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Abstract. We report evidence that the body-centered cubic (bcc)–face-centered
cubic (fcc) transition that occurs during Ni film growth on a Fe(001) substrate
is preceded by a pre-martensitic phase, as demonstrated by low-energy
electron diffraction. The corresponding film superstructure is characterized by
a displacement of Ni atoms along the main 〈100〉 crystallographic axes of
iron, without any rotation of the unit cell with respect to the (001) plane, in
contrast with the martensitic transition that shows four fcc Ni domains with the
Ni〈211〉 crystallographic directions aligned with the Fe〈110〉 axes. In addition,
the martensitic transition is detected not at 6 ML, as previously believed, but
above 20 ML if the Ni sample is rigorously kept at room temperature. The surface
morphology of the bcc–fcc transition is characterized by the development of Ni
mounds oriented along the 〈110〉 directions, as shown by scanning tunneling
microscopy.
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1. Introduction

The electronic and magnetic properties of solids are strongly influenced by their crystallographic
structure [1]. Small changes in lattice parameters or distortions of the unit cells have a
direct effect on the main physical characteristics of a sample [2]. Consequently, it might be
possible to continuously tune the electronic (e.g. the metal–semiconductor transition [3]) and
magnetic properties of a system [2] just by stretching the interatomic distances and modifying
the orbital overlaps. This possibility has been a strong motivation for numerous studies in
solid state physics, aiming to stabilize metastable phases of matter in the attempt to create
new materials with selected properties. Some elements, such as iron, naturally show diverse
allotropic phases with opposite magnetic characteristics at different critical temperatures. For
instance, the Fe body-centered cubic (bcc) crystal structure (α-Fe) is the most stable phase of
iron in standard conditions and is ferromagnetic. In contrast, the iron face-centered cubic (fcc)
crystal structure (austenite or γ -Fe) is paramagnetic but is observed only at temperatures above
1180 K. Conversely, nickel shows an fcc structure and no other allotropes are observed at higher
temperatures.

One of the most successful and well-established approaches for obtaining metastable
crystals, even in standard conditions, is to grow thin films over a template, typically a clean
and well-defined surface of a crystalline substrate. In fact, the complex equilibrium between
the energy costs of crystal cell distortion and the energy gain in the film–substrate interface
formation may allow the growing film to stabilize in a metastable crystallographic structure,
at least up to a critical thickness above which the film typically relaxes by undergoing plastic
deformations.

In this context, thin films, multilayers and interfaces involving the late 3d transition metals
(e.g. Fe and Ni) have stimulated interest in many studies, due to the need for designing artificial
materials with improved magnetic, magneto-optic and magneto-transport properties that can
play a key role in many technological applications. Such materials have also proved to be
important in understanding the fundamental properties of mutually interacting thin films as well
as the microscopic details of the film structure during the relaxation from the pseudomorphic
phase to the stable structure [4].

The system consisting of a thin Ni film on Fe is very promising for applications, since Fe
carries a higher magnetic moment than Ni, while the latter, thanks to its higher electronegativity,
is better suited than Fe to withstand oxidation. A thorough characterization of the structural
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properties of thin Ni films on Fe thus represents a crucial step to understanding the physics of
such systems.

The crystallographic structure of pseudomorphic Ni thin films grown on the Fe(001)
surface is characterized by the bcc phase [5], which is expected to be non-magnetic. Although
the evolution of Ni films on Fe(001) has been studied as a function of thickness for more
than two decades both experimentally [6, 7] and theoretically [8], there are still details of the
growth mechanisms that need to be further investigated [9]. In particular, the bcc–fcc transition
(martensitic transition) in Ni/Fe(001) films seems to occur abruptly above a critical thickness
of 6 ML [5], while many other bcc–fcc and fcc–bcc transitions (see [4] and references therein)
show a precursor phase.

The current state-of-the-art of the Ni/Fe interface formation can be summarized as follows.
(i) Up to 6 ML (1 ML being the number of Ni atoms necessary to fill every Fe(001) hollow
site (i.e. 1.217 × 1015 atoms cm−2), whose nominal thickness has been determined by using the
expected density of bcc Ni), the Ni film has a pseudomorphic bcc structure with an in-plane
lattice parameter of 2.87 Å (Fe bulk) instead of 2.77 Å, as predicted by theoretical calculations
for bcc Ni [10, 11]. The expansion causes a contraction of the interplanar spacing in the Ni
overlayer. Such a contracted spacing has been observed to be 1.35 Å [12, 13]. (ii) Above
6 ML the Ni film undergoes a sudden phase transition from the bcc to the fcc structure. This
transition is characterized by a specific c(2 × 2)-like reconstruction in the diffraction patterns
(e.g. [14] high-energy electron diffraction (RHEED)), which is interpreted in terms of four
different domains, each exposing the (110) plane of the fcc structure and oriented as described
by the Nishiyama–Wassermann path of the martensitic transition [15]. (iii) Density functional
theory (DFT) calculations [8] suggest that the Ni film undergoes a cell rotation with respect
to the Fe(001) bare substrate, at about 3–4 ML. This finding is compatible with a c(2 × 2)-like
reconstruction, as mentioned above [14]. In addition, simulations based on DFT and molecular
dynamics stress that the Ni/Fe interface is highly unstable above 300/400 K and that film growth
needs to be carried out at low temperatures (room temperature (RT) or lower) to avoid Ni inter-
diffusion inside the substrate.

In this work, we show that, in samples kept at RT, the bcc–fcc transition occurs at a
sample thickness much larger than any reported so far, taking place above 20 ML. This seems
to reconcile the experimental findings with the homogeneous strain theory, which predicts a
critical thickness for the bcc Ni overlayer of about 25 ML [16]. Moreover, a new precursor
phase is unambiguously identified in 10–20-ML-thick Ni/Fe(001) films by low-energy electron
diffraction (LEED). The precursor phase is characterized by a distortion of the Ni superstructure
along the main Fe crystallographic axes, namely [100] and [010], and no unit cell rotation
is detected. A scanning tunneling microscopy (STM) investigation of the film shows that the
martensitic transition is accompanied by the formation of Ni mounds oriented along the 〈110〉

directions, in agreement with the other bcc–fcc transitions reported in the literature [17–21].

2. Experimental details

Measurements have been carried out in an ultra-high vacuum (UHV—base pressure in the
10−9 Pa range) apparatus with Ar-ion sputtering, LEED, Auger electron spectroscopy (AES)
and STM (Omicron®) facilities. Clean Fe(001) substrates are prepared by depositing a thick Fe
film on an MgO(001) single crystal according to a standard protocol [22]. The Fe(001) substrate
shows a sharp (1 × 1) square LEED pattern and small roughness with large terraces separated
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by 1-ML-high steps as seen by STM [23, 24]. Ni is evaporated at near normal incidence
by an e-beam cell located at about 15 cm from the substrate. A chromel–alumel (type K)
thermocouple is positioned in close proximity to the sample in order to monitor its temperature
during each preparation step. The Ni-cell flux has been carefully calibrated by using a quartz
microbalance and checked by AES and STM. A stable flux of 0.8 ML min−1 has been chosen
for our experiments, in agreement with previous studies [5]. During Ni growth the pressure in
the preparation chamber did not exceed 3 × 10−8 Pa. Ni films with different thicknesses have
been grown at RT following two alternative strategies: (i) by depositing a given amount of Ni
each time on a freshly prepared Fe surface, as obtained by sputter-removal of the previous Ni
film followed by annealing; (ii) by adding a new amount of Ni to the previous deposition step
after full characterization by AES, LEED and STM. No significant changes have, however, been
detected by following either strategy (i) or (ii). No contaminants were observed in the Auger
spectra, which consisted of Ni and Fe peaks, the latter showing a reduction with the overlayer
thickness, well consistent with uniform growth with no interdiffusion [25].

3. Results

Figure 1 summarizes our experimental results obtained on the Ni/Fe(001) system as the Ni
thickness is progressively increased from 0 (clean Fe(001)) to 6, 20 and 40 ML (rows (a)–(b),
(c)–(d), (e)–(f) and (g)–(h), respectively), whose nominal thicknesses have been determined by
using the expected density of bcc Ni, in agreement with the literature.

In the first column, we show the LEED images collected on our samples. A well-
defined (1 × 1) symmetry pattern is observed in figure 1(a) on the freshly prepared Fe(001)
substrate. Figure 1(b) illustrates an STM image of a substrate region (160 × 160 nm2), showing
the presence of monoatomic steps. At a nominal coverage of 6 ML, the coalescence of the
islands of the topmost layer creates large flat areas (see figure 1(d)). LEED indicates strictly
pseudomorphic growth, as the diffraction pattern is still of (1 × 1) symmetry (see section 4.1),
and spot positions coincide with those of Fe(001) (figure 1(c)). The quality of the LEED pattern
is not significantly degraded despite the increased roughness of the epitaxial growth, although
the LEED background intensity was slightly enhanced. A similar experimental result has been
described in the pseudomorphic growth of γ -Fe on Ir(001) [4]. In figure 1(d), three different
layers are clearly visible from our STM data, suggesting a multilayer growth mode of the Ni
film at this coverage regime.

The same (1 × 1) diffraction pattern is detected in each Ni deposition step from 6 ML up
to 10 ML (not reported here), the only difference being an increase of the scattered background
and a smearing of the diffraction spots.

For Ni thickness above 10 ML the LEED background significantly increases and spots
(10), (01), (10) and (01) show an enhancement of diffused light along the main crystallographic
axes of iron. Deeper analysis of LEED images proves that some extra spots appear as satellites
of the substrate main spots. These satellites gradually gain intensity as the Ni film thickness
is increased up to 20 ML, suggesting that the structural change highlighted by LEED affects
several buried layers and not only the topmost one. The final visible effect is the appearance
of cross-like features (see figure 1(e)). Conversely, spots (11), (11), (11) and (11) are not
visible and no satellites are detected. This is probably due to the increasing sensitivity to local
disorder and surface roughness of the LEED spots with increasing Miller indices. Incidentally,
we note that just at this coverage a coexistence of satellites and fading c(2 × 2)-like extra spots
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Figure 1. Rows are related to the clean Fe(001), 6, 20 and 40 ML of Ni film
from top to bottom, respectively. In the left column, the corresponding LEED
patterns (electron beam energy E = 150 eV in panels (a), (c) and (e), E = 225 eV
in panel (g)) are reported. In panel (e); a blow-up of the satellites around the (01)

diffraction spot (see text) is reported. LEED pictures have been acquired by a
digital camera with an integration time of 30 s. The right column collects the
STM images and related profiles, acquired along the horizontal line (Itunnel =

1 nA; Vbias = 1 V).

New Journal of Physics 14 (2012) 053048 (http://www.njp.org/)

http://www.njp.org/


6

is detected. Figure 1(f) reports a typical STM image of a 20-ML-thick Ni film grown at RT. A
system of mounds decorates the overall surface. Each mound is a few layers high, as can be
inferred from the line profile.

Above 20 ML, the satellites disappear from the LEED pattern and a clear c(2 × 2)-like
reconstruction is observed, replacing the original (1 × 1) (see figure 1(g)). The c(2 × 2)-like
symmetry has been reported in the literature [14] and is attributed to the development of a
fcc phase for the Ni film following the martensitic transition. However, the critical thickness
obtained in this work differs from those obtained by several other authors [5, 12–14], according
to whom the martensitic transition occurs at 6 ML, although in close agreement with the
homogeneous strain theory [16], which predicts a critical thickness for the bcc Ni overlayer
around 25 ML. We believe that the reason for such a discrepancy has to be looked for in
the sample temperature. In our measurements, we carefully kept the temperature constant at
300 K, while other strategies have been used and reported in the literature [5, 14] (in other
works the sample temperature might have risen above RT). Consequently, our data indicate that
the bcc–fcc transition at RT takes place at a higher film thickness than previously believed,
namely 20 ML instead of 6 ML, which was the commonly accepted value. A rapid inspection of
figure 1(h) reveals that some changes are evident also in the surface morphology. The mounds,
already observed at 20 ML, are now larger in size and seem to be preferentially oriented along
the 〈110〉 diagonals of the main [100] and [010] iron axes. Despite this increase in size, it
was not possible to achieve atomic resolution on these mounds, which is, however, quite a
common situation in STM on metals at RT. Nevertheless, Ni mounds generate a nice fabric-like
texture with domains that closely resemble characteristic martensitic micro- and nanostructures
observed by optical microscopy [26] and STM [27], respectively.

We have followed the Ni growth up to a thickness of 100 ML. No other significant changes
with respect to the situation at 40 ML were detected. At higher thicknesses, LEED spots had a
lower intensity and broader shape than at lower coverages, while the film morphology always
showed a stable texture with a roughness (about 180 pm) comparable with that characterizing
the 40 ML Ni film.

4. Discussion

4.1. Film structure

In many bcc–fcc and fcc–bcc transitions observed in thin films growing on a template, the
film crystal structure undergoes changes that are driven by the energetic gain obtained by
relieving the surface stress, which originates from an imperfect match between the lattice
parameter of the substrate and that of the growing film. In particular, the growth of both Ni
and Fe on crystal surfaces usually proceeds through complex structural changes, associated
with the appearance of different surface reconstructions or with a particular evolution of
their magnetic characteristics [17–21]. Even the growth of Fe on Ni(001) displays interesting
phenomenological features in both its structure and morphology [28].

Regarding Ni film growth on Fe(001) at RT,2 the presence of satellites around the main
(1 × 1) LEED spots in the Ni coverage range between 10 and 20 ML also proves that such a
system is characterized by an intermediate structural change (never observed until now), before
the martensitic transition is completed. In the following, we present an analysis of the satellite

2 The precursor phase, described in this work, is visible even at 120 ◦C.
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Figure 2. Intensity profiles of a magnified view of the inset of figure 1(e),
represented as a function of the relative scattering vector (k‖/k(10)). Two satellites
are visible from the horizontal LEED intensity profile (blue line), while a single
satellite is detected in the vertical profile (red line).

structure and a simulation of the LEED pattern in order to understand the microscopic change
that occurs in the Ni film before the bcc–fcc transition.

It has been demonstrated that, when a sample is mechanically stressed, the (1 × 1) pattern
is modified [29] so that each diffracted spot is surrounded by a symmetric halo. It is reasonable
to think that even our sample, when it is close to the critical thickness for the bcc–fcc transition
(namely 20 ML), can experience high values of local surface stress that would explain the
observed LEED. However, as already mentioned, a closer inspection of the inset of figure 1(e)
shows that the halo has a cross-like shape and is actually constituted by at least three extra
spots aligned along the main [100] and [010] directions. Such an observation is confirmed by an
additional analysis of the LEED intensity profiles along the 〈100〉 directions in the proximity of
the {10} spots, summarized in figure 2. This finding is in good agreement with similar systems
that exhibit a fcc–bcc transition [17–21]. However, the martensitic family is wide and comprises
different materials with specific peculiarities. Some of them show pretransitional phenomena
known as ‘tweed’ (see [30] and references therein) characterized by symmetric solid lines
in the diffraction pattern [31]. Consequently, our LEED pattern excludes the ‘tweed’ phase
and implies that the intermediate phase is a real precursor (also pre-martensitic) phase during
which Ni atoms are stressed along the main [100] and [010] directions of the pseudomorphic
bcc phase. Such a pre-martensitic phase is usually interpreted in terms of the so-called sine-
like deformation model [17–21] that predicts the displacements of the surface atoms from a
pseudomorphic position to assume the form of a sinusoidal wave, with the displacements along
a crystallographic axis whose periodicity is equal to an integer multiple of the in-plane lattice
constant of the underlying substrate.
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Figure 3. (a) Different Ni cells that are considered to interpret the experimental
LEED pattern. (1) A stretched unit cell; (2) point symmetry group (only a 90◦

rotation) applied to the cell (1); (3) a contracted unit cell; (4) point symmetry
group (only a 90◦ rotation) applied to the cell (3); (5) cell obtained by a
displacement of Ni atoms along a crystallographic direction of Fe, due to the
effect of a shear stress; (6)–(8) cells obtained from (5) by applying systematically
all the operators of the 4mm point symmetry group of the square. (b) LEED
simulation result (Sim4tec). Symbols (filled squares, open squares, open circles
and black crosses) refer to the position of spots and satellites in the LEED screen.
The inset shows a blow-up of the satellites around the (10) diffraction spot. Filled
squares refer to the (1 × 1) symmetry pattern. Open squares are linked to Ni cells
(1) and (2); open circles refer to cells (3) and (4), not observed experimentally,
while black crosses originate from Ni cells (5)–(8).

In order to prove our statement, we have simulated (Sim4tec) the observed LEED pattern
by using two Ni supercell distortions that can be considered a simpler version of the sine-like
deformation model.

If we consider a distorted superstructure (with respect to the lattice of the (001) surface),
we can notice that the possible shifts of the Ni atoms must follow any path which is compatible
with the 4mm point symmetry group of the square, the only restriction being that each single
atom shifts along the crystallographic axes (see figure 1(e)). Consequently, the main distortions
of a square lattice domain are just two: (i) stretching (or contraction), which changes a square
domain into a rectangular one and it is due to an axial stress; (ii) dislocation, which is due to a
shear stress and changes a square lattice into an oblique one. Figure 3 summarizes all possible
Ni cell distortions. The result is a collection of eight surface cells, where the distance of the
displaced Ni atoms is 0.2 Å with respect to the unperturbed position. In principle, there is no
reason to prefer one domain with respect to another one. Consequently, we can initially consider
our eight domains as equiprobable.

It is realistic to think that the overall surface tessellation is a collection of domains obtained
by coupling the above eight cells, consistent with the sine-like model and a consequent low cost
in terms of surface energy.

Figure 3(b) shows that the simulated diffraction pattern is in very good agreement with
the experimental data reported in figure 1(e). However, from the above-reported simulation,
satellites related to the contracted cells ((3) and (4) in figure 3(a)) are not visible experimentally

New Journal of Physics 14 (2012) 053048 (http://www.njp.org/)

http://www.njp.org/


9

0 20 40 60 80 100
Nominal coverage (ML)

R
M
S-
R
ou
gh
ne
ss
(p
m
)

0

50

100

150

200

40 nm

Figure 4. Surface roughness (rms), calculated on 160 × 160 nm2 STM images,
as a function of the nominal Ni film thickness. The open circles represent
experimental data, while the full line is a guide to the eyes. Inset: an STM image
(160 × 160 nm2) acquired on the sample with a nominal Ni coverage of 100 ML
(Itunnel = 1 nA; Vbias = 1 V).

(cf figure 1(e)), suggesting that tensile and shear stresses predominate in the Ni superstructure
deformation. This means that, by comparing experimental data and simulations, we can infer
that the main mechanisms that govern the precursor phase are tensile and shear stresses and that
compression plays a minor role.

We can thus conclude that the Ni super-cell structure undergoes a pre-martensitic
transformation, characterized by a shift of Ni atoms along the main crystallographic axes of
iron. This phase closes, on the one hand, the pseudomorphic growth of Ni on Fe(001) and, on
the other, it is qualitatively different from the true martensitic transition because the latter is
characterized by a rotation of the supercells with respect to the bare substrate, which we did not
observe in our LEED patterns below a nominal Ni thickness of 20 ML. This finding reconciles
the difference of the bcc–fcc transition of Ni on Fe with respect to other systems such as, for
example, Fe films grown on Ni [28], which are characterized by a complex evolution of both
structure and morphology.

4.2. Film morphology

Figure 4 reports the dependence of the overall surface roughness as a function of thickness.
Such an evolution is in agreement with the multilayer growth of a film, as already reported

in the literature [28]. Below 10 ML, the roughness seems to increase almost linearly and then
there is a change in the trend. Probably, this is due to the stress relaxation that shifts the
Ni atoms along the [100] direction (described above as a specific characteristic of the pre-
martensitic phase, occurring for coverages above 10 ML) and the overall effect of stress relief is
to reduce the rate of surface roughness increase with film thickness. Above 20 ML, the evolution
reported in figure 4 tends to saturate. It is worth noting that when a stable structure is obtained
above 20 ML (Ni fcc phase), also the film morphology reflects a stationary situation. This is
particularly true if one compares the STM image for a 40-ML-thick Ni film (figure 1(g)) with
that related to a coverage of 100 ML (see the inset of figure 4). Both images are characterized
by a nice fabric-like texture and no significant differences are observed.
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We analyzed the probability density function (Gwyddion) associated with the preferential
orientation of the Ni crystal mounds of four different film thicknesses (namely 6, 20, 40 and
100 ML) [32] and the results are summarized in figure 5, where 0◦, 45◦ and 90◦ correspond
to the alignment of Ni mounds along the [100], [110] and [010] directions, respectively. The
angular distribution of the mounds in the 6 ML sample shows a periodic trend with maxima
at 0◦, 90◦ and 180◦. This result indicates that, during the pseudomorphic film growth, the Ni
domains evolution follows the main crystallographic axes of iron. Incidentally, we note that
only the Ni topmost layer displays islands with borders aligned along the bcc 〈110〉 directions,
which is a morphological peculiarity of the Ni fcc phase (see below). The distribution is
significantly changed during the precursor phase (namely up to 20 ML). No relevant structures
can be detected in the angular distribution for the 20-ML-thick film, which shows almost
flat behavior. The precursor phase, as mentioned in section 4.1, is characterized by Ni cell
distortions that can produce changes in the orientation of the mounds with respect to the iron
axes that correspond to a flattening of the calculated distribution, as observed in figure 5, 20 ML.
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After the martensitic transition, the angular distribution of the mounds shows new features,
centered around 90◦

± 10◦. The broad shape of such a feature could be a consequence of the
increased surface roughness, as reported in figure 4. At 100 ML, when a nice fabric-like texture
is definitely observed (see the inset of figure 4), two clear structures at 45◦ and 135◦ are obtained
in the angular distribution, corresponding to a mound orientation along the 〈110〉 directions. In
this respect, we recall that Mijiritskii et al [14] recognized that their four equivalent Ni cells,
which are in agreement with the Nishiyama–Wassermann transition path, can produce domains
with boundaries aligned exactly along the bcc 〈110〉 directions. Our STM results support this
interpretation from a morphological point of view and help in the comprehension of the fourfold
symmetry observed by Heinrich et al [33, 34] in the magnetic properties of the Ni/Fe(001)
system.

5. Conclusions

In conclusion, in this work we have reported clear evidence for a pre-martensitic phase during
the growth of Ni on Fe(001), as recognized by LEED analysis. It is important to underline
that the growth was performed strictly at RT. The pre-martensitic phase, which closes the true
Ni pseudomorphic regime, is characterized by a lattice deformation along the [100] and [010]
directions, due to tensile and shear stresses, that produces cross-shaped satellites around the
main LEED spots. The diffraction pattern has been interpreted in the framework of the sine-
like deformation model, in agreement with other precursor phases reported in the literature.
The martensitic bcc–fcc transition, which occurs with increasing sample thickness, is delayed
with respect to what is reported so far, taking place at thicknesses above 20 ML. In addition,
inspection of the film morphology shows that the Nishiyama–Wassermann transition path
produces a nice fabric-like texture, with Ni mounds aligned along the 〈110〉 directions, that
covers the entire surface. Our findings can be useful for the current debate about the microscopic
changes that occur in the formation of the Ni/Fe interface [8].

Moreover, one of the results of this work is the possibility of growing a thin bcc Ni layer
that can be used as a stable buffer layer in temperature (up to 400 K) and in thickness (up to
20 ML). For instance, it is known that, due to the strong lattice misfit (about 19%) between pure
Ni and NiO, thin NiO films do not grow epitaxially on Ni substrates. This might be relevant
for the field of surface magnetism, for instance to realize thin metal oxide films coupled to
magnetic substrates [35], which can be problematic when the substrate is less electronegative
than the overlayer and is thus easily oxidized. In this respect, a bcc Ni buffer layer can avoid the
oxidation of e.g. a Fe substrate, opening up a real chance to extend the existing palette of sharp
oxide–substrate interfaces.
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