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a b s t r a c t

An empirical method to evaluate pure endowment policies is proposed. The financial component of the
policies is described using the time dependent Black Scholes model and making a suitable choice for its
time dependent parameter functions. Specifically, the integral of the time dependent risk free interest rate
is modeled using an extension of the Nelson and Siegel yield curve (see Dielbold and Li, 2006). The time
dependent volatility is expressed using two different models. One of these is based on an extension of the
Nelson and Siegel model (Dielbold and Li, 2006), while the other assumes that the volatility is a piecewise
functionwith respect to the time variable. The demographic component ismodeled using a generalization
of the geometric Brownian mean reverting Gompertz model while an asymptotic formula for survival
probability is derived when the mortality risk volatility is small. The method has been tested on two
policies. In these the risk free interest rate parameters are calibrated using the one-month, three-month,
six-month, one-year, three-year and five-year US treasury constant maturity yields and the parameters
of the volatility are calibrated using the VSTOXX volatility indices. The choice of the data employed in
the calibration depends on the policy to be evaluated. The performance of the method is established
comparing the observed values of the policies with the values obtained using this method.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

This paper proposes an empirical method that evaluates pure
endowment policies. Thepure endowment contract guarantees the
policy holder onmaturity date, the choice between a pre-specified
amount of money or a payment related to the price of a risky asset
(or assets) specified in the contract. No payments are owed by the
policy seller if the policy holder is deceased on the maturity date.
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The life insurance market is increasing all over the world for a
variety of reasons. Numerous companies offer life insurance poli-
cies as part of their benefit packages in addition to the private
policies the companies issue. An increase in sales of guaranteed
productsmay also be due to recent changes in labor laws and in life
style. In 2010, guaranteed products confirmed the 2009 positive
trend (i.e. +5%), and the Unit & Index linked contracts increased
by 58%. The scale of this phenomenon becomes particularly signif-
icant in the life insurance market in China where the causes lie in
the rise of a middle class, the increase of per capita income, and
the impact of market liberalization. The renewed interest in these
simple policies and the request for pricing transparency highlights
the importance of having simple procedures to evaluate them.
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We illustrate the proposed procedure to evaluate two pure
endowment policies: the index linked policy Azione Più Capitale
Garantito Em.63 of the Crédit Agricole insurance company and
the index linked policy proposed by ERGO Insurance group (ERGO
Versicherungsgruppe AG Düsseldorf). These policies are single-
premium index linked life insurance policies whose benefits are
directly linked to the performance of the Dow Jones Euro Stoxx 50
Index.

The duration of the Azione Più Capitale Garantito Em.63 policy
covers the period from March 31, 2010 (date of issue) to May 8,
2015 (expiration date). On the maturity date the company guaran-
tees the insured, should he be living, the payment of the premium
plus a variable bonus obtained bymultiplying the premium by 50%
of the relative difference of the Dow Jones Euro Stoxx 50 values be-
tween March 31, 2010 and July 27, 2015, in the case of a positive
difference. In the case of a negative difference the variable bonus
will be equal to zero.

The duration of the ERGO contract is three years plus two days
with the date of issue being May 8, 2007, and the expiration date
May 10, 2010. If the policyholder is living on the maturity date,
the contract provides for payment of the nominal capital plus a
bonus equal to 84.00% of the relative difference (if positive) of the
reference index values between the date of issue andApril 28, 2010
(expiration date). Should relative difference be negative the bonus
will be zero.

We note that the first policy, which has expired, witnessed
the collapse of Lehman Brothers while the second one, which has
not expired, is being influenced by the advent of the new regula-
tions and the EURO-zone crisis. The premiums of these policies are
clearly influenced by these events, and consequently, their evalu-
ation may be a challenging task.

Several other pure endowment policies can be evaluated with
the proposed method. The choice of these two policies is based on
the fact that their values are freely available. Note that acquiring
life insurance policy data is not easy.

1.1. Research background

From the scientific literature on the evaluation of life insurance
policies twopredominant approaches emerge: actuarial (seeHardy
(2000, 2002) and the reference therein) and financial (see Ballotta
and Haberman (2006), Nteukam et al. (2011)) and the reference
therein).

The ‘‘financial’’ approach relies on hedging the financial risk.
The hedging is ‘‘perfect’’ in the case of an assumed complete
market and only ‘‘risk-minimizing’’ in the more realistic case of an
incompletemarket. As amatter of fact, this approach is only valid if
the underlying hedging is actually applied, which is not always the
case in practice. This approach contrasts with the ‘‘actuarial’’ one
that relies on the equivalence principle based on the law of large
numbers and where the pure premium is determined as the mean
of the future losses. In the financial approach risk management
consists in hedging the position on financial markets while in the
actuarial approach it implies reserving and raising capital in order
to cover the future losses with a given probability. The fact that
the financial risk is not completely diversifiable gives rise to large
capital costs. The actuarial approach also received some attention
in the literature, for example in papers by Hardy in which both
approaches are compared particularlywith regard to reserving and
risk management (see Hardy (2000, 2002)).

This paper uses a financial approach in that the evaluation of
the policy premiums is done like the evaluation of financial op-
tions. We model the risky asset specified in the contract under
the risk-neutral measure and the mortality risk (i.e. the mortality
rate) under the physical measure assuming that these two mea-
sures are independent. Moreover, we assume risk-neutrality of the
insurerwith respect tomortality risk and a complete financialmar-
ket where a unique risk-neutral measure exists (see Bacinello and
Persson (2002), Aase and Persson (1994), Møller (2001) and Bauer
et al. (2010)). Under these assumptions the resulting procedures
to evaluate pure endowment policies are very simple and easy to
interpret.

The assumption that the insurer is risk-neutral with respect to
mortality risk means that he does not receive any economic com-
pensation for accepting risk. This assumption is motivated by the
fact that the insurer can eliminate the risk by suitably increasing
the number of identical and independent contracts in the portfo-
lio (see Bacinello and Persson (2002)). When this is not possible a
market price of risk must be introduced. In this case the evaluation
of the policy premium using the expected value with respect to
the physical measure does not correspond to the replication of the
claim by a self-financing strategy. Roughly speaking, in this case,
the insurer is not guaranteed to be hedged by the rise in future
mortality rates.

However, for simplicity, we work under the assumptions men-
tioned above. We want to investigate how the use of the physical
measure for the mortality risk and the risk neutral measure for the
financial risk can provide satisfactory risk premium evaluations.

Wemodel the risky asset using the geometric Brownianmotion
with time dependent coefficients and we propose two procedures
to calibrate the model parameters. In the scientific literature the
most common choice for evaluating index-linked policies is the
classical geometric Brownian motion with constant coefficients
(see, for example, Bélanger et al. (2009) andNteukam et al. (2011)).

We model the mortality rate using a continuous time stochas-
tic process. This approach is quite common in the current litera-
ture given that it permits one to determine two important features
of the intensity of mortality: the time dependence and the prob-
ability of some future developments. The work of Milevsky and
Promislow (2001) is an example of this approach. They propose a
method to evaluate mortality-contingent claims as options on two
underlying stochastic variables: the interest rate and the mortal-
ity risk. Since the options on interest rates are known, unlike those
on mortality, they focus on the evaluation of options on mortality-
contingent claims. They also model the hazard rate (force of mor-
tality) stochastically using the mean reverting Gompertz model
and model the interest rate using a Cox–Ingersoll–Ross process.
The two stochastic variables are assumed to be independent. They
show that both mortality and interest rate risks can be hedged.

The mean reverting Gompertz model for the mortality rate has
also been used by Ballotta and Haberman (2006) to evaluate guar-
anteed annuity options. In Ballotta and Haberman (2006), the fi-
nancial and themortality risks are assumed to be independent and
the term structure of interest rates is driven by the single-factor
Heath–Jarrow–Morton model.

In the scientific literature we can also find affine models to
describe the dynamics of the mortality rate. In Biffis (2005) as-
set prices and mortality dynamics are modeled using affine jump–
diffusions. In this manner, the author is able to fully exploit the
analytical tractability of affine processes in the context of both fi-
nancial and mortality risks.

In Schrager (2006), a model for stochastic mortality based on
the literature on affine term structure models is proposed. This
model satisfies three requirements that enable it to be easily used:
analytical tractability, clear factor interpretation and compatibility
with financial option pricing models. This model has been tested
using Dutch data on mortality rates and applied to the pricing of
guaranteed annuity options.

Other recent works, Bertocchi et al. (2013) and Wong and
Chan (2007), propose the use of multiscale stochastic volatility
models to describe the behavior of contracts having long residual
lives. The use of such models is motivated by the fact that one
factor stochastic models do not provide satisfactory evaluations
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of contracts having long maturities. In Wong and Chan (2007) the
multiscale stochastic volatility model is used to evaluate lookback
options and dynamic fund protection and in Bertocchi et al. (2013)
to evaluate pure endowment policies. Bertocchi et al. (2013)model
mortality risk through the mean reverting Gompertz model as
suggested in Milevsky and Promislow (2001) and they derive an
asymptotic formula for the survival probability when the volatility
risk goes to zero.

1.2. Main results of the paper

The methods proposed here to evaluate pure endowment pol-
icy premiums are based on few simple ideas. As previously men-
tioned, we use the time dependent Black Scholesmodel to evaluate
the financial component of the policy and a generalization of the
mean reverting Gompertz model to describe the demographic
component of the policy. The lattermodel has been introduced and
tested on the Italian humanmortality database in Giacometti et al.
(2011). We use the results proposed there to calibrate the model
parameters in Section 4.

Let us describe the risky asset St , t > 0, specified in the policy
and the mortality rate ht , t > 0, associated to the human life with
the following stochastic model:

dSt = r(t)St + σ(t)StdWt , t > 0, (1)

dht =


g +

1
2
(σ ∗)2 + b ln(ĥ0) + b g t + b ln(ht)


ht dt

+ σ ∗ eat htdQt , t > 0, (2)

where r(t), σ (t), t > 0 are given real functions, the quantities
g, b, h0, a, σ ∗ are real constants, ln(·) denotes the natural loga-
rithm of · and Wt , Qt , t > 0, are standard Wiener processes that
satisfy the following conditions:

W0 = Q0 = 0,
E(dWt dWt) = dt,
E(dQt dQt) = dt,
E(dWt dQt) = 0, t > 0. (3)

In (3) the symbol E(·) denotes the expected value of ·. Condition (3)
implies that the financial andmortality risks are independent. This
assumption is widely used in evaluating insurance contracts (see,
for example, Ludkovski and Young (2008), Ballotta and Haberman
(2006) and the references therein).

Since the two risks are assumed to be independent, the pricing
of simple equity-linked contracts can be reduced to the evaluation
of the following product:

E

e−

 T
0 r(τ )dτ P(ST )


E

e−

 T
0 hudu


, (4)

where P is the payoff function associated with the policy. The first
expected value in (4) is the value of a European option in the time
dependent Black Scholes model and the second expected value is
the survival probability. We derive an asymptotic expansion for
this expected value for small mortality risk volatility, σ ∗. We use
the first three terms of this expansion to approximate the survival
probability. These terms are given by elementary functions of the
model parameters. This expansion is inspired by the one proposed
in Bertocchi et al. (2013) for the mean reverting Gompertz model.
It allows us to express the demographic component of the policy
as a second order degree polynomial in the variable σ ∗ (i.e. the
mortality risk volatility).

We use formula (4) to value some insurance contracts traded in
the life insurance market giving a practical procedure to select the
unknown functions r(t), σ (t), 0 < t < T , while the unknown pa-
rameters h0, g, b, σ ∗, a are determined using the results proposed
in Giacometti et al. (2011).
Note that we are using the risk-neutral measure to evaluate the
financial component of the policy and the physical measure for the
demographic component. This ismeaningful under the assumption
of a complete financial market and the risk-neutrality of an insurer
with respect to mortality risk (see Aase and Persson (1994), Møller
(2001) and Bauer et al. (2010), for further details).

That is, the main contribution of this paper is the development
of two procedures to calibrate the model parameters of the finan-
cial component of the pure endowment policy (i.e. the first in-
tegral in the product appearing in formula (4)), the derivation of
a perturbation expansion to approximate the survival probability
(i.e. the second integral in the product appearing in formula (4))
for small mortality risk volatility and the numerical experiments
on real data.

The two procedures used to evaluate the financial component
of the policy model the integral of the risk free interest rate over
the time period covered of the policy using the Nelson–Siegel yield
curve (see Nelson and Siegel (1987)). The model parameters are
calibrated through the least squaresmethodwhich uses as data the
one-month, three-months, six-months, one-year, three-years and
five-years US treasury constant maturity yields (data download-
able at the website http://www.federalreserve.gov). The choice of
this model and of these data for the calibration is motivated by a
recent study of Dielbold and Li (2006) that shows the ability of the
Nelson–Siegel model to describe these yields.

The two procedures differ in the evaluation of the integral of the
square of volatility. The first procedure (P1 for short) chooses the
volatility to be constant in the time period covered by the policy.
The value of this constant is the VSTOXX 24months volatility index
value available on the website http://www.stoxx.com/download/
historical_values/h_vstoxx.txt.

The second procedure (P2 for short) models the integral of
the square of volatility through the Nelson–Siegel yield curve and
calibrates the model parameters using as data the eight VSTOXX
volatility indices (V6i, i = 1, 2, 3, 6, 9, 12, 24months to expiration)
available at the website mentioned above.

The computation of these eight sub-indices per option expiry 1,
2, 3, 6, 9, 12, 18 and 24 months is based on the square-root of the
implied variance. The VSTOXX indices are evaluated using EURO
STOXX 50 realtime options prices. These indices reflect the market
expectations of near term up to long term volatility.

This second procedure is suggested by the fact that we need
market expectation on the future volatilities in order to know a
kind of ‘‘forward volatility curve’’.

1.3. Outline of the paper

In Section 2we derive the closed form formulae for the financial
components of the two policies we are interested in. In Section 3
we present the asymptotic formula for the survival probability as
the mortality risk volatility goes to zero. We show its performance
in approximating the true survival probability and in reproducing
the Italian survival probability observed in 2005 and 2010. In Sec-
tion 4 we present two case studies and the calibration procedures
used. We establish the performance of the proposed procedures
comparing the observed values of the policies considered and the
values obtained with the procedures themselves. We carried out
an empirical analysis to understand how to calibrate the param-
eters of the time dependent Black Scholes model involved in the
policy formula and how the choice of the cohort influences the pol-
icy values. In Section 5 some conclusions are drawn. Finally, in the
Appendix the derivation of the asymptotic formula for the survival
probability is presented.

2. A hybrid model for the financial components of the pure
endowment policy

The hybrid model used to describe the financial component of
the policy expressed by the asset price St is described by the time

http://www.federalreserve.gov
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
http://www.stoxx.com/download/historical_values/h_vstoxx.txt
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dependent log-normal process (1) where r(t), σ (t), t < T , T > 0,
are the deterministic functions of the time variable t . The function
r(t), t < T expresses the risk free interest rate and the function
σ(t), t < T expresses the asset volatility. Using the dynamics (1)
the following straightforward generalization of the well known
Black and Scholes formula to price a European call option having
maturity T and strike price E published by Black and Scholes (1973)
holds (see Wilmott (1998)):

C(S, t) = S N(d1) − Ee−
 T
t r(τ )dτ N(d2) (5)

where d1, d2 are given by:

d1 =
log

 S
E


+
 T
t r(τ )dτ +

1
2

 T
t σ 2(τ )dτ T

t σ 2(τ )dτ
, (6)

d2 =
log

 S
E


+
 T
t r(τ )dτ −

1
2

 T
t σ 2(τ )dτ T

t σ 2(τ )dτ
. (7)

Note that we have assumed that the dividend is zero.
Now we adapt formula (5) to evaluate the two index linked

policies described previously.
On the maturity date Action Capital Piú Guaranteed Em.63

Crédit Agricole Vita SpA guarantees the insured, should he be
living, the payment of the premium plus a variable bonus obtained
bymultiplying the premium by 50% of the relative difference (ST −

Sr)/Sr of the Dow Jones Euro Stoxx 50 values between March 31,
2010 (i.e. Sr = 2931.16) and July 27, 2015, in the case of a positive
difference. In the case of a negative difference the variable bonus
will be equal to zero. The payoff of this policy is given by:

P1


ST
Sr

, T


= K + 0.5K

ST − Sr

Sr


= K + 0.5K max


ST − Sr

Sr
; 0


= K + 0.5
K
Sr

max

ST
Sr

− 1; 0


(8)

where K is the nominal capital paid at the start of the contract. For
this contract K = 100.

Using formulae (5) and (8), we obtain the following formula to
evaluate the financial component of the policy:

V1


S
Sr

, t


= Ke−
 T
t r(τ )dτ

+ 0.5K


ST
Sr


N(d∗

1) − e−
 T
t r(τ )dτ N(d∗

2)


, (9)

where d∗

1 and d∗

2 are given by:

d∗

1 =

log


S
Sr


+
 T
t r(τ )dτ +

1
2

 T
t σ 2(τ )dτ T

t σ 2(τ )dτ
, (10)

d∗

2 =

log


S
Sr


+
 T
t r(τ )dτ −

1
2

 T
t σ 2(τ )dτ T

t σ 2(τ )dτ
. (11)

On the maturity date the second policy, that of ERGO insurance
company, guarantees the insured, should he be living, the payment
of the premium plus a bonus of 84% of the variation (ST − Sr)/Sr
(if positive) of the reference index (i.e. Dow Jones Euro Stoxx 50 in-
dex). Sr is the value of this index onMay 8, 2007 (i.e. Sr = 4411.32)
and ST is the value on April 28, 2010. In case of a negative variation
the bonus is zero. Note that this policy has expired so the value ST
is known and equal to ST = 2788.54. Since ST < Sr this policy did
not pay any bonus on thematurity date. The payoff function of this
policy is given by:

P2


ST
Sr

, T


= K + 0.84K

ST − Sr

Sr


= K + 0.84K max


ST − Sr

Sr
; 0


= K + 0.84
K
Sr

max

ST
Sr

− 1; 0


(12)

where K is the nominal capital paid at the start of the contract. For
this contract K = 1000.

Note that we can use formula (5) to evaluate the financial com-
ponent of the policy at time t < T interpreting the underlying asset
as the ratio S/Sr and we have:

V2


S
Sr

, t


= Ke−
 T
t r(τ )dτ

+ 0.84 K


S
Sr


N(d∗

1) − e−
 T
t r(τ )dτ N(d∗

2)


(13)

where d∗

1 and d∗

2 are given in formulae (10) and (11).
The choice of the functions r and σ is a challenging task in eval-

uating these policies due to their long maturity. More specifically,
we are interested in choosing their integrals: r̂(t, T ) =

 T
t r(τ )dτ

and σ̂ (t, T ) =
 T
t σ 2(τ )dτ .

We use the Nelson–Siegel yield curve to estimate the quantity
r̂(t, T ). The Nelson–Siegel yield curve was proposed in Nelson and
Siegel (1987) and used to forecast the term structure of govern-
ment bond yields in Dielbold and Li (2006).Wemake the following
choice for r̂(t, T ), t < T :

r̂(t, T ) =

 T

t
r(τ )dτ = yt(T − t)(T − t), (14)

where yt(τ ) is the yield curve given by:

yt(τ ) = β1,t + β2,t


1 − e−λt τ

λtτ


+ β3,t


1 − e−λt τ

λtτ
− e−λt τ


. (15)

The term r̂(t, T ) should reflect the expectations of the financial
markets on future interest rates and for this reason we calibrate
model (15) using long term government bond yields.

InDielbold and Li (2006) the parametersβ1,t , β2,t ,β3,t are inter-
preted as three latent dynamic factors and λt is a positive parame-
ter that governs the exponential decay. The parameter β1,t can be
interpreted as a long term factor since it is the limit of yt(τ ) as τ
goes to +∞ while the parameter β2,t can be interpreted as a short
term factor since it only plays significant role in short term ma-
turities while being negligible for long termmaturities. Finally β3,t
can be interpreted as amedium-term factor because the time func-
tion that multiplies this parameter is zero at time t zero, attains its
maximum value for t > 0 and decays to zero when the time goes
to infinity (see Dielbold and Li (2006) for further details).

The model (15) is calibrated using data from the US treasury
yields available on the website: http://www.federalreserve.gov/
releases/h15/.

These data are daily observations of the yields having maturity
τ1 = 1-month, τ2 = 3-months, τ3 = 6-months, τ4 = 1-year,
τ5 = 3-years, τ6 = 5-years. Let R4 be the four dimensional real
Euclidean space and N be a positive integer, N ≤ 6. We denote the

http://www.federalreserve.gov/releases/h15/
http://www.federalreserve.gov/releases/h15/
http://www.federalreserve.gov/releases/h15/
http://www.federalreserve.gov/releases/h15/
http://www.federalreserve.gov/releases/h15/
http://www.federalreserve.gov/releases/h15/
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observed yields at time t by ỹt(τj), j = 1, 2, . . . ,N , and we cali-
brate the model (15) solving the following optimization problem:

min
(β1,t ,β2,t ,β3,t ,λt )∈R4

Lt(β1,t , β2,t , β3,t , λt) (16)

where the objective function Lt and the quantities ŷt(τj), j =

1, 2, . . . ,N are given by:

Lt(β1,t , β2,t , β3,t , λt) =

N
j=1


τjỹt(τj) − ŷt(τj)

2
, (17)

and

ŷt(τj) = τjβ1,t + β2,t


1 − e−λt τj

λt


+ β3,t


1 − e−λt τ

λt
− τje−λt τj


, j = 1, 2, . . . ,N. (18)

Two choices of volatility function aremade. The first one is very
simple and consists in choosing the volatility σ(τ), τ ∈ [t, T ] to be
equal to the VSTOXX 24months volatility index available at: http:
//www.stoxx.com/indices/index_information.html?symbol=V6I6.

That is, we assume that the volatility observed on the transac-
tion day t remains unchanged until the expiration of the policy.
This corresponds to assuming that the volatility is constant in the
time interval [t, T ].

The second choice implies that the integral of the square of the
volatility function has the following form:

σ̂ (t, T ) ≡

 T

t
σ 2(τ )dτ = α1,t(T − t) + α2,t


1 − e−λ∗

t (T−t)

λ∗
t



+ (T − t)α3,t


1 − e−λ∗

t (T−t)

λ∗
t (T − t)

− e−λ∗
t (T−t)


. (19)

That is, we use a Nelson–Siegel model to estimate the quantity
σ̂ (t, T ), t < T .

This choice is made since we desire to know the market expec-
tations of near-term up to long term volatilities.

Themodel (19) is calibrated usingVSTOXX τ ∗

1 = 1-month, τ ∗

2 =

2-months, τ ∗

3 = 3-months, τ ∗

4 = 6-months, τ ∗

5 = 9-months, τ ∗

6 =

12-months, τ ∗

7 = 18-months, and τ ∗

8 = 24-months volatility
indices available at http://www.stoxx.com/download/historical_
values/h_vstoxx.txt. The computation of these eight indices is
based on the square-root of the implied variance of the EURO
STOXX 50 option prices.

The calibration procedure used is analogous to the one used to
calibrate model (15). Let Nv be a positive integer, Nv ≤ 8 and let
us denote by σ̃t(τ

∗

j ), j = 1, 2, . . . ,Nv , the VSTOXX volatility in-
dices at time t . We calibrate the model (19) solving the following
optimization problem:

min
(α1,t ,α2,t ,α3,t ,λ

∗
t )∈R4

L∗

t (α1,t , α2,t , α3,t , λ
∗

t ) (20)

where the objective function L∗
t and the quantities σ̂t(τj), j =

1, 2, . . . ,N are defined as follows:

L∗

t (α1,t , α2,t , α3,t , λ
∗

t ) =

N
j=1


τjσ̃

∗

t (τj) − σ̂t(τ
∗

j )
2

, (21)

and

σ̂t(τj) = τjα1,t + α2,t


1 − e−λ∗

t τj

λ∗
t



+ α3,t


1 − e−λ∗

t τ

λ∗
t

− τje−λ∗
t τj


, j = 1, 2, . . . ,N. (22)
Note that the parameters α1,t , α2,t , α3,t can be interpreted as
was done for β1,t , β2,t and β3,t . The parameter α1,t can be inter-
preted as a long term factor since it is the limit of σ̂ (t, T ) as T goes
to+∞while the parameter α2,t can be interpreted as a short term
factor since it plays a significant role only for small maturities and
it is negligible for long maturities. Finally, α3,t can be interpreted
as a medium-term factor. As mentioned above, the parameters of
model (22) are a ‘‘measure’’ of themarket expectations of the short,
medium and long term volatilities.

3. A formula for the survival probability in a generalized mean
reverting geometric Gompertz model

Let us consider the stochastic process ht , t > 0, defined by (2).
This process can be described using the auxiliary process yt , t > 0,
as follows:

ht = ĥ0 eg t eσ∗yt , t > 0, (23)

where yt , t > 0, satisfies the stochastic differential equation:

dyt = −bytdt + eatdQt , t > 0 (24)

with initial condition:

y0 = 0, (25)

where dQt , t > 0, is the standardWiener process appearing in (2),
and g, σ ∗, b, a and ĥ0 are positive constants appearing in (2).

We derive an asymptotic formula for E(e−
 T
t hτ dτ | h0 = ĥ0),

T > 0, as σ ∗
→ 0 when hτ , τ > 0, is defined by (23), (24),

(25) (i.e. it satisfies (2)). Note that when t = 0, the quantities
E(e−

 T
t hτ dτ | h0 = ĥ0) coincide with the second term of (4). We

express hτ , τ > 0, as follows:

hτ = ĥ0 egτ eσ∗ yτ = ĥ0 egτ
+∞
m=0

(σ ∗)m

m!
ymτ , τ > 0, (26)

from (26) we have:

e−
 T
t hτ dτ = e

−ĥ0
+∞
m=0

(σ∗)m
m!

 T
t ymτ egτ dτ

, t, T ≥ 0, t < T . (27)

Considering the first three terms of the expansion in powers of σ ∗

contained in (27) we have:

e−
 T
t hτ dτ = e−ĥ0

 T
t egτ dτ


1 − ĥ0σ

∗

 T

t
yτ egτdτ

+
ĥ2
0(σ

∗)2

2

 T

t
yτ egτdτ

2
−

ĥ0(σ
∗)2

2

 T

t
y2τ e

gτdτ


+ o((σ ∗)2), t, T ≥ 0, t < T , σ ∗

→ 0. (28)

Substituting formula (28) in formula for the survival probabilitywe
obtain:

E

e−

 T
t hτ dτ | h0 = ĥ0


= e−ĥ0

 T
t egτ dτ


1 − ĥ0σ

∗

 T

t
E(yτ

y0 = 0) egτdτ

+
ĥ2
0(σ

∗)2

2
E

 T

t
yτ egτdτ

2 y0 = 0



−
ĥ0(σ

∗)2

2

 T

t
E(y2τ | y0 = 0)egτdτ


+ o((σ ∗)2), t, T ≥ 0, t < T , σ ∗

→ 0. (29)
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Table 1
Parameter values of the demographic component of the hybrid formula used to
forecast the values of the Crédit Agricole and Ergo index linked policies.

Cohort h0 a b g σ ∗

1966 0.0001180 0.0018 0.3338 0.0761 0.0341
1977 0.0001175 0.0005 0.6315 0.0722 0.0311
1980 0.0001431 0.0068 0.5990 0.0653 0.0455

In the Appendix, under suitable assumptions on a, b and g and us-
ing (29), we deduce the following formula:

E

e−

 T
t hτ dτ | h0 = ĥ0


= Ea


e−

 T
t hτ dτ | h0 = ĥ0


+ o((σ ∗)2),

t, T ≥ 0, t < T , σ ∗
→ 0, (30)

where Ea is given by:

Ea

e−

 T
t hτ dτ | h0 = ĥ0


= e−ĥ0egt (eg(T−t)

−1)/g
·


1 −

ĥ0(σ
∗)2

4(a + b)

×


e(g+2a)t(e(g+2a)(T−t)

− 1)
g + 2a

−
e(g−2b)t(e(g−2b)(T−t)

− 1)
g − 2b



+
ĥ2
0(σ

∗)2

2


−

1
2(a + b)


e(g−b)t(e(g−b)(T−t)

− 1)
g − b

2

+
1

(a + b)
1

(g + b + 2a)
·


e2(g+a)t(e2(g+a)(T−t)

− 1)
2(g + a)



−


e(g−b)(T+t)+2(a+b)t

− e2(g+a)t

g − b


, 0 ≤ t < T . (31)

We use formula (31) to evaluate the survival probability. The
values of the parameters appearing in (31) are suggested by the
data analysis presented inGiacometti et al. (2011)where themodel
(23), (24) has been calibrated using the Italian Human Mortality
Database available at http://www.mortality.org/.

In the case studies proposed in Section 4 we use formula (31)
and the parameters shown in Table 1.

Note that in order to use the same set of parameters for each
cohort in the case studies of Section 4we choose h0 to be the hazard
rate of an individual aged one year at time zero. This choice of h0
implies that we must set t = x and T = x + 4 in formula (31)
to evaluate the probability that an individual aged x in the current
year will survive the following four years (see Table 2).

We investigate whether the survival probabilities obtained
with the model (23), (24), (25) and formula (31) reflect those in
the ISTAT tables. To this end we compute the survival probability,
E(e−

 T
t hτ dτ | h0), using the Monte Carlo method and formula (31)

for different choices of the model parameters. We compare the
survival probabilities obtained with these two approaches with
those of the 2005 and 2010 ISTAT tables.

Let us explain how we use the Monte Carlo method to evaluate
the expected value, E(e−

 T
t hτ dτ | h0), which defines the survival

probability.
Let n be a positive integer and let ti = t + 0.5(2i− 1)(T − t)/n,

i = 1, 2, . . . , n, be the quadrature nodes of the midpoint rule. We
approximate the survival probability as n goes to infinity as fol-
lows:

E

e−

 T
t hτ dτ | h0


≈ E

e
−

(T−t)
n

n
i=1

hti
| h0

 , 0 ≤ t ≤ T . (32)
Fig. 1. Relative error ϵr between EMC and Ea as a function of the mortality risk
volatility σ ∗ for three cohorts 1966, 1977, 1980. The remaining parameter values
are those employed in obtaining the results shown in Table 2 (ISTAT 2010).

We evaluate the right hand side of formula (32) using the Monte
Carlo method with 50000 replications and n = 183 quadrature
nodes.

Table 2 shows the survival probability computed using the
Monte Carlo approach (EMC ), formula (31) (Ea) and ISTAT table (E I ).
The last column of Table 2 shows the relative error between E I and
Ea. The values of themodel parameters are shown in Table 1, while
t and T are given respectively in column one and column two of Ta-
ble 2. The choice of t and T made in Table 2 is motivated by the fea-
tures of the policies we consider in the case studies. Table 2 shows
that formula (31) works well in the time intervals we are inter-
ested in. Furthermore, formula (31) outperforms the Monte Carlo
method in terms of computational cost. In fact, the time required
by the Monte Carlo method is 117 s, while the time required to
evaluate formula (31) is 1.09 · 10−6 s.

Finally, we investigate the performance of formula (31) in ap-
proximating the survival probability as the mortality risk volatility
increases.

Fig. 1 shows the relative error between the survival probabil-
ity computed using the Monte Carlo method (EMC ) and formula
(31) (Ea) as a function of the mortality risk volatility σ ∗. More
specifically, Fig. 1 shows the quantity ϵr = |Ea

− EMC
|/EMC , for

σ ∗
= σ ∗

i = 0.005 + 0.05(i − 1), i = 1, 2, . . . , 20, for the three
different cohorts while t and T are chosen from Table 2 year 2010.

Fig. 1 and Table 2 show that the mortality model and formula
(31) provide satisfactory values for the survival probability.

We expected this mortality model to perform well since it
meets some criteria for being a good stochastic mortality model
(see Cairns et al. (2006) for the list of criteria and Luciano and Vi-
gna (2008)). In fact, it depends on a small number of parameters,
it fits historic data and it allows us to derive elementary formu-
lae to approximate the survival probability used to evaluate insur-
ance derivatives with great savings in computer time. As under-
lined inGiacometti et al. (2011), the term eat , t > 0, in (24) enables
the mortality model to describe two contrasting situations: catas-
trophic events (wars, epidemics, climate disasters)where the value
of the parameter a is a large positive number and improvements in
medical treatments for widespread diseases (i.e., for example, on-
cological and genetic diseases) where a is a large negative number.
In Bauer et al. (2008) these events have been considered in speci-
fying the volatility structure of some stochastic mortality models.
Their analysis shows that the generalization introduced here is a
reasonable one for accounting for these events.

http://www.mortality.org/
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Table 2
Comparison of the survival probability values using the Monte Carlo approach (EMC ), formula (31) (Ea), 2005 and 2010 ISTAT tables (E I ) (http://demo.istat.it/). The values of
the parameters involved in formula (31) and Monte Carlo approach are those shown in Table 1.

Cohort t T EMC Ea ISTAT 2005, E I Relative error, |EI−Ea |
Ea

1966 40 44 0.98848 0.98847 0.99074 0.00229
1977 30 34 0.99525 0.99525 0.99557 0.00032
1980 25 29 0.99665 0.99665 0.99603 0.00062

Cohort t T EMC Ea ISTAT 2010, E I Relative error, |EI−Ea |
Ea

1966 45 49 0.98319 0.98318 0.98674 0.00361
1977 35 39 0.99320 0.99320 0.99469 0.00149
1980 30 34 0.99537 0.99537 0.99618 0.00081
4. Case studies

We solve the optimization problems (16) and (20) using the
steepest descent algorithm with variable step-size.

The initial guesses used to solve problem (16) are selected
from a set of points uniformly distributed in the box [−10, 10] ×

[−10, 10] × [−10, 10] × [0, 10] ⊂ R4. This choice is motivated
by the numerical results shown in Dielbold and Li (2006, Table 3
p. 351). The same procedure is used to select the initial guesses
used to solve problem (20).

The main steps of the minimization procedure are:

Step1 generate Nu points uniformly distributed in [−10, 10] ×

[−10, 10] × [−10, 10] × [0, 10] ⊂ R4. Select the Nb points
where the objective function attains the smallest value.
Choose the maximum number of iterations niter , the largest
step-size hmax and the tolerance ϵtol > 0. Set the initial guess
counter j equal to one (i.e. set j = 1);

Step2 if j < Nb go to Step 3 otherwise go to Step 5;
Step3 set the iteration counter k equal to zero, set the step-size

h equal to hmax and the initial point equal to the jth guess.
Compute the objective function (see formulae (17) and (21))
at this point;
Step 31 if the iteration counter k is greater than niter or the

value of the objective function is smaller than ϵtol go
to Step 4 otherwise go to Step 32;

Step 32 compute the gradient vector at the current iteration
point;

Step 33 compute the new iteration point moving along the
direction of minus the gradient with step-size h. If
the constraints are not satisfied or the value of the
objective function at the current iteration point is
larger than the value at the previous iteration re-
duce the step-size h and repeat Step 33;

Step 34 increase the iteration counter k (k → k + 1) go to
Step 31;

Step4 store the value of the objective function, select a new initial
guess j → j + 1 go to Step 2;

Step5 select as the solution of the optimization problem the point
where the objective function attains the smallest value.

Note that the procedure is suitable for a parallel implementa-
tion. In the numerical experiment we choose Nu = 10 000,Nb =

100, niter = 1000 and ϵtol = 10−2.

4.1. Crédit Agricole Index linked Policy: a comparison between the
observed and forecast policy values

In this subsectionwe consider the Azione Più Capitale Garantito
Em.63 policy proposed by Crédit Agricole Vita S.p.A belonging to
the insurance company Crédit Agricole Assurances Italia.

The date of issue of Azione Più Capitale Garantito Em.63 policy
wasMarch 31, 2010, and the expiration date isMay 8, 2015. Should
the insured be living on the date of maturity, the company guaran-
tees the payment of the premium plus a variable bonus obtained
bymultiplying the premium by 50% of the performance of the Dow
Jones Euro Stoxx 50 index as shown in formula (8).We evaluate the
policy approximating the product (4) as follows:

VA(St , t) = Ea

e−

 T
t hτ dτ | h0 = ĥ0


· V1


St
Sr

, t


, (33)

where V1 is given in formula (9), Ea in formula (31) and Sr is the
reference value, that is, the Dow Jones Euro Stoxx 50 index value
onMarch 31, 2010 (i.e. Sr = 2931.16).

The parameters appearing in formula (31) depend on the cohort
considered and are chosen as shown in Table 1.

The parameters appearing in formula (9) are calibrated using
procedures P1 and P2. As previously mentioned both of these
procedures calibrate model (15) solving the optimization problem
(16). The data used in the calibration are shown in Table 3. The
parameters βi,t , i = 1, 2, 3 and λt resulting from the calibration
are shown in Table 5.

The value of the Dow Jones on the calibration day is shown in
the first column of Table 5. Note that we calibrate themodel on the
same day we want to evaluate the policy.

Procedure P1 uses the volatility shown in the second column
of Table 5, while procedure P2 uses the values shown in Table 4
to calibrate model (20). The parameters αi,t , i = 1, 2, 3 and λ∗

t
resulting from the calibration are shown in Table 6.

Finally, the term ‘‘relative error’’ in Tables 7–9 denotes the ratio
|VA(St , t)−Vt |/|Vt |where Vt is the observed policy value on date t .

Looking at Tables 7 and 8, that correspond respectively to the
1966 and 1977 cohorts, we can see that the largest relative error
between the observed and forecast policy values is one percent.
This means that in the worst case the observed and the forecast
values have the same first two digits. This implies that the forecast
values can have an error of less than fifty cents for a policy value of
about ninety euros.

Note that procedure P2 only slightly improves the forecast val-
ues obtained using procedure P1.

Finally, Table 6 shows that the long term volatility α1,t fluc-
tuates in the period September 2010–January 2012 achieving the
smallest value in March 2011 (the earthquake on March 11, 2011
in Japan and the Monthly Economic Report Executive Summary at
the end of March 2011) and the largest value in September 2011
(on September 20 Standard and Poor’s downgraded its ratings on
Italy and the Federal Reserve System Monthly Report announced
the ‘‘operation twist’’. However, the financial markets did not con-
sider the measure efficient to deal with debt).

This fluctuation of the long term volatility can be explained by
the financial market instability due to the global economic crisis.

4.2. Ergo index linked policy: a comparison between the observed and
forecast policy values

In this section we consider the index linked policy proposed
by the ERGO Insurance group belonging to the German insurance
company ERGO Versicherungsgruppe AG Düsseldorf.

http://demo.istat.it/
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Table 3
Treasury constant maturity yields used to calibrate the Nelson–Siegel model for Crédit Agricole policy.

Date 1-month 3-months 6-months 1-year 3-years 5-years

April 6, 2010 0.0017 0.0017 0.0026 0.0049 0.010074 0.0271
September 20, 2010 0.0012 0.0017 0.0020 0.0026 0.0073 0.0143
March 28, 2011 0.0004 0.0011 0.0018 0.0030 0.0129 0.0223
September 26, 2011 0.00 0.0002 0.0003 0.001 0.0039 0.0092
January 23, 2012 0.0003 0.0004 0.0007 0.0012 0.0039 0.0093
Table 4
VSTOXX (1, 2, 3, 6, 9, 12, 18 and 24 months) volatility indices used to solve problem (20) for Crédit Agricole policy.

Date 1-month 2-months 3-months 6-months 9-months 12-months 18-months 24-months

April 6, 2010 0.1940 0.2082 0.2191 0.2374 0.2485 0.2529 0.2667 0.2683
September 20, 2010 0.2415 0.2329 0.2606 0.2706 0.3095 0.3120 0.3253 0.2882
March 28, 2011 0.2167 0.2298 0.2369 0.2550 0.2572 0.2557 0.2613 0.2673
September 26, 2011 0.5007 0.4765 0.4737 0.4512 0.4379 0.3869 0.4142 0.4086
January 23, 2012 0.2475 0.2740 0.2908 0.3077 0.3161 0.3177 0.3152 0.3135
Table 5
Parameter values of the financial component of the hybrid formula used to forecast the value of the Crédit Agricole policy (maturity T = July 27, 2015 – date of issue
March 31, 2010 – Reference value Sr = 2931.16 Dow Jones value on March 31, 2010).

Date t Dow Jones value Volatility value β1,t β2,t β3,t λt

April 6, 2010 2989.49 0.2683 −0.05917 0.962597 0.2055355 1.9182057
September 20, 2010 2082.67 0.2882 0.04165 −0.017557 0.22741 3.90039
March 28, 2011 2914.76 0.2673 0.03984 −0.01231 0.47568 3.90194
September 26, 2011 2083.35 0.4086 0.00399 −0.00623 0.81065 4.59029
January 23, 2012 2441.44 0.3135 0.00463 −0.00696 0.83933 4.00043
Table 6
Parameter values of the volatility model of procedure P2 used to forecast the value of the Crédit Agricole policy (maturity T = July 27, 2015 – date of issueMarch 31, 2010 –
Reference value Sr = 2931.16 Dow Jones value onMarch 31, 2010).

Date t α1,t α2,t α3,t λ∗
t

April 6, 2010 0.02705228436861 0.03004783119973 0.30000436741861 0.06001809752248
September 20, 2010 0.03066811406861 0.03351477910046 0.30014870219233 0.06062324316651
March 28, 2011 0.00457163537133 0.03434756291845 0.30018799381210 0.05684217385743
September 26, 2011 0.08790658039494 0.03758445186625 0.30031217509593 0.05740040191495
January 23, 2012 0.04285280831334 0.03273655020640 0.30011278147555 0.05650669934812
Table 7
Forecast values of the Crédit Agricole policy (maturity T = July 27, 2015 – date of issue March 31, 2010 – Reference value Sr = 2931.16 Dow Jones value on March 31,
2010, K = 100) – 1966 Cohort – obtained using the two procedures P1 and P2 .

Cohort Date Policy value Forecast value P1 Relative error P1 Forecast value P2 Relative error P2 Nmat Nv

1966 April 6, 2010 84.35 82.99 1.61029 · 10−2 84.02 3.8601 · 10−3 6 8
1966 September 20, 2010 84.90 84.01 1.03991 · 10−2 84.68 2.61849 · 10−3 6 8
1966 March 28, 2011 83.48 83.54 7.325878 · 10−4 83.28 2.3999 · 10−3 5 8
1966 September 26, 2011 84.42 84.82 4.7854 · 10−3 84.30 1.4737 · 10−3 5 8
1966 January 23, 2012 84.01 83.87 1.6178 · 10−3 83.90 1.3685 · 10−3 5 8
Table 8
Forecast values of the Crédit Agricole policy (maturity T = July 27, 2015 – date of issue March 31, 2010 – Reference value Sr = 2931.16 Dow Jones value on March 31,
2010, K = 100) – 1977 Cohort – obtained using the two procedures P1 and P2 .

Cohort Date Policy value Forecast value P1 Relative error P1 Forecast value P2 Relative error P2 Nmat Nv

1977 April 6, 2010 84.35 83.24 1.3195 · 10−2 84.27 9.1631 · 10−4 6 8
1977 September 20, 2010 84.90 84.96 7.9001 · 10−3 84.89 1.0001 · 10−4 6 8
1977 March 28, 2011 83.48 83.40 2.8528 · 10−3 83.45 2.8630 · 10−4 5 8
1977 September 26, 2011 84.42 84.43 6.5448 · 10−3 84.44 2.7468 · 10−4 5 8
1977 January 23, 2012 84.01 84.12 7.4255 · 10−5 84.02 1.7544 · 10−4 5 8
Table 9
Forecast values of the Crédit Agricole policy (maturity T = July 27, 2015 – date of issueMarch 31, 2010 – Reference value Sr = 2931.16 Dow Jones value onMarch 31, 2010,
K = 100) – 1980 Cohort – obtained using the two procedures P1 and P2 .

Cohort Date Policy value Forecast value P1 Relative error P1 Forecast value P2 Relative error P2 Nmat Nv

1980 April 6, 2010 84.35 85.26 1.0779 · 10−2 86.32 2.3357 · 10−2 6 8
1980 September 20, 2010 84.90 86.04 1.3441 · 10−2 86.72 2.1409 · 10−2 6 8
1980 March 28, 2011 83.48 85.29 2.1668 · 10−2 85.02 1.8470 · 10−2 5 8
1980 September 26, 2011 84.42 86.34 2.2799 · 10−2 85.81 1.6428 · 10−2 5 8
1980 January 23, 2012 84.01 85.23 1.4572 · 10−2 85.26 1.4825 · 10−2 5 8
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Table 10
Treasury constant maturity yields used to calibrate the parameters of the Nelson–Siegel model for the ERGO policy.

Date 1-month 3-months 6-months 1-year 3-years

November 5, 2007 0.0386 0.0371 0.0394 0.0386 0.0371
May 5, 2008 0.0134 0.0154 0.0176 0.0198 0.0262
November 10, 2008 0.0011 0.0029 0.0091 0.0116 0.0178
May 11, 2009 0.0016 0.0019 0.0030 0.0053 0.0134
November 9, 2009 0.0006 0.0007 0.0017 0.0034 0.0140
Table 11
VSTOXX (1, 2, 3, 6, 9, 12, 18 and 24 months) volatility indices used to solve problem (20) for ERGO policy.

Date 1-month 2-months 3-months 6-months 9-months 12-months 18-months 24-months

November 5, 2007 0.2473 0.2333 0.2220 0.2307 0.2362 0.2246 0.2405 0.2430
May 5, 2008 0.1938 0.2002 0.2033 0.2088 0.2141 0.2156 0.2195 0.2246
November 10, 2008 0.5889 0.5525 0.4921 0.4896 0.4513 0.3915 0.4238 0.3504
May 11, 2009 0.3685 0.3816 0.3681 0.3588 0.3641 0.3459 0.3496 0.3439
November 9, 2009 0.2566 0.2643 0.2638 0.2827 0.2930 0.2993 0.3027 0.2985
Table 12
Parameter values of the financial component of the hybrid formula used to forecast the value of the Ergo policy (maturity T = April 28, 2010 – date of issue May 8, 2007 –
Reference value Sr = 4411.32 Dow Jones value on May 8, 2007).

Date t Dow Jones value Volatility value β1,t β2,t β3,t λt

November 5, 2007 4392.80 0.2430 0.04315 −0.01385 −0.00824 2.00031
May 5, 2008 3872.15 0.2246 0.04087 0.02720 −0.02023 2.00032
November 10, 2008 2625.84 0.3504 0.01499 −0.21366 0.43031 2.79009
May 11, 2009 2433.59 0.3439 0.02363 −0.21221 0.32572 2.79002
November 9, 2009 2860.11 0.2985 0.02144 −0.01222 −0.01556 1.00000
Asmentioned in the Introduction, the date of issue of this policy
is May 8, 2007 and the expiration date is April 28, 2010. On matu-
rity, should the insured be living, the company guarantees the pay-
ment of the premium plus a variable bonus obtained by multiply-
ing the premium by 84% of the performance of the Dow Jones Euro
Stoxx 50 index as shown in formula (12). We evaluate the policy
using the following approximation of the product (4):

VE(St , t) = Ea

e−

 T
t hτ dτ | h0 = ĥ0


· V2


St
Sr

, t


, (34)

where V2 is given in formula (13), Ea in formula (31) and Sr is the
reference value, that is, the Dow Jones Euro Stoxx 50 index value
onMay 8, 2007 (i.e. Sr = 4411.32).

The parameters appearing in formula (31) depend on the cohort
considered and are chosen as shown in Table 1.

As mentioned in Section 4.1, the parameters appearing in for-
mula (9) are calibrated using procedures P1 and P2. The parameters
relative to the risk free interest rate model are obtained solving
the optimization problem (16). The data used in the calibration are
shown in Table 10 and the results of the calibration (i.e. the param-
eters βi,t , i = 1, 2, 3 and λt ) are shown in Table 12.

The value of the index on the calibration day is shown in the
first column of Table 12. Note that we calibrate the model on the
same day we want to evaluate the policy.

Procedure P1 uses the volatility shown in the second column
of Table 12, while procedure P2 uses the value shown in Table 11
to calibrate model (20). The parameters αi,t , i = 1, 2, 3 and λ∗

t
resulting from the calibration are shown in Table 13.

Finally, as in Section 4.1 the term ‘‘relative error’’ in Tables 14–
16 denotes the ratio |VE(St , t) − Vt |/|Vt |.

Note that Tables 14–16 show forecast values that are more sat-
isfactory than those obtained in Tables 7–9. The results on the Ergo
policy confirm that the 1977 cohort seems to be the reference co-
hort in the policy evaluation. The relative errors show in Tables 14
and 15 guarantee that, in the worst case, the forecast values can
have an error of less than one euro for a policy value of one thou-
sand euros.
Wenote that procedure P2 slightly improves the forecast values
obtained with procedure P1 except on November 5, 2007 and
May 5, 2008. Moreover, the quality of forecast values deteriorates
going from April 2007 to November 2008 and later improves (see
Tables 14 and 15). This is probably due to changes that affected
the volatilities (see Table 11) from November 2007 to November
2008, which was the period that culminated in the collapse of the
Lehman Brothers on September 2008.

Table 13 shows that the parameter α1,t , that must to be in-
terpreted as the long term volatility, shows significant changes in
the period November 2007 to November 2008. The movement of
the parameter α2,t , that is the short term volatility, is sizable from
May 2008 to November 2008, while the remaining parameters re-
main substantially unchanged. Table 12 shows that the parameters
of model (15) change significantly from May 2008 to May 2009.
This can be explained by the fact that after the collapse of Lehman
Brothers the financial markets needed time to find a new equilib-
rium.

We conclude this section highlighting two facts on the param-
eter values resulting from the calibration of procedure P2. The first
one concerns the parameters αj,t , j = 1, 2, . . . , 4, shown in Ta-
bles 6 and 13. In fact the parameters concerning the short and
medium term volatility remains substantially unchanged while
the long term volatility parameter mutates significantly. It seems
that the ‘‘volatility structure’’ of the two periods considered (April
2010–January 2012 and November 2007–November 2009) is sim-
ilar. On the contrary, the parameters βj,t , j = 1, 2, . . . , 4, shown
in Tables 5 and 11 are very different. Tables 5 and 11 show that the
long term interest rate factor β1,t has been steadily reduced since
November 2007 and that it may be further reduced in the near fu-
ture.

5. Conclusions

In this paper two procedures for evaluating pure endowment
policies are proposed and two case studies are presented to illus-
trate their performance.
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Table 13
Parameter values of the volatility model of procedure P2 used to forecast the value of the Ergo policy (maturity T = April 28th, 2010 – date of issueMay 8, 2007 – Reference
value Sr = 4411.32 Dow Jones value onMay 8, 2007).

Date t α1,t α2,t α3,t λ∗
t

November 5, 2007 0.01107091655956 0.03092886822081 0.30003829879652 0.05577315697222
May 5, 2008 0.00709112876650 0.03008981743826 0.30000138308351 0.05560673972022
November 10, 2008 0.07600731324011 0.03677730539915 0.30022414548394 0.05662581345016
May 11, 2009 0.08584779915678 0.02891120861765 0.29993890336330 0.05532688135876
November 9, 2009 0.07477507909707 0.02500195453560 0.29978046342505 0.05461038526222
Table 14
Forecast values of the Ergo policy (maturity T = April 28, 2010 – date of issueMay 8, 2007 – Reference value Sr = 4411.32 Dow Jones value onMay 8, 2007) – 1966 Cohort
– procedures P1 and P2 .

Cohort Date Policy value Forecast value P1 Relative error P1 Forecast value P2 Relative error P2 Nmat Nv

1966 November 5, 2007 1019.02 1018.10 9.0252 · 10−4 1018.06 9.3708 · 10−4 5 8
1966 May 5, 2008 959.93 958.95 1.0155 · 10−3 959.50 4.4363 · 10−4 5 8
1966 November 10, 2008 910.98 910.11 9.5588 · 10−4 910.24 8.0942 · 10−4 5 8
1966 May 11, 2009 946.39 945.88 5.4129 · 10−4 946.23 1.6861 · 10−4 5 8
1966 November 9, 2009 987.99 987.51 4.8682 · 10−4 988.15 1.6258 · 10−4 5 8
Table 15
Forecast values of the Ergo policy (maturity T = April 28, 2010 – date of issueMay 8, 2007 – Reference value Sr = 4411.32 Dow Jones value onMay 8, 2007) – 1977 Cohort
– procedures P1 and P2 .

Cohort Date Policy value Forecast value P1 Relative error P1 Forecast value P2 Relative error P2 Nmat Nv

1977 November 5, 2007 1019.02 1019.06 3.9456 · 10−5 1019.025 5.1239 · 10−6 5 8
1977 May 5, 2008 959.93 959.63 3.1706 · 10−4 960.17 2.5519 · 10−4 5 8
1977 November 10, 2008 910.98 910.55 4.7184 · 10−4 910.68 3.2530 · 10−4 5 8
1977 May 11, 2009 946.39 946.16 2.4391 · 10−4 946.51 1.2888 · 10−4 5 8
1977 November 9, 2009 987.99 987.64 3.5029 · 10−4 988.28 2.9919 · 10−4 5 8
Table 16
Forecast values of the Ergo policy (maturity T = April 28, 2010 – date of issueMay 8, 2007 – Reference value Sr = 4411.32 Dow Jones value onMay 8, 2007) – 1980 Cohort
– procedures P1 and P2 .

Cohort Date Policy value Forecast value P1 Relative error P1 Forecast value P2 Relative error P2 Nmat Nv

1980 November 5, 2007 1019.02 1029.06 9.8490 · 10−3 1029.021 9.8141 · 10−3 5 8
1980 May 5, 2008 959.93 966.95 7.3203 · 10−3 967.51 7.8970 · 10−3 5 8
1980 November 10, 2008 910.98 915.63 5.1052 · 10−3 915.76 5.2526 · 10−3 5 8
1980 May 11, 2009 946.39 946.58 3.3784 · 10−3 949.94 3.7524 · 10−3 5 8
1980 November 9, 2009 987.99 989.38 1.4140 · 10−3 990.02 2.0647 · 10−3 5 8
The policy premium is expressed as the product of two expected
values. One models the financial component of the policy and the
other one the survival probability. The financial component of the
policy is prescribed using a time dependent Black Scholes model.
The integral of the time dependent risk free interest rate and the
volatility are modeled using an extension of the Nelson and Siegel
yield curve (see Dielbold and Li (2006)). The insurance component
of the policy is described using a generalization of the geometric
Brownianmean reverting Gompertz model. A perturbation expan-
sion of the survival probability for small mortality risk volatility is
proposed. The sum of the first three terms of this expansion pro-
vides a formula for approximating the survival probability. This
formula involves elementary functions and its performance ismea-
sured comparing the survival probabilities obtained with this for-
mula to those provided by ISTAT Tables.

The main advantages of the proposed formula for the policy
premium are its simplicity, its dependence on a small number of
parameters and its negligible computational cost compared with
the cost required by the Monte Carlo method.

The proposed calibration procedures use data from the US trea-
sury constant maturity yields and the VSTOXX volatility indices to
estimate the parameters of the financial component and the Italian
human mortality database in Giacometti et al. (2011) to estimate
the insurance component. The case studies considered show that
the calibration procedures provide estimated values of the policies
with two or three correct significant digits when compared with
the observed values.

Further research should investigate the calibration of the pro-
posed model to different data sets: historical mortality data and
mortality bond prices. The comparison of model parameter values
obtained by these two calibrations could be away ofmeasuring the
market price of risk. This is a challenging problem which has been
recently studied, for example, in Bauer et al. (2008).

Appendix

Let us prove formula (31) of Section 3. To this end we evaluate
the three expected values appearing in formula (29), that is:
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Using (24), (25), it is easy to derive the following formulae:

E(yτ | y0 = 0) = 0,

E(y2τ | y0 = 0) = e2aτ
1 − e−2(a+b)τ

2(a + b)
, τ > 0, b > 0

(36)

and

E(yτys | y0 = 0) =
e−b(τ+s)
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
e2(a+b)min{s,τ }

− 1

,

s, τ > 0, b > 0. (37)

Substituting (36) into (29) when g − 2b ≠ 0 we have:
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Let us evaluate E
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. Using (37) we

have:
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Finally, under the assumption g − b ≠ 0 we obtain:
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Substituting (40) into (38) we obtain:
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ĥ0(σ
∗)2

4(a + b)

×


e(g+2a)T

g + 2a
−

e(g−2b)T

g − 2b


−


e(g+2a)t

g + 2a
−

e(g−2b)t

g − 2b


+

ĥ2
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Note that when g = 2b or g = b formula (41) should be slightly
modified. Formula (41) can be rewritten as done in formulae (30)
and (31).
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