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Evaluation of size effects in functionally graded elastic nanobeams is carried out by making recourse to the nonlocal continuum
mechanics. The Bernoulli-Euler kinematic assumption and the Eringen nonlocal constitutive law are assumed in the formulation
of the elastic equilibrium problem. An innovative methodology, characterized by a lowering in the order of governing differential
equation, is adopted in the present manuscript in order to solve the boundary value problem of a nanobeam under flexure.
Unlike standard treatments, a second-order differential equation of nonlocal equilibrium elastic is integrated in terms of transverse
displacements and equilibrated bending moments. Benchmark examples are developed, thus providing the nonlocality effect in
nanocantilever and clampled-simply supported nanobeams for selected values of the Eringen scale parameter.

1. Introduction

Analysis of nanodevices is a subject of special interest in the
current literature. Particular attention is given to the static
behavior of beam-like components of nanoelectromechanical
systems (NEMS). Nonlocal constitutive behaviors are ade-
quate in order to evaluate the size phenomenon in nanostruc-
tures; see, for example, [1–9]. Investigations on randomelastic
structures have been carried out in [10–13]. Many research
efforts have been devoted to theoretical and computational
advances about specific structural models [14–19]. Recent
variational formulations of nonlocal continua have been
developed in [20–22]. Noteworthy theoretical results on
functionally graded nanobeams have been contributed in
[23–25]. Nevertheless, exact solutions are not always available
so that finite element strategies are needful; see, for example,
[26]. Micromechanical approaches are broadly used in order
to analyze the effective behavior of composite structures [27].

Innovative applications of engineering interest are pro-
posed in [28–30]. Numerical and experimental method-
ologies for composite structures are developed in [31, 32].
Effective applications of tensionless models concerning crack
propagation are reported in [33–37]. A skillful analysis of
equilibrium configurations of hyperelastic cylindrical bodies
and compressible cubes is carried out in [38].

The present paper deals with one-dimensional nanos-
tructure by making recourse to the tools of nonlocal contin-
uummechanics. Small-scale effects exhibited by functionally
graded nanobeams under flexure are analyzed in Section 2.

2. Nonlocal Elasticity

In local linear elasticity for isotropic materials, stress and
strain at a point x of a Cauchy continuum are functionally
related by the following classical law:

𝜎𝑖𝑗 (x) = 2𝜇e𝑖𝑗 (x) + 𝜆e𝑟𝑟 (x) 𝛿𝑖𝑗, (1)

with 𝜇 and 𝜆 Lamé constants.
Such a constitutive behavior is not adequate to evaluate

size effects in nanostructures. An effective law able to capture
scale phenomena was developed by Eringen in [39] who
defined the following nonlocal integral operator:

t𝑖𝑗 (x) = ∫
𝑉
𝐾(󵄨󵄨󵄨󵄨󵄨x󸀠 − x󵄨󵄨󵄨󵄨󵄨 , 𝜏)𝜎𝑖𝑗 (x󸀠) 𝑑𝑉, (2)

where

(1) t𝑖𝑗 is the nonlocal stress,
(2) 𝜎𝑖𝑗 is the macroscopic stress given by (5),
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(3) 𝐾 is the influence function,
(4) 𝜏 = 𝑒0𝑎/𝑙 a dimensionless nonlocal parameter defined

in terms of the material constant 𝑒0 and of the
internal and external characteristic lengths 𝑎 and 𝑙,
respectively.

In agreement with the Eringen proposal in choosing the
following influence function 1−𝑐2∇2, the nonlocal elastic law
(2) rewrites as

(1 − (𝑒0𝑎)2 ∇2) t𝑖𝑗 = 𝜎𝑖𝑗, (3)

where ∇2 denotes the Laplace operator. The differential form
adopted for bending of nanobeams, analogous to (3), is
provided by

𝜎 − 𝑐2 𝑑2𝜎𝑑𝑥2 = 𝜎, (4)

where 𝜎 is the nonlocal normal stress and 𝜎 is the macro-
scopic normal stress on cross sections. Note that the stress 𝜎
is expressed in terms of elastic axial strains by

𝜎 = 𝐸𝜀, (5)

with 𝐸 Young modulus.

3. Bending of Nonlocal Nanobeams

Let us consider a bent nanobeam of length 𝐿, with Young
modulus 𝐸 functionally graded in the cross section Ω and
uniform along the beam axis 𝑥. The cross-sectional elastic
centre and the principal axes of elastic inertia, associated with
the scalar field 𝐸, are, respectively, denoted by G and by the
pair (𝑦, 𝑧).

The nanobeam is assumed to be subjected in the plane(𝑥, 𝑦) to the following loading conditions:
𝑞𝑡, distributed load per unit length in the interval[0, 𝐿],
F𝑡, concentrated forces at the end cross sections{0, 𝐿},
M, concentrated couples at the end cross sections{0, 𝐿}.

The bending stiffness is defined by

𝑘𝑏 fl ∫
Ω
𝐸𝑦2𝑑𝐴. (6)

Differential and boundary conditions of equilibrium are
expressed by

𝑑2𝑀𝑏𝑑𝑥2 = 𝑞𝑡, in [0, 𝐿] ,
𝑑𝑀𝑏𝑑𝑥 = ±F𝑡, at {0, 𝐿} ,
𝑀𝑏 = ∓M, at {0, 𝐿} ,

(7)

where𝑀𝑏 is the bending moment.

The bending curvature, corresponding to the transverse
displacement V, is given by

𝜒 (𝑥) = 𝑑2V
𝑑𝑥2 (𝑥) . (8)

The differential equation of nonlocal elastic equilibrium of
a nanobeam under flexure is formulated as follows. Let us
preliminarily multiply (4) by the coordinate 𝑦 along the
bending axis and integrate on the cross sectionΩ:

∫
Ω
𝜎𝑦𝑑𝐴 − (𝑒0𝑎)2 ∫

Ω

𝑑2𝜎
𝑑𝑥2𝑦𝑑𝐴 = ∫

Ω
𝐸𝜀𝑦 𝑑𝐴, (9)

with the axial dilation provided by the known formula 𝜀(𝑥) =−𝜒(𝑥)𝑦.
Enforcing (8) and (7)1 and imposing the static equiva-

lence condition

𝑀𝑏 = −∫
Ω
𝜎𝑦𝑑𝐴, (10)

we obtain the relation

𝑀𝑏 − (𝑒0𝑎)2 𝑞𝑡 = 𝑘𝑏 𝑑
2V

𝑑𝑥2 . (11)

This equation can be interpreted as decomposition formula
of the bending curvature 𝜒𝑏 = 𝑑2V/𝑑𝑥2 into elastic 𝜒EL and
inelastic 𝜒IN parts

𝜒𝑏 = 𝜒EL + 𝜒IN, (12)

with

𝜒EL = 𝑀𝑏𝑘𝑏 ,

𝜒IN = −(𝑒0𝑎)
2

𝑘𝑏 𝑞𝑡.
(13)

Accordingly, the scale effect exhibited by bending moments
and displacements of a FG nonlocal nanobeam can be
evaluated by solving a corresponding linearly elastic beam
subjected to the bending curvature distortion 𝜒IN (13)2.

4. Examples

The solutionmethodology of the nonlocal elastic equilibrium
problem of a nanobeam enlightened in the previous section
is here adopted in order to assess small-scale effects in
nanocantilever and clamped-simply supported nanobeams
under a uniformly distributed load 𝑞𝑡. The nonlocality effect
on the transverse displacement is thus due to the uniform
bending curvature distortion formulated in (13)2. Graphical
evidences of the elastic displacements are provided in Figures
1 and 2, in terms of the following dimensionless parameters𝜉 = 𝑥/𝐿 and V∗(𝜉) = (100𝑘𝑏)/(𝑞𝑡𝐿4)V(𝜉), for selected values of
the nonlocal parameter 𝜏 fl 𝑒0𝑎/𝐿. Details of the calculations
and some comments are reported below.

4.1. Cantilever Nanobeam. The bending moment is given by

𝑀𝑏 (𝑥) = 𝑞𝑡2 𝑥2 − 𝑞𝑡𝐿𝑥 +
𝑞𝑡𝐿22 . (14)
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Figure 1: Dimensionless transverse displacements V∗ for the
nanocantilever versus 𝜉 for 𝜏 ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}.
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Figure 2: Dimensionless transverse displacement V∗ for the
clamped-simply supported nanobeam versus 𝜉 for 𝜏 ∈ {0, 0.05, 0.1,0.15, 0.2, 0.3, 0.5}.

The l.h.s. of (11) is hence known, so that the differential
condition of nonlocal elastic equilibrium to be integrated
writes explicitly as

𝑘𝑏 𝑑
2V

𝑑𝑥2 (𝑥) = 𝑀𝑏 (𝑥) − 𝜏2𝐿2𝑞𝑡. (15)

The general integral of (15) takes the form

V (𝑥) = 𝑎𝑥 + 𝑏 + V (𝑥) , (16)

where

V (𝑥) = − 𝑞𝑡24𝑘𝑏 𝑥
4 + 𝑞𝑡𝐿6𝑘𝑏 𝑥

3 − 𝑞𝑡𝐿24 𝑥2 − 𝜏2𝐿2𝑞𝑡2𝑘𝑏 𝑥2 (17)

is a particular solution of (15). The evaluation of the inte-
gration constants 𝑎 and 𝑏 is carried out by prescribing the
boundary conditions

V (0) = 0,
𝑑V
𝑑𝑥 (0) = 0.

(18)

The transversal deflection follows by a direct computation

V (𝑥) = 𝑞𝑡24𝑘𝑏 𝑥
4 − 𝑞𝑡𝐿6𝑘𝑏 𝑥

3 + 𝑞𝑡𝐿24𝑘𝑏 𝑥
2 − 𝜏2𝑞𝑡𝐿22𝑘𝑏 𝑥2. (19)

The maximum displacement is given by

V𝑚 = V (𝐿) = (18 −
𝜏2
2 )

𝑞𝑡𝐿4𝑘𝑏 . (20)

Nanocantilever becomes stiffer with increasing the nonlocal
parameter 𝜏. Indeed, according to the analysis proposed in
Section 3, the sign of the prescribed distortion𝜒IN, describing
the nonlocality effect, is opposite to the one of the elastic
curvature 𝜒EL. In particular, the displacement of the free end
vanishes if 𝜏 = 0.5 (see Figure 1) according to (20).

It is worth noting that, with the structure being statically
determinate, the bending moment (14) is not affected by the
scale phenomenon.

4.2. Clamped-Simply Supported Nanobeam. Equilibrated
bending moments are provided by the relation

𝑀𝑏 (𝑥) = 𝑎1 (𝑥 − 𝐿) + 𝑞𝑡𝐿22 − 𝑞𝑡2 𝑥2, (21)

with 𝑎1 ∈ R being an arbitrary constant. The differential
condition of nonlocal elastic equilibrium (11) to be integrated
takes thus the form

−𝑘𝑏 𝑑
2V

𝑑𝑥2 (𝑥) = 𝑎1 (𝑥 − 𝐿) +
𝑞𝑡𝐿22 − 𝑞𝑡2 𝑥2 + 𝜏2𝐿2𝑞𝑡. (22)

Equation (22) is solved by imposing the following kinematic
boundary conditions:

V (0) = 0,
𝑑V
𝑑𝑥 (0) = 0,
V (𝐿) = 0.

(23)

A direct computation gives the transversal displacement field

V (𝑥) = 𝑞𝑡24𝑘𝑏 𝑥
4 − 5𝑞𝑡𝐿48𝑘𝑏 𝑥

3 + 𝑞𝑡𝐿216𝑘𝑏 𝑥
2 + 𝜏2𝑞𝑡𝐿4𝑘𝑏 𝑥

2 (𝐿 − 𝑥) (24)

and the bending moment

𝑀𝑏 (𝑥) = 𝑞𝑡2 𝑥2 −
𝑞𝑡𝐿2 (54 + 3𝜏2)𝑥 +

𝑞𝑡𝐿22 (3𝜏2 + 1
4) . (25)

The maximum displacement is given by

V𝑚 = V (𝑥) , (26)

with 𝑥 = 3𝐿((3/2)(5/24+𝜏2/2)−√(9/16)𝜏4 + 11/768 + (13/96)𝜏2)
solution of the equation (the known local maximum point𝑥 ≃ 0.578𝐿 is recovered by setting 𝜏 = 0) (𝑑V/𝑑𝑥)(𝑥) = 0.

In agreement with the equivalence method exposed
in Section 3, (24) and (25) provide the deflection and
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Figure 3: Dimensionless bending moment 𝑀∗ versus dimension-
less abscissa 𝜉 of a clamped-simply supported nanobeam.

bending moment of a corresponding local nanobeam under
the transversal load distribution 𝑞𝑡 and the distortion 𝜒IN
equivalent to the nonlocality effect.

A plot of the dimensionless bending moment 𝑀∗ =−(100/𝑞𝑡𝐿2)𝑀 versus the dimensionless parameter 𝜉 = 𝑥/𝐿
is given in Figure 3 for increasing values of the nonlocal
parameter 𝜏.
5. Conclusion

TheEringen nonlocal law has been used in order to assess size
effects in nanobeams formulated according to the Bernoulli-
Euler kinematics. The treatment extends to functionally
graded materials the analysis carried out in [24] under the
special assumption of elastically homogeneous nanobeams.
Transverse deflections of cantilever and clamped-simply sup-
ported nanobeams have been established for different values
of the nonlocal parameter. Such analytical solutions could be
conveniently adopted by other scholars as simple reference
examples for numerical evaluations in nonlocal composite
mechanics.
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