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The group PSp8(q), q odd, has a maximal subgroup isomorphic to 3.PSp2(q3) belonging to the
Aschbacher class C9. It is the full stabilizer of a complete partial ovoid and of a complete partial
3-spread ofW7(q).

1. Introduction

Let G be a classical group associated with a finite dimensional vector space over GF(q), say
V . In his celebrated paper [1], Aschbacher describes a family C of eight “geometric” classes
of subgroups of G and shows that any subgroup of G either lies in one of these classes or
has the form H = NG(X), for some quasisimple subgroup X of G satisfying some special
conditions. Given such a groupH not lying in one of the eight classes of C, the main purpose
is to determine whether or notH is maximal in G. If not, there exists a quasisimple subgroup
K with X < K < G and one wants to study such configurations, possibly from a geometric
viewpoint. For more details, see [2].

Let G be a finite classical group with natural module V0 of dimension n ≥ 2 over the

Galois field GF(qt). Let Vψi

0 denote theG-module V0 with group action given by g ·v = gψ
i
(v),

where gψ
i
denotes the matrix g with its entries raised to the qith power, i = 0, . . . , t − 1. Then

one can form the so-called twisted tensor product module V0 ⊗ Vψ
0 ⊗ · · · ⊗ Vψt−1

0 . Such a module
can be realized over the subfield GF(q) of GF(qt). This gives rise to an absolutely irreducible
representation of the group G on an nt-dimensional natural module over GF(q). If G is a
symplectic group, then under the twisted tensor product embedding G turns out to be again
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a subgroup of a symplectic group, and only when q is even, it is actually a subgroup of an
orthogonal group, see [3].

Such representations are given by Steinberg [4] and further studied by Seitz [2]. See
also [5]. We refer to this class of subgroups as C9, as suggested by Seitz.

In [6] we studied the geometry of two classes of twisted tensor product group
embeddings: PSp2(qt) ≤ PΩ+

2t(q), where t ≥ 2 and q is even; and PSp2m(qt) ≤ PΩε
(2m)t

(q)
with q even. We will use Sp2(q) although some references will use SL2(q). We found that
our embedding of PSp2(qt) is associated with an embedding of the projective line PG(1, qt)
as a complete partial ovoid of a quadric in PG(2t − 1, q) (i.e., a maximal set of pairwise
nonorthogonal points of the quadric); if t ≥ 3, then the quadric is hyperbolic. Such partial
ovoids are of some interest because their size attains the Blokhuis-Moorhouse bound [7].
In particular, when t = 3 and q ≥ 4, the embedding yields another description of the
Desarguesian ovoid of the hyperbolic quadric of PG(7, q) [8]. Similarly, the embedding of
PSp2m(qt), q even, in PΩε

(2m)t
(q) has a particular application when m = 2 in the embeddings

of symplectic ovoids of PG(3, qt) as partial ovoids of hyperbolic quadrics of PG(4t−1, q) again
with the size attaining the Blokhuis-Moorhouse bound.

In [9] we investigated further these twisted tensor product group embeddings, but
from a different perspective. We showed how the nt-dimensional module over GF(q) for G
may be viewed projectively as a subspace of the projective space PG(

(
nt
t

) − 1, q) containing
the Grassmannian of (t − 1)-subspaces of PG(nt − 1, q). From this viewpoint G preserves the
intersection of the subspace and the Grassmannian. When n = 2m ≤ 4, this approach enabled
us to address some questions onmaximality.We proved that under the twisted tensor product
group embedding of PSp2m(qt),m ≤ 2, q even, an intermediate embedding of type C3 occurs:
PSp2m(qt) < PSp2mt(q) < PΩ(2m)t(q). The partial ovoid referred to above lies on a unique
quadric in PG((2m)t − 1, q). It turns out that this quadric is precisely that arising from the
spin representation of Sp2mt(q).

Note that class C9 has also been studied by Schaffer in [10], where he used
representation theory techniques; his arguments rely on the Classification of Finite Simple
Groups. He eliminated a number of possibilities, largely when t is composite and showed
that the remaining subgroups in this class are maximal except in a small number of cases.
The main exceptions are precisely PSp2(qt) ≤ PΩ+

2t(q) and PSp4(q
t) ≤ PΩε

4t(q) with q even.
In this paper we consider the twisted tensor product embedding of PSp2(qt) inside

PSp2t(q) when q is odd, in the smallest case, that is, t = 3. The normalizer N of PSp2(q3) in
PSp8(q), that has structure 3.PSp2(q3), is maximal in PSp8(q) [10]. We study the action ofN
on points of PG(7, q). It turns out thatN is the full stabilizer in PSp8(q) of a complete partial
ovoid and also of a complete partial spread of the symplectic space W7(q). The partial ovoid
is of some interest because of its connections with the generalized hexagons of type 3D4(q)
and G2(q), see [11].

2. The Geometric Approach to the Twisted Tensor Product Embedding

In this section, specializing to the case n = 2 and t = 3, we recall the alternative perspective
for at least some of the subgroups in the Aschbacher’s class C9 given in [9].

Let Ei, 1 ≤ i ≤ 3, be 2-dimensional vector spaces over GF(q3) and let E = E1 ⊕ E2 ⊕ E3.
Suppose that for each i, ei1, ei2 is a basis for Ei and suppose that H ≤ GL(E1). For v =∑

j λjeij ∈ Ei we write vΨ =
∑

j λ
q

j ei+1j ∈ Ei+1 (with i + 1 interpreted modulo 3), and for h ∈ H
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we write hΨ for the matrix h with every entry raised to the power q. Hence, to any v ∈ E1

there correspond “conjugate” vectors vΨ
i−1 ∈ Ei and H acts on Ei via hΨ

i−1
(vΨ

i−1
) = (hv)Ψ

i−1
.

Therefore we have an action of H on E and H preserves a fibration of E into 3-dimensional
subspaces of the form 〈v, vΨ, vΨ2〉. In projective terms, E corresponds to a projective space
Σ = PG(5, q3) andH preserves a partial 2-spread of Σ. We may regardΨ as a semilinear map
on E. The vectors in E fixed by Ψ are precisely the vectors v + vΨ + vΨ

2
, where v ∈ E1, and

they form a 6-dimensional vector space V over GF(q) that spans E and is preserved by H .
In Σ we have a set of points preserved by H forming a subgeometry Σ0 = PG(5, q) and on
restriction, the partial 2-spread above becomes a 2-spread S of Σ0 preserved by H . Suppose
thatH preserves a nondegenerate alternating form f1 on E1, thenH preserves the alternating
form fi on Ei given by fi(uΨ

i−1
, wΨi−1

) = f1(u,w)q
i−1

and an alternating form f on E in which
f|Ei is fi and in which E1 ⊕ E2 ⊕ E3 is an orthogonal decomposition. Moreover the restriction
of f to V is a nondegenerate alternating form on V . Thus H acts as a subgroup of Sp2(q3)
embedded in Sp6(q) on Σ0 preserving a spread S consisting now of totally isotropic planes.

Consider the 3-fold alternating product of E,
∧3(E), an H-module of dimension

( 6
3

)

over GF(q3). If A ⊕ B is any decomposition for E, then

3∧
(E) =

⊕

i+j=3

(
i∧
(A) ⊗

j∧
(B)

)

. (2.1)

Thus
∧3(E) has a subspace

∧1(E1)⊗
∧2(E2 ⊕E3) and, by iteration, a subspace

∧1(E1)⊗∧1(E2)⊗
∧1(E3), that is, E1⊗E2⊗E3. This latter subspace is preserved byH . The 3-dimensional

subspaces of E correspond to 1-dimensional subspaces of
∧3(E). Each 3-dimensional GF(q)-

subspace of V determines a 3-dimensional GF(q3)-subspace of E and so
∧3(V ) may be

regarded as a GF(q)-subspace of
∧3(E). For any v ∈ E1, the 3-subspace 〈v, vΨ, vΨ2〉 is mapped

to the 1-dimensional subspace corresponding to v∧vΨ∧vΨ2 ∈ E1⊗E2⊗E3. In projective terms
PG(

( 6
3

) − 1, q3) contains the Grassmannian G of planes of Σ and E1 ⊗ E2 ⊗ E3 corresponds to
a 7-dimensional subspace Δ of PG(

(
6
3

) − 1, q3) containing the image of the partial spread
and it is fixed by H . The planes of Σ0 form a Grassmannian G0 lying in a projective space
PG(

( 6
3

)−1, q) that is a subgeometry of PG(
( 6
3

)−1, q3). Each of the subspaces of S is mapped
into Δ ∩ G0.

As showed in [5, 2.4.1] the points of PG(1, q3)may be represented as points of PG(7, q).
Given thatG preserves the set of all such points and thatG acts irreducibly, these points must
span PG(7, q).

Let us return to S and its image in Δ ∩ G0. We have seen that these points in Δ ∩
G0 may be represented by v ⊗ vΨ ⊗ vΨ

2
as v varies in E1. Moreover we may take H to be

the group SL2(q3) acting absolutely irreducibly on E1. Hence the points corresponding to S
generate a GF(q)-subspace Δ0 of projective dimension 5. It follows that the GF(q3)-span of S
is precisely Δ. Hence we see the twisted tensor product module for SL2(q3) as the subspace
Δ0 of PG(

( 6
3

) − 1, q).
Observe that in one setting we haveH acting as a subgroup of GL2(q3) on PG(5, q), so

here it is an Aschbacher C3 group. In a second setting it is a subgroup of GL8(q) and lies in
Aschbacher class C9.
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3. The Embedding PSp2(q3) < PSp8(q), q Odd

We consider a vector space V of dimension 6 and the corresponding projective space Σ0 =
PG(5, q).

Let I be the set of all totally isotropic planes of Σ0 with respect to a nondegenerate
alternating form f and let S be a regular spread of Σ0 (with elements in I). Then the
Grasmannian, G0, of planes of Σ0 has dimension

( 6
3

) − 1 and the image of I in G0 spans
a subspace F3 of dimension

(
6
3

) − (
6
1

) − 1. The vector space equivalent of F3 is the Weyl
module of Sp6(q) for the fundamental weight λ3. When q is even, F3 has a unique maximal
subspace fixed by PSp6(q), denoted N3. The quotient space M3 = F3/N3 has dimension 7
and corresponds to the spin module for Sp6(q). For more details, see [3, 12–16].

When q is odd,M3 is the direct sum of the three twists of E1 and their twisted tensor
product. The symplectic form on

∧3(V ) is given by the wedge product

3∧
(V ) ×

3∧
(V ) −→

6∧
(V ) = GF

(
q
)
. (3.1)

The restriction of this alternating form to F3 must be nonsingular since F3 is a simple module.
By projection, we get an embedding of PSp2(q3) in PSp8(q), that is, PSp2(q3) in its twisted
tensor product group representation.

In [9] we proved the following theorem.

Theorem 3.1. Under the twisted tensor product group embedding PSp2(q3) < PΩ+
8(q), q ≥ 4 even,

an intermediate C3-embedding occurs: PSp2(q3) < PSp6(q) < PΩ+
8 (q).

Moreover, NPΩ+
8 (q)(PSp2(q

3)) is the stabilizer of O in PΩ+
8 (q) and it is a maximal

subgroup of PSp6(q).

Remark 3.2. It is a consequence of [17, Theorem I] that Sp6(q), q even, in its spin
representation, is a maximal subgroup of PΩ+

8 (q). See also [18, 19].

Now, we focus on the case q odd.
It is easy to see that under the twisted tensor product embedding, PSp2(q3), q odd,

turns out to be a subgroup of PSp8(q) rather than a subgroup of PΩ+
8 (q), and it fixes a partial

ovoid O of W7(q) of size q3 + 1, that is, a set of q3 + 1 points no two of them conjugate with
respect to f .

Lemma 3.3. The normalizerN of PSp2(q3) in PSp8(q) stabilizes O.

Proof. Let F be the stabilizer in PSp2(q3) of a point of the projective line PG(1, q3). Then F
can also be described as the normalizer in PSp2(q3) of a Sylow p-subgroup S of PSp2(q3)
and there is a cyclic subgroup C of F such that C ∩ S = 1 and F = CS. Exactly one point
of PG(1, q3) is fixed by F and exactly one point of O is fixed by the image of F under the
twisted tensor product embedding, say F̃. Suppose that F̃ fixes exactly one point P of PG(7, q)
(necessarily P will be in O). If h ∈ N, then h−1Fh fixes Ph, but h−1F̃h is the normalizer
in PSL2(q3) of a Sylow p-subgroup so it fixes a point of O. Hence Ph ∈ O. It follows that
Oh = O.
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As in the case q even, the normalizer N of PSp2(q3) in PSp8(q) has structure
3.PSp2(q3). It should be noted that N stabilizes also a partial spread of W7(q) of size q3 + 1
consisting of maximal totally isotropic subspaces of W7(q) tangent to O. The action of N on
O and on S is 2-transitive, see [11, Lemma 4.4(a)].

Proposition 3.4. The group N has four orbits on points of PG(7, q): O of size q3 + 1, O1 of size
q3(q3 +1)(q−1)/2 consisting of points on secant lines to O;O2 of size (q3 +1)(q3 +q2+q) consisting
of points on members of the partial spread S and O3 of size q3(q3 − 1)(q + 1)/2.

Proof. It is sufficient to prove thatN has three orbits on PG(7, q) \ O. Take 2 points P1 and P2
on O. The line L joining P1 and P2 is hyperbolic. The stabilizer of P1, P2 inN acts transitively
on L \ {P1, P2}. SinceN acts 2-transitively on O, we get the orbit O1 of size q3(q3 + 1)(q− 1)/2.
If P ∈ O, the stabilizer of P in N has order 3(q − 1)q3(q2 + q + 1)/2. As we have seen, there
is a unique member SP of S on P . Moreover, StabN(P) acts transitively on SP \ {P}. This
way, we obtain the orbit O2 of size (q3 +1)(q3 +q2 +q). To determine the fourthN-orbit O3 we
need some information on the twisted tensor product embedding of a Singer cyclic group S of
PSp(2, q3). In PSp2(q6) a Singer cycle has the diagonal representation diag(ω,ωq3), whereω is
a primitive element of GF(q6) over GF(q). The (q+1)th power T of the twisted tensor product
embedding of S has the diagonal representation diag(ωa,ωaq, ωaq2 , ωaq3 , ωaq4 , ωaq5 , ωb, ωbq),
where a = q3 + 2q2 + 2q + 1 and b = q5 + q4 + q3 + q2 + q + 1. It turns out that T fixes a line �
pointwise and a projective 5-spaceX setwise inducing a unitary Singer cyclic group of order
q2 − q + 1. In particular, from the diagonal representation of T , we see that each T-orbit not on
� or X (that has size q2 − q + 1, generates a projective 6-space and its stabilizer inN has order
3(q2 − q + 1). This way we get theN-orbit O3 of size q3(q3 − 1)(q + 1)/2.

Proposition 3.5. The partial ovoid O is complete.

Proof. From the previous proposition it follows that O is a complete partial ovoid of W7(q).
Indeed, if H is a hyperplane of PG(7, q) thenH = P⊥, for some point P , where ⊥ denotes the
symplectic polarity. There exist pairs P ∈ O, Q ∈ O1 with PQ totally isotropic, P ∈ O, R ∈ O2

with PR totally isotropic, P ∈ O, T ∈ O3 with PT totally isotropic. For, if P ∈ O, then P⊥ is
a hyperplane of PG(7, q) which must meet any secant line L to O, necessarily at a point Q of
O1, if L is not on P ; and it contains SP , and so a point R of O2; finally, the remaining points
of P⊥ (which must exist, by counting) lie in O3. Hence, since O1, O2, O3 are orbits ofN, each
point of Oi is collinear with a point of O (in a totally isotropic line) and so cannot be added
to O to obtain a partial ovoid. Thus O is complete.
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