existing between mean flow and tur-
bulence by means of energetic arguments. In particular, the various
mechanisms of transportation of a specific turbulent kinetic energy
k ≡ ⟨v′i

2
⟩/2 are analyzed.

These are described by the following equation:
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in which Einstein’s index convention is used and each term has a
well-known meaning:

● (I) = energy transfer from the mean flow to turbulence
(production of k);

● (II) = redistribution of turbulence within a given fluid
volume (typically expressed as the divergence of a tensor);

● (III) = viscous diffusion of k;
● (IV) = viscous dissipation of k (a negative definite term),

usually labeled as

ε ≡ ν⟨(
∂v′i
∂xj
)

2

⟩. (2)

The analyses that follow, based on the computation of the order
of magnitude of each term of the above equation, are performed with
a standard approach (e.g., Tennekes and Lumley,1 Townsend,2 and
Pope3) that relies on the assumption of self-similar flow and on use
of known scales. In the case of round free jets,

U = Um(x)f(
r

l(x)
), V = Vm(x)g(

r
l(x)
),

−⟨v′i v
′
j ⟩ = q

2
(x)hij(

r
l(x)
),

(3)

l= transversal length scale (distance from the axis at which

U is a given fraction of Um), (4)

L= longitudinal length scale (distance over which U undergoes
a significant change). (5)
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Hence, it is simple to gauge the size of each term, and this being
the size of the largest contribution of the given term,
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and multiplying by l/(Umq2) gives
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where the jet Reynolds numberRel and the turbulence-to-mean-flow
ratio are, respectively,

Rel ≡
Uml
ν

and
q
Um
= [(

l
L
)

β
] with β > 0 (β = 1/2 for jets). (8)

The size of the dissipative term (IV) has been left unspecified
because a naive order-of-magnitude-analysis would give a wrong
estimate for such contribution. Hence, a number of arguments are
used to determine the size of (IV):

● in asymptotic conditions, l/L→ 0 and Rel→∞; only the pro-
duction terms (I) in (7) does not vanish. Hence, the request
that (1) and (7) be balanced leads to the dissipation (IV)
being of the same size of production (I), i.e.,

(I) ∼ (IV) ⇐⇒ −⟨v′i v
′
j ⟩
∂Vi

∂xj
∼ ε, (9)

● energy cascading arguments suggest that the turbulence
energy, of size O(q2

), extracted at the size of energy-
containing eddies (here l) cascades toward the smallest scales
of the flow at a frequency Um/L.

The above suggests that

ε = O(Umq2

l
), (10)

and this result has been confirmed by various independent
analyses.8–10

A much more complete illustration of all the dynamics that
characterize the evolution of a round steady turbulent jet is achieved
if higher order terms in the energy balance are retained. We, thus,
focus on those terms which are O(l/L) and O[

√
(l/L)] smaller than

production and dissipation, in particular on the transport terms (0)
and (II) of Eqs. (1) and (7). For steady mean flow conditions and
upon use of the continuity equation, Eq. (1) reads as
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T

+ε=0. (11)

We now describe the balance of Eq. (11) on the basis of self-
similar solutions like those of Eq. (3). Such solutions can be bet-
ter specified on use of the following assumption required for the
existence of self-similar solutions,

q ∼ Um = Bx−1, with B constant, (12)

l(x) = Ax, with A constant and such that A≪ 1, (13)

and of the typical Gaussian shape for the cross-flow dependence of
all variables3,11 (this allows for more tractable analytical calculations
than the power law profile also used in self-similarity studies),

f (η) = e−(
r

l(x) )
2

= e−η
2

, (14)

U(x,η) =Um(x)f (η), V(x,η) = Um(x)g(η),
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)

RelT
, and RelT ≡

Uml
νT
∼

1
A
=const,

(16)
where the pressure-induced turbulent energy flux has been taken as
smaller than that due to velocity fluctuations9,12 and where g(η) has
been obtained upon integration of the continuity equation, while
hij(η) from a Boussinesq-type closure for turbulence.

These results immediately provide some insight. For example,
the cross-flow profile of V, illustrated in Fig. 1 and remarkably sim-
ilar to that obtained by more detailed and expensive calculations
[see Fig. 16(b) of Ref. 12], clarifies some of the modalities of fluid
entrainment in the jet; the negative cross-flow velocity occurring
far from the jet axis (η ≫ 1) characterizes the entrainment of the
environmental fluid within the jet.

Other useful results are the cross-flow profiles of various turbu-
lence statistics, many of them well described by the relationships of

FIG. 1. Cross-flow profiles of normalized U (solid line and left ordinates) and
normalized V (dashed line and right ordinates) of Eqs. (14) and (15).
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FIG. 2. Top: cross-flow profiles of normalized
√

⟨u′u′⟩ (a) and
√

⟨−u′v′⟩ (b) from Fig. 17 of Ref. 12. Adapted with permission from Boogey and Bailly, J. Fluid Mech. 627,

129–160 (2009). Copyright 2009, Cambridge University Press. Bottom: cross-flow profiles of normalized
√

⟨u′u′⟩ (c) and
√

⟨−u′v′⟩ (d) of Eqs. (14) and (15).

Eqs. (14)–(16) (see, for example, Figs. 17 and 18 of Ref. 12). In par-
ticular, Fig. 2 illustrates the close similarities between two second-
order correlations of fundamental importance for the analysis of the
transport equation for k.

It is now possible to determine the self-similar structure of all
the terms that appear in Eq. (11).

Such a structure has been determined for three asymptotic
regimes, which correspond to three positions in the cross-flow direc-
tion, namely, “far field” (η ≫ 1), “intermediate field” (η ∼ 1), and
“near field” (η≪ 1). The value of ε is obtained by difference.

Table I, which represents the main contribution of this brief
note, summarizes all the results. In the “far field,” the exponential
decay of f = e−η

2
controls the overall balance; hence, only the pow-

ers of f are given for this regime. In the “intermediate field,” where

TABLE I. Dependence of the contributions to (11) as function of the cross-flow
position.

Position
C1

Φ(x)
∝

C2

Φ(x)
∝

P1

Φ(x)
∝

P2

Φ(x)
∝

T
Φ(x)

∝

η≫ 1 f 2 f f 2 f 2 f
η ∼ 1 A2 A2 1 A2 A2

η≪ 1 1 η2 η2 1 1

η = O(1) and f ∼ 1, the asymptotic behavior is controlled by the
small parameter A ∼ 1/RelT ≪ 1, whose powers are provided in the
table. Finally, the term balance in the “near field” is controlled by the
size of η, whose powers are reported in the table.

In the same table

Φ(x) ≡
U3

m

lRelT
∼ x−4, and A ∼ 0.067 (17)

clarifies the streamwise flow dependence.
The above results lead to the following interpretations:

“far field”: because P1, P2, and C1 exponentially decay like f 2 for
η≫ 1, while C2 and T are proportional to f, far from the symme-
try axis, i.e., at the interface with the external fluid, the balance is
between C2 and T;
“intermediate field”: here, η is not an asymptotic variable, and
the only O(1) term, i.e., not proportional to A≪ 1, is P1 which,
approximately, balances ε, as also prescribed by the turbulent
kinetic energy transport equation at O(1) [see (9)], while C
approximately balances T (both of order A2). From a physical
viewpoint, P1 dominates in this regime because it is independent
from the jet lateral growth rate dl/dx(∼A), i.e., from derivatives
in the streamwise direction. It is to be noted that terms C2 and
T, apparently not including such derivatives, implicitly include
them through V and ⟨u′u′⟩, respectively;
“near field”: P1 ∝ η2 is much smaller than P2, i.e., P ∼ P2.
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FIG. 3. Balance between the terms of (11). All variables are made dimensionless
by means of Um and l. From Pope, Turbulent Flows. Copyright 2000 Cambridge
University Press. Adapted with permission from Cambridge University Press.

The above theoretical deductions are confirmed by and help
explain the experimental data of Fig. 3 (see Pope3 and Panchapake-
san and Lumley9).

In particular, turbulence dissipation occurs all over the tur-
bulent region, while the maximum of the production P occurs in
correspondence of the region where the flow deformation (∂U/∂r)
is the largest, i.e., at η ∼ 1. In fact, recalling definitions (15),

0 =
∂

∂r
(
∂U
∂r
)=

∂

∂r
(Um

∂f
∂r
)=

1
l
∂

∂η
(
Um

l
f ′)=

Um

l2
f ′′

=
Um

l2
[−2f (1−2η2

)]Ô⇒ η ∼
√

2
2

, (18)

which quantifies the exact location of the maximum turbulence
production (as shown by Fig. 3).

Other notable results are (a) the “far field” balance between
C2 and T (see region η > 2 in Figs. 3) and (b) the “intermediate
field” balances between P1 and ε and between C and T (see region
0.5 < η < 1.5 in Fig. 3).

Using simple analytical tools, i.e., straightforward asymptotic
arguments coupled with the self-similarity assumption, a quantifica-
tion of the specific kinetic energy balance for a turbulent, round, free
jet is made with minimal efforts. The same analysis provides theoret-
ical support to similar literature results and allows insight into some
basic dynamics of such jets.
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