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We consider three inviscid, incompressible, irrotational fluids that are contained between the rigid walls 𝑦 = −ℎ
1
and 𝑦 = ℎ + 𝐻

and that are separated by two free interfaces 𝜂
1
and 𝜂

2
. A generalized nonlocal spectral (NSP) formulation is developed, fromwhich

asymptotic reductions of stratified fluids are obtained, including coupled nonlinear generalized Boussinesq equations and (1 + 1)-
dimensional shallow water equations. A numerical investigation of the (1 + 1)-dimensional case shows the existence of solitary
wave solutions which have been investigated for different values of the characteristic parameters.

1. Introduction

Since some early studies started in the 1950s (see [1, 2] and
refs. therein), much interest has been devoted over the years
to the flow of stratified fluids, both from a theoretical and
from applied point of view. In particular, multifluid flows
characterized by gravitationally stable density interfaces are
a useful mathematical model in geophysics and engineering
[3–5]. On the other hand, many analytical studies have been
dedicated to the equations that describe the system of two
ideal fluids, separated by a free interface [6]. Indeed, a great
effort has been devoted to modeling the evolution of the
internal waves in a two-fluid system and to deriving asymp-
totic reductions (see [7] for a recent review). Among them,
of particular relevance are the Benjamin-Ono (BO) equation
[8, 9] and the intermediate long wave (ILW) equation [10, 11].
Moreover, in [12] model equations governing the evolution of
fully nonlinear long waves at the interface of two immiscible
ideal fluidswere derived,while theweakly nonlinear limitwas
treated in [13]; finally in [14] a Hamiltonian formulation of
the two-fluid system was derived and through a perturbative
theory a systematic analysis of the long waves scaling regimes
was carried out. On the other hand, in recent years, a
nonlocal formulation of water waves for both (1 + 1) and

(2 + 1) dimensions was presented in [15], where the original
equations with unknown boundary conditions are replaced
by an integrodifferential equation and a nonlinear partial
differential equation, both of which are formulated in a
known domain. The nonlocal formulation obtained in [15]
is derived from the general approach to studying boundary
value problems for linear and nonlinear PDEs introduced in
[16]. A crucial role in such approach is played by a nonlocal
equation, called the global relation [16]. A generalization of
the results obtained in [15] was presented in [17], where a
nonlocal formulation was derived, governing two ideal fluids
separated by a free interface and bounded above either by
a rigid lid or by a free surface [17]. Due to the dependence
on a free spectral parameter, the corresponding equations are
usually called the nonlocal spectral (NSP) equations of the
two-fluid system.TheNSP equations were particularly useful
for deriving asymptotic approximations; we wish to point
out an asymptotically (2 + 1)-dimensional generalization
of the intermediate long wave (ILW) equation reported in
[17] which includes the KP equation and the Benjamin-Ono
equation as limiting cases.Numerical investigations indicated
the existence of lump type solutions, with a speed versus
amplitude relationship shown to be linear in the shallow,
intermediate, and deep water regime.
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Figure 1: Three fluids with two free internal interfaces.

However, to the best of our knowledge, the phenomeno-
logical models for more than two fluids mentioned at the
beginning of this section have not been paralleled by any
analytical study.This prompted us to develop a generalization
of the NSP formulation to the case of three ideal fluids,
separated by two free interfaces and limited above by a rigid
lid. Namely, we consider three inviscid, incompressible, irro-
tational fluids that are confined between the rigid lids𝑦 = −ℎ

1

and 𝑦 = ℎ + 𝐻 and are separated by two free interfaces
𝜂
1
(𝑥, 𝑡) and 𝜂

2
(𝑥, 𝑡). We derive in the following the NSP

equations governing the evolution of the three-fluid system.
Specifically, define the functions 𝑞(𝑥, 𝑡) = 𝜑(𝑥, 𝜂

1
(𝑥, 𝑡), 𝑡),

𝑄(𝑥, 𝑡) = Φ(𝑥, 𝜂
1
(𝑥, 𝑡), 𝑡), 𝑃(𝑥, 𝑡) = Φ(𝑥, ℎ + 𝜂

2
(𝑥, 𝑡), 𝑡) and

𝑄(𝑥, 𝑡) = Φ̃(𝑥, ℎ + 𝜂
2
(𝑥, 𝑡), 𝑡), where 𝜑(𝑥, 𝑦), Φ(𝑥, 𝑦), and

Φ̃(𝑥, 𝑦) are, respectively, the velocity potentials in the lower,
the intermediate, and upper layer (see Figure 1).

TheNSP formulation is given by the following equations.

First layer (bottom)

∫
R2
𝑒
𝑖𝑘𝑥 cosh (|𝑘| (ℎ1 + 𝜂1)) 𝜂1𝑡 𝑑𝑥

= 𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

sinh (|𝑘| (ℎ1 + 𝜂1))
|𝑘|

(𝑘 ⋅ ∇) 𝑞 𝑑𝑥,

(1)

intermediate layer

∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| 𝜂2) 𝜂2𝑡 𝑑𝑥

− ∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| (𝜂1 − ℎ)) 𝜂1𝑡 𝑑𝑥

= −𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

cosh (|𝑘| (𝜂1 − ℎ))
|𝑘|

(𝑘 ⋅ ∇)𝑄𝑑𝑥

+ 𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

cosh (|𝑘| 𝜂2)
|𝑘|

(𝑘 ⋅ ∇) 𝑃 𝑑𝑥,

(2)

∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| (𝜂2 + ℎ)) 𝜂2𝑡 𝑑𝑥

− ∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| 𝜂1) 𝜂1𝑡 𝑑𝑥

= −𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

cosh (|𝑘| 𝜂1)
|𝑘|

(𝑘 ⋅ ∇)𝑄𝑑𝑥

+ 𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

cosh (|𝑘| (𝜂2 + ℎ))
|𝑘|

(𝑘 ⋅ ∇) 𝑃 𝑑𝑥,

(3)

third layer (top)

∫
R2
𝑒
𝑖𝑘𝑥 cosh (|𝑘| (𝜂2 − 𝐻)) 𝜂2𝑡 𝑑𝑥

= 𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

sinh (|𝑘| (𝜂2 − 𝐻))
|𝑘|

(𝑘 ⋅ ∇)𝑄𝑑𝑥,

(4)

Bernoulli’s equations

𝜌
1
(𝑞
𝑡
+
1

2

󵄨󵄨󵄨󵄨∇𝑞
󵄨󵄨󵄨󵄨
2

+ 𝑔𝜂
1
−
(𝜂
1𝑡
+ ∇𝑞 ⋅ ∇𝜂

1
)
2

2 (1 +
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

)

)

− 𝜌
2
(𝑄
𝑡
+
1

2
|∇𝑄|
2
+ 𝑔𝜂
1
−
(𝜂
1𝑡
+ ∇𝑄 ⋅ ∇𝜂

1
)
2

2 (1 +
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

)

)

= 𝜎
1
∇ ⋅ (

∇𝜂
1

√1 +
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

),

𝜌
2
(𝑃
𝑡
+
1

2
|∇𝑃|
2
+ 𝑔𝜂
2
−
(𝜂
2𝑡
+ ∇𝑃 ⋅ ∇𝜂

2
)
2

2 (1 +
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

)

)

− 𝜌
3
(𝑄
𝑡
+
1

2

󵄨󵄨󵄨󵄨󵄨
∇𝑄
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑔𝜂
2
−
(𝜂
2𝑡
+ ∇𝑄 ⋅ ∇𝜂

2
)
2

2 (1 +
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

)

)

= 𝜎
2
∇ ⋅ (

∇𝜂
2

√1 +
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

).

(5)

In (1)–(5), 𝑥 = (𝑥
1
, 𝑥
2
), 𝑘 = (𝑘

1
, 𝑘
2
), 𝑘𝑥 ≡ 𝑘 ⋅ 𝑥, where 𝑘

is a free spectral parameter and the constants 𝑔, 𝜎
1
, and 𝜎

2

denote gravity, surface tension of 𝜂
1
(𝑥, 𝑡), and surface tension

of 𝜂
2
(𝑥, 𝑡), respectively.
In the next section, we derive the above equations, start-

ing from the classic equations governing three ideal fluids
separated by two free interfaces bounded above and below by
rigid lids. Moreover, we derive conservation laws and integral
identities for the three-fluid system for the NSP formulation.

Section 3 is devoted to the derivation of the weakly non-
linear equations: after a suitable nondimensionalization of the
variables, we obtain the reduction to a systemof shallowwater
equations in the weakly nonlinear limit.
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In Section 4, under the assumption of maximal balance,
we introduce travelling wave variables moving only to the
right and we study only the (1+1)-dimensional case. In terms
of the new variables, we finally obtain a system of coupled
nonlinear shallowwater equations which we study numerica-
lly in terms of the parameters entering the theory and that we
show to admit solitary wave solutions.

2. A Nonlocal Spectral Formulation of
the Classic Three-Fluid Equations

2.1. A Weak Formulation of the Classic Three-Fluid Equations.
We recall the classic equations governing three ideal fluids
separated by two free interfaces 𝜂

1
and 𝜂
2
and bounded above

and below by rigid lids. It is assumed that the lower fluid is
of density 𝜌

1
, the intermediate fluid is of density 𝜌

2
, and the

upper fluid is of density 𝜌
3
with 𝜌

1
> 𝜌
2
> 𝜌
3
. The equa-

tions are given in terms of the interface variables and the
velocity potentials 𝜑,Φ, and Φ̃ associated with the lower, int-
ermediate, and upper fluid domains, respectively,

Δ𝜑 = 0, for − ℎ
1
< 𝑦 < 𝜂

1
, (6)

𝜑
𝑦

󵄨󵄨󵄨󵄨󵄨𝑦=−ℎ
1

= 0, (7)

𝜂
1𝑡
= (𝜑
𝑦
− ∇
𝑥
𝜑 ⋅ ∇
𝑥
𝜂
1
)
󵄨󵄨󵄨󵄨󵄨𝑦=𝜂
1

, (8)

ΔΦ = 0, for 𝜂
1
< 𝑦 < ℎ + 𝜂

2
, (9)

𝜂
1𝑡
= (Φ
𝑦
− ∇
𝑥
Φ ⋅ ∇
𝑥
𝜂
1
)
󵄨󵄨󵄨󵄨󵄨𝑦=𝜂
1

, (10)

𝜂
2𝑡
= (Φ
𝑦
− ∇
𝑥
Φ ⋅ ∇
𝑥
𝜂
2
)
󵄨󵄨󵄨󵄨󵄨𝑦=ℎ+𝜂

2

, (11)

ΔΦ̃ = 0, for ℎ + 𝜂
2
< 𝑦 < 𝐻 + ℎ, (12)

Φ̃
𝑦

󵄨󵄨󵄨󵄨󵄨𝑦=𝐻+ℎ
= 0, (13)

𝜂
2𝑡
= (Φ̃
𝑦
− ∇
𝑥
Φ̃ ⋅ ∇
𝑥
𝜂
2
)
󵄨󵄨󵄨󵄨󵄨𝑦=ℎ+𝜂

2

, (14)

𝜌
1
(𝜑
𝑡
+
1

2

󵄨󵄨󵄨󵄨∇𝜑
󵄨󵄨󵄨󵄨
2

+ 𝑔𝜂
1
) − 𝜌
2
(Φ
𝑡
+
1

2
|∇Φ|
2
+ 𝑔𝜂
1
)

= 𝜎
1
∇ ⋅ (

∇𝜂
1

√1 +
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

), on 𝑦 = 𝜂
1
,

(15)

𝜌
2
(Φ
𝑡
+
1

2
|∇Φ|
2
+ 𝑔𝜂
2
) − 𝜌
3
(Φ̃
𝑡
+
1

2

󵄨󵄨󵄨󵄨󵄨
∇Φ̃
󵄨󵄨󵄨󵄨󵄨

2

+ 𝑔𝜂
2
)

= 𝜎
2
∇ ⋅ (

∇𝜂
2

√1 +
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

), on 𝑦 = ℎ + 𝜂
2
.

(16)

We also require that |∇𝜑| → 0, |∇Φ| → 0 and |∇Φ̃| →
0 as |𝑥| → ∞. In the previous equations, the constants
𝑔, 𝜎
1
, and 𝜎

2
denote gravity, the surface tension associated

with the free interface 𝜂
1
, and the surface tension associated

with the free surface 𝜂
2
. Equations (6), (9), and (12) express

the fact that fluids are divergence and curl-free. Equations
(15)-(16) express that the jump in pressure across an interface
is balanced by surface tension.

We now obtain a weak formulation of (6)–(16), expressed
in terms of 𝜂

1
, 𝜂
2
, 𝑞, 𝑄, 𝑃, and 𝑄. Let us define the domains

𝐷(𝜂
1
) ≡ {(𝑥, 𝑦) ∈ R

2
| 𝑥 ∈ R

2
, −ℎ
1
< 𝑦 < 𝜂

1
(𝑥, 𝑡)} ,

𝐷 (𝜂
1
, 𝜂
2
) ≡ {(𝑥, 𝑦) ∈ R

2
| 𝑥 ∈ R

2
,

𝜂
1
(𝑥, 𝑡) < 𝑦 < ℎ + 𝜂

2
(𝑥, 𝑡) } ,

𝐷 (𝜂
2
) ≡ {(𝑥, 𝑦) ∈ R

2
| 𝑥 ∈ R

2
,

ℎ + 𝜂
2
(𝑥, 𝑡) < 𝑦 < ℎ + 𝐻} .

(17)

For any bounded, harmonic functions 𝜓,Ψ, Ψ̃, defined in
𝐷(𝜂
1
),𝐷(𝜂

1
, 𝜂
2
), and𝐷(𝜂

2
), respectively, and satisfying

Δ𝜓 = 0, for (𝑥, 𝑦) ∈ 𝐷 (𝜂
1
) ,

𝜓
𝑦

󵄨󵄨󵄨󵄨󵄨𝑦=−ℎ
1

= 0,

ΔΨ̃ = 0, for (𝑥, 𝑦) ∈ 𝐷 (𝜂
2
) ,

Ψ̃
𝑦

󵄨󵄨󵄨󵄨󵄨𝑦=𝐻+ℎ
= 0,

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨 , |∇Ψ| ,

󵄨󵄨󵄨󵄨󵄨
∇Ψ̃
󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, as |𝑥| 󳨀→ ∞,

(18)

the following identities hold at any given time 𝑡:

∫
R2
(𝜓
󵄨󵄨󵄨󵄨𝑦=𝜂
1

) 𝜂
1𝑡
𝑑𝑥

− ∫
R2
𝑞(𝜓
𝑦
− ∇
𝑥
𝜓 ⋅ ∇
𝑥
𝜂
1
)
󵄨󵄨󵄨󵄨󵄨𝑦=𝜂
1

𝑑𝑥 = 0,

(19)

∫
R2
(Ψ|𝑦=ℎ+𝜂

2

) 𝜂
2𝑡
𝑑𝑥 − ∫

R2
(Ψ|𝑦=𝜂

1

) 𝜂
1𝑡
𝑑𝑥

+ ∫
R2
𝑄(Ψ
𝑦
− ∇
𝑥
Ψ ⋅ ∇
𝑥
𝜂
1
)
󵄨󵄨󵄨󵄨󵄨𝑦=𝜂
1

𝑑𝑥

− ∫
R2
𝑃(Ψ
𝑦
− ∇
𝑥
Ψ ⋅ ∇
𝑥
𝜂
2
)
󵄨󵄨󵄨󵄨󵄨𝑦=ℎ+𝜂

2

𝑑𝑥 = 0,

(20)

∫
R2
(Ψ̃
󵄨󵄨󵄨󵄨󵄨𝑦=ℎ+𝜂

2

) 𝜂
2𝑡
𝑑𝑥

− ∫
R2
𝑄(Ψ̃
𝑦
− ∇
𝑥
Ψ̃ ⋅ ∇
𝑥
𝜂
2
)
󵄨󵄨󵄨󵄨󵄨𝑦=ℎ+𝜂

2

𝑑𝑥 = 0.

(21)

Equations (19) and (21), together with the Bernoulli equations
(15) and (16), constitute a nonlocal system of equations des-
cribing the three-fluid system.

2.2. Derivation of the Nonlocal Spectral Equations. We derive
from (19) the NSP equation (1) given in the Introduction. To
motivate the derivation, suppose that 𝜓(𝑥, 𝑦) satisfies

Δ𝜓 (𝑥, 𝑦) = 0, 𝜓
𝑦
(𝑥, −ℎ

1
) = 0. (22)
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Define 𝜓̂(𝑘, 𝑦) by

𝜓̂ (𝑘, 𝑦) =
1

(2𝜋)
2
∫
R2
𝑒
−𝑖𝑘𝑥
𝜓 (𝑥, 𝑦) 𝑑𝑥. (23)

Then, conditions (22) turn into the following:

𝜓̂
𝑦𝑦
(𝑘, 𝑦) = |𝑘|

2
𝜓̂ (𝑘, 𝑦) , 𝜓̂

𝑦
(𝑘, −𝑦) = 0. (24)

The solution to the above ODE is given by

𝜓̂ (𝑘, 𝑦) = 𝜉 (𝑘) cosh (|𝑘| (𝑦 + ℎ
1
)) , (25)

reverting back to physical space,

𝜓 (𝑥, 𝑦) = ∫
R2
𝑒
𝑖𝑘𝑥
𝜉 (𝑘) cosh (|𝑘| (𝑦 + ℎ

1
)) 𝑑𝑘. (26)

The previous equation shows that any harmonic function 𝜓
whose 𝑦-derivative at 𝑦 = −ℎ

1
vanishes can formally be

written as a sum of functions 𝑒𝑖𝑘𝑥 cosh(|𝑘|(𝑦+ℎ
1
)).Therefore,

by linearity it suffices to require that (19) holds for the
parametrized family of functions

𝜓
𝑘
(𝑥, 𝑦) = 𝑒

𝑖𝑘𝑥 cosh (|𝑘| (𝑦 + ℎ1)) . (27)

Substituting 𝜓
𝑘
(𝑥, 𝑦) into (19), we obtain

∫
R2
𝑒
𝑖𝑘𝑥 cosh (|𝑘| (𝜂1 + ℎ1)) 𝜂1𝑡 𝑑𝑥

= ∫
R2
𝑞 (𝑒
𝑖𝑘𝑥
( |𝑘| sinh (|𝑘| (𝜂1 + ℎ1))

−𝑖 cosh (|𝑘| (𝜂
1
+ ℎ
1
)) (𝑘 ⋅ ∇) 𝜂

1
)) 𝑑𝑥.

(28)

We simplify (28) by noting that

|𝑘| 𝑒
𝑖𝑘𝑥 sinh (|𝑘| (𝜂1 + ℎ1))

− 𝑖𝑒
𝑖𝑘𝑥 cosh (|𝑘| (𝜂1 + ℎ1)) (𝑘 ⋅ ∇) 𝜂1

= −𝑖∇ ⋅ (
𝑘

|𝑘|
sinh (|𝑘| (𝜂1 + ℎ1) 𝑒

𝑖𝑘𝑥
)) .

(29)

Using this identity in (28) and integrating by parts, we finally
get the nonlocal spectral equation (1) as follows:

∫
R2
𝑒
𝑖𝑘𝑥 cosh (|𝑘| (𝜂1 + ℎ1)) 𝜂1𝑡 𝑑𝑥

= 𝑖 ∫
R2
𝑒
𝑖𝑘𝑥

sinh (|𝑘| (𝜂1 + ℎ1))
|𝑘|

(𝑘 ⋅ ∇) 𝑞 𝑑𝑥.

(30)

Along the same lines used for the first layer, let us derive
(2)-(3) from (20).

We define the basic functions

Ψ
𝑘
(𝑥, 𝑦) = 𝑒

𝑖𝑘𝑥 sinh (|𝑘| (𝑦 − ℎ)) , (31)

and putting Ψ
𝑘
into (20) gives

∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| 𝜂2) 𝜂2𝑡 𝑑𝑥

− ∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| (𝜂1 − ℎ)) 𝜂1𝑡 𝑑𝑥

= −∫
R2
𝑒
𝑖𝑘𝑥
𝑄 [|𝑘| cosh (|𝑘| (𝜂1 − ℎ))

−𝑖 sinh (|𝑘| (𝜂1 − ℎ)) (𝑘 ⋅ ∇) 𝜂1] 𝑑𝑥

+ ∫
R2
𝑒
𝑖𝑘𝑥
𝑃 [|𝑘| cosh (|𝑘| 𝜂2)

−𝑖 sinh (|𝑘| 𝜂2) (𝑘 ⋅ ∇) 𝜂2] 𝑑𝑥.

(32)

We simplify (32) by noting that

𝑒
𝑖𝑘𝑥
[|𝑘| cosh (|𝑘| (𝜂1 − ℎ))

−𝑖 sinh (|𝑘| (𝜂1 − ℎ)) (𝑘 ⋅ ∇) 𝜂1]

= −𝑖∇ ⋅ (
𝑘

|𝑘|
cosh (|𝑘| (𝜂1 − ℎ)) 𝑒

𝑖𝑘𝑥
) ,

𝑒
𝑖𝑘𝑥
[|𝑘| cosh (|𝑘| 𝜂2) − 𝑖 sinh (|𝑘| 𝜂2) (𝑘 ⋅ ∇) 𝜂2]

= −𝑖∇ ⋅ (
𝑘

|𝑘|
cosh (|𝑘| 𝜂2) 𝑒

𝑖𝑘𝑥
) .

(33)

Using these identities in (32) and integrating by parts, we
finally get the nonlocal spectral equation (2).

Similarly, let us consider the basic functions

Ψ
𝑘
(𝑥, 𝑦) = 𝑒

𝑖𝑘𝑥 sinh (|𝑘| 𝑦) (34)

and put Ψ
𝑘
into (20), obtaining

∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| (𝜂2 + ℎ)) 𝜂2𝑡 𝑑𝑥

− ∫
R2
𝑒
𝑖𝑘𝑥 sinh (|𝑘| 𝜂1) 𝜂1𝑡 𝑑𝑥

= −∫
R2
𝑒
𝑖𝑘𝑥
𝑄 [|𝑘| cosh (|𝑘| 𝜂1)

−𝑖 sinh (|𝑘| 𝜂1) (𝑘 ⋅ ∇) 𝜂1] 𝑑𝑥

+ ∫
R2
𝑒
𝑖𝑘𝑥
𝑃 [|𝑘| cosh (|𝑘| (𝜂2 + ℎ))

−𝑖 sinh (|𝑘| (𝜂2 + ℎ)) (𝑘 ⋅ ∇) 𝜂2] 𝑑𝑥.
(35)
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We simplify (35) by noting that

𝑒
𝑖𝑘𝑥
[|𝑘| cosh (|𝑘| 𝜂1) − 𝑖 sinh (|𝑘| 𝜂1) (𝑘 ⋅ ∇) 𝜂1]

= −𝑖∇ ⋅ (
𝑘

|𝑘|
cosh (|𝑘| 𝜂1) 𝑒

𝑖𝑘𝑥
) ,

𝑒
𝑖𝑘𝑥
[|𝑘| cosh (|𝑘| (𝜂2 + ℎ)) − 𝑖 sinh (|𝑘| (𝜂2 + ℎ)) (𝑘 ⋅ ∇) 𝜂2]

= −𝑖∇ ⋅ (
𝑘

|𝑘|
cosh (|𝑘| (𝜂2 + ℎ)) 𝑒

𝑖𝑘𝑥
) .

(36)

Using these identities in (35) and integrating by parts, we
finally get the nonlocal spectral equation (3).

For the top layer, we require that (21) holds for the para-
metrized family of functions

Ψ̃
𝑘
(𝑥, 𝑦) = 𝑒

𝑖𝑘𝑥 cosh (|𝑘| (𝑦 − (𝐻 + ℎ))) . (37)

Substituting Ψ̃
𝑘
(𝑥, 𝑦) into (21), we obtain

∫
R2
𝑒
𝑖𝑘𝑥 cosh (|𝑘| (𝜂2 − 𝐻)) 𝜂2𝑡 𝑑𝑥

= ∫
R2
𝑄(𝑒
𝑖𝑘𝑥
(|𝑘| sinh (|𝑘| (𝜂2 − 𝐻))

−𝑖 cosh (|𝑘| (𝜂
2
− 𝐻)) (𝑘 ⋅ ∇) 𝜂

2
)) 𝑑𝑥.

(38)

We simplify (38) by noting that

|𝑘| 𝑒
𝑖𝑘𝑥 sinh (|𝑘| (𝜂2 − 𝐻))

− 𝑖𝑒
𝑖𝑘𝑥 cosh (|𝑘| (𝜂2 − 𝐻)) (𝑘 ⋅ ∇) 𝜂2

= −𝑖∇ ⋅ (
𝑘

|𝑘|
sinh (|𝑘| (𝜂2 − 𝐻) 𝑒

𝑖𝑘𝑥
)) .

(39)

Using this identity in (28) and integrating by parts, we finally
get the nonlocal spectral equation (4).

2.3. Conservation Laws and Integral Identities. In [17], con-
servation laws and integral identities for a two-fluid system
were derived from the nonlocal spectral formulation.Wenow
derive the analogous conservation laws for the three-fluid
system for the NSP formulation. We start by expanding (2),
(3) for small 𝑘. At first order, by setting to zero the coefficient
of 𝑘 and putting 𝑘

2
= 0, we get

∫
R2
(𝜂
2
𝜂
2𝑡
− 𝜂
1
𝜂
1𝑡
+ 𝐻𝜂
1𝑡
) 𝑑𝑥 = ∫

R2
𝑥
1
(𝑄
𝑥
1

− 𝑃
𝑥
1

) 𝑑𝑥,

(40)

∫
R2
(𝜂
2
𝜂
2𝑡
− 𝜂
1
𝜂
1𝑡
+ 𝐻𝜂
2𝑡
) 𝑑𝑥 = ∫

R2
𝑥
1
(𝑄
𝑥
1

− 𝑃
𝑥
1

) 𝑑𝑥.

(41)

Subtracting (41) from (40), we obtain the result

𝜕
𝑡
∫
R2
(𝜂
1
− 𝜂
2
) 𝑑𝑥 = 0, (42)

which corresponds to mass conservation in the intermediate
fluid domain.

Similarly, by setting to zero the coefficient of 𝑘2, with 𝑘
2
=

0, we get

𝜕
𝑡
∫
R2
𝑥
1
(
𝜂
2

2

2𝐻
−
𝜂
2

1

2𝐻
+ 𝜂
1
)𝑑𝑥

= ∫
R2
[
𝜂
2

2

2𝐻
𝑃
𝑥
1

− (
𝜂
2

1

2𝐻
+
𝐻

2
− 𝜂
1
)𝑄
𝑥
1

]𝑑𝑥,

(43)

𝜕
𝑡
∫
R2
𝑥
1
(
𝜂
2

2

2𝐻
−
𝜂
2

1

2𝐻
+ 𝜂
2
)𝑑𝑥

= ∫
R2
[(

𝜂
2

2

2𝐻
+
𝐻

2
+ 𝜂
2
)𝑃
𝑥
1

−
𝜂
2

1

2𝐻
𝑄
𝑥
1

]𝑑𝑥.

(44)

When we subtract (43) from (44), we obtain

𝜕
𝑡
∫
R2
𝑥
1
(𝜂
2
− 𝜂
1
) 𝑑𝑥

= ∫
R2
[(
𝐻

2
+ 𝜂
2
)𝑃
𝑥
1

+ (
𝐻

2
− 𝜂
1
)𝑄
𝑥
1

] 𝑑𝑥;

(45)

similarly, if we set 𝑘
1
= 0, at the same order we get the corres-

ponding equation:

𝜕
𝑡
∫
R2
𝑥
1
(𝜂
2
− 𝜂
1
) 𝑑𝑥

= ∫
R2
[(
𝐻

2
+ 𝜂
2
)𝑃
𝑥
2

+ (
𝐻

2
− 𝜂
1
)𝑄
𝑥
2

] 𝑑𝑥.

(46)

Equations (45) and (46) describe the evolution of the center
of mass; the right-hand side is the momentum of the fluid.

Next, we obtain a last identity at third order, setting to
zero the coefficient of 𝑘3:

𝜕
𝑡
∫
R2
[
𝑥
𝑗

2
(𝜂
2
− 𝜂
1
) −

𝐻

4
(𝜂
2

2
+ 𝜂
2

1
) −

1

6
(𝜂
3

2
+ 𝜂
3

1
)] 𝑑𝑥

= ∫
R2
𝑥
𝑗
[(
𝐻

2
+ 𝜂
2
)𝑃
𝑥
𝑗

+ (
𝐻

2
− 𝜂
1
)𝑄
𝑥
𝑗

] 𝑑𝑥,

(47)

with 𝑗 = 1, 2; the above is a virial type formula, analogous to
the one obtained in [17].

3. Weakly Nonlinear Equations

3.1. Nondimensionalization of the NSP Equations. In order to
derive weakly nonlinear equations, we nondimensionalize all
physical variables in (1)–(5) according to

𝑥
󸀠

1
=
𝑥
1

𝐿
, 𝑥

󸀠

2
= 𝛾
𝑥
2

𝐿
, 𝑡

󸀠
=
𝑐
0

𝐿
𝑡,

𝜂
1,2
= 𝑎𝜂
󸀠

1,2
, 𝛽 = 𝑎𝛽

󸀠
,
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𝑞 =
𝑎𝑔𝐿

𝑐
0

𝑞
󸀠
, 𝑄 =

𝑎𝑔𝐻

𝑐
0

𝑄
󸀠
,

𝑃 =
𝑎𝑔𝐻

𝑐
0

𝑃
󸀠
, 𝑄 =

𝑎𝑔𝐿

𝑐
0

𝑄
󸀠
,

(48)

where 𝐿 is a characteristic wavelength, 𝛾 is a nondimensional
parameter, and 𝑎 and 𝑐

0
= √𝑔𝐻 are a characteristic amplitude

and velocity, respectively.
Then, (1)–(5) become, after dropping primes and letting

𝑘 → −𝑘,

first layer (bottom)

∫
R2
𝑒
−𝑖𝑘𝑥 cosh (|𝑘| (𝛼1 + 𝜀𝜇𝜂1)) 𝜂1𝑡 𝑑𝑥

=
𝑖

𝜇
∫
R2
𝑒
−𝑖𝑘𝑥

sinh (|𝑘| (𝛼1 + 𝜀𝜇𝜂1))
|𝑘|

(𝑘 ⋅ ∇) 𝑞 𝑑𝑥,

(49)

intermediate layer

∫
R2
𝑒
−𝑖𝑘𝑥 sinh (|𝑘| 𝜀𝜇𝜂2) 𝜂2𝑡 𝑑𝑥

− ∫
R2
𝑒
−𝑖𝑘𝑥 sinh (|𝑘| (𝜀𝜇𝜂1 − 𝛼2)) 𝜂1𝑡 𝑑𝑥

= −𝑖 ∫
R2
𝑒
−𝑖𝑘𝑥

cosh (|𝑘| (𝜀𝜇𝜂1 − 𝛼2))
|𝑘|

(𝑘 ⋅ ∇)𝑄𝑑𝑥

+ 𝑖 ∫
R2
𝑒
−𝑖𝑘𝑥

cosh (|𝑘| 𝜀𝜇𝜂2)
|𝑘|

(𝑘 ⋅ ∇) 𝑃 𝑑𝑥,

(50)

∫
R2
𝑒
−𝑖𝑘𝑥 sinh (|𝑘| (𝛼2 + 𝜀𝜇𝜂2)) 𝜂2𝑡 𝑑𝑥

− ∫
R2
𝑒
−𝑖𝑘𝑥 sinh (|𝑘| 𝜀𝜇𝜂1) 𝜂1𝑡 𝑑𝑥

= −𝑖 ∫
R2
𝑒
−𝑖𝑘𝑥

cosh (|𝑘| 𝜀𝜇𝜂1)
|𝑘|

(𝑘 ⋅ ∇)𝑄𝑑𝑥

+ 𝑖 ∫
R2
𝑒
−𝑖𝑘𝑥

cosh (|𝑘| (𝛼2 + 𝜀𝜇𝜂2))
|𝑘|

(𝑘 ⋅ ∇) 𝑃 𝑑𝑥,

(51)

third layer (top)

∫
R2
𝑒
−𝑖𝑘𝑥 cosh (|𝑘| (𝜀𝜇𝜂2 − 𝜇)) 𝜂2𝑡 𝑑𝑥

=
𝑖

𝜇
∫
R2
𝑒
−𝑖𝑘𝑥

sinh (|𝑘| (𝜀𝜇𝜂2 − 𝜇))
|𝑘|

(𝑘 ⋅ ∇)𝑄𝑑𝑥,

(52)

Bernoulli’s equations

𝑞
𝑡
+
1

2
𝜀
󵄨󵄨󵄨󵄨∇𝑞
󵄨󵄨󵄨󵄨
2

+ 𝜂
1
− 𝜀𝜇
2
(𝜂
1𝑡
+ 𝜀∇𝑞∇𝜂

1
)
2

2 (1 + 𝜀2𝜇2
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

)

− 𝜌[

[

𝜇𝑄
𝑡
+
1

2
𝜀𝜇
2
|∇𝑄|
2
+ 𝜂
1

−𝜀𝜇
2
(𝜂
1𝑡
+ 𝜀𝜇∇𝑄∇𝜂

1
)
2

2 (1 + 𝜀2𝜇2
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

)

]

]

= 𝜇
2
𝜎̃
1
∇
[
[

[

∇𝜂
1

√1 + 𝜀2𝜇2
󵄨󵄨󵄨󵄨∇𝜂1

󵄨󵄨󵄨󵄨
2

]
]

]

,

(53)

𝜇𝑃
𝑡
+
1

2
𝜀𝜇
2
|∇𝑃|
2
+ 𝜂
2
− 𝜀𝜇
2
(𝜂
2𝑡
+ 𝜀𝜇∇𝑃∇𝜂

2
)
2

2 (1 + 𝜀2𝜇2
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

)

− 𝜌[

[

𝑄
𝑡
+
1

2
𝜀
󵄨󵄨󵄨󵄨󵄨
∇𝑄
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜂
2
− 𝜀𝜇
2
(𝜂
2𝑡
+ 𝜀∇𝑄∇𝜂

2
)
2

2 (1 + 𝜀2𝜇2
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

)

]

]

= 𝜇
2
𝜎̃
2
∇
[
[

[

∇𝜂
2

√1 + 𝜀2𝜇2
󵄨󵄨󵄨󵄨∇𝜂2

󵄨󵄨󵄨󵄨
2

]
]

]

.

(54)

In the above relations, 𝜀 = 𝑎/𝐻 is the nonlinearity ratio and
𝜇 = 𝐻/𝐿 is the so-called aspect ratio [12]; moreover, it is

𝛼
1
=
ℎ
1

𝐿
, 𝛼

2
=
ℎ

𝐿
, 𝜎̃

1
=

𝜎
1

𝐻2𝑔𝜌
1

,

𝜎̃
2
=

𝜎
2

𝐻2𝑔𝜌
2

, 𝜌 =
𝜌
2

𝜌
1

, 𝜌 =
𝜌
3

𝜌
2

.

(55)

In the following, we assume 𝛼
𝑗
≪ 1, 𝑗 = 1, 2 and 𝜇 ≪ 1,

which corresponds to the case of long waves; moreover, we
take the nonlinearity ratio 𝜀 to be 𝜀 = 𝑂(𝜇).

The above assumptions imply that we are interested to
derive asymptotic reductions of theNSP equations in the case
of weakly nonlinear long waves.

3.2. Derivation of the Equations. We first expand (49) and
(53) in 𝜇 and 𝛾2. From (49), taking the Inverse Fourier Trans-
form (IFT), we get

𝑞
𝑥
1

= 𝑖𝜇 coth (𝛼
1
𝐷
1
) 𝜂
1𝑡
+ 𝑜 (𝜇

2
) , (56)

while (53) gives

𝜂
1
= −

𝑞
𝑡

(1 − 𝜌)
−

𝜀

2 (1 − 𝜌)
(𝑞
𝑥
1

+ 𝛾
2
𝑞
𝑥
2

)
2

+ 𝜇
𝜌

(1 − 𝜌)
𝑄
𝑡
+ 𝜇
2
𝜎̃
1
𝜂
1𝑥
1
𝑥
1

+ 𝑜 (𝜀𝜇
2
) .

(57)
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On the other hand, from (49), it is also useful to derive the
following reduction:

𝜂
1𝑡
= −

𝛼
1

𝜇
(𝑞
𝑥
1
𝑥
1

+ 𝛾
2
𝑞
𝑥
2
𝑥
2

)

− 𝜀𝜕
𝑥
1

(𝜂
1
𝑞
𝑥
1

) + 𝑜 (𝜀𝜇
2
) .

(58)

We now use (58) at leading order (L.O.) in (56) and, after
somemanipulations, we obtain from (57) the following equa-
tion:

𝜂
1𝑡
= 𝑖𝛼
1

coth (𝛼
1
𝐷
1
)

(1 − 𝜌)
𝑞
𝑥
1
𝑡𝑡

−
𝜀

2 (1 − 𝜌)
𝜕
𝑡
(𝑞
𝑥
1

+ 𝛾
2
𝑞
𝑥
2

)
2

+ 𝜇
𝜌

(1 − 𝜌)
𝑄
𝑡𝑡
+ 𝑜 (𝜇

2
) .

(59)

By (58) and (59), the first generalized Boussinesq equation
obtains

𝛼
1
(𝑞
𝑥
1
𝑥
1

+ 𝛾
2
𝑞
𝑥
2
𝑥
2

) + 𝑖𝜇𝛼
1

coth (𝛼
1
𝐷
1
)

(1 − 𝜌)
𝑞
𝑥
1
𝑡𝑡

−
𝜀𝜇

(1 − 𝜌)
𝜕
𝑥
1

(𝑞
𝑡
𝑞
𝑥
1

)

−
𝜀𝜇

2 (1 − 𝜌)
𝜕
𝑡
(𝑞
𝑥
1

)
2

+ 𝜇
2 𝜌

(1 − 𝜌)
𝑄
𝑡𝑡

+ 𝑜 (𝜀𝜇
2
, 𝜇
3
) = 0.

(60)

We now turn our attention to the intermediate layer.
By equating the expansions of (50) and (51), we get the fol-

lowing expression for 𝑄
𝑥
1

:

𝑄
𝑥
1

= −𝑖
𝜂
2𝑡

sinh (𝛼
2
𝐷
1
)
+ 𝑖 coth (𝛼

2
𝐷
1
) 𝜂
1𝑡
+ 𝑜 (𝜀𝜇) (61)

which in turn gives

𝑄
𝑥
1
𝑡
= −𝑖

𝜂
2𝑡𝑡

sinh (𝛼
2
𝐷
1
)
+ 𝑖 coth (𝛼

2
𝐷
1
) 𝜂
1𝑡𝑡
+ 𝑜 (𝜀𝜇) , (62)

where, from (58) and (69) at L.O., we have

𝜂
1𝑡𝑡
= −

𝛼
1

𝜇
𝑞
𝑥
1
𝑥
1
𝑡
, 𝜂

2𝑡𝑡
= 𝑄
𝑥
1
𝑥
1
𝑡
. (63)

When (63) are used in (62), after integrating with respect to
𝑥
1
, we finally get

𝑄
𝑡
= −𝑖

𝑄
𝑥
1
𝑡

sinh (𝛼
2
𝐷
1
)
− 𝑖
𝛼
1

𝜇
coth (𝛼

2
𝐷
1
) 𝑞
𝑥
1
𝑡
+ 𝑜 (𝜀𝜇) . (64)

We now take the 𝑡-derivative of (57) and use (64), obtaining

𝜂
1𝑡
= −

𝑞
𝑡𝑡

(1 − 𝜌)
+ 𝑖𝛼
1

𝜌

(1 − 𝜌)
coth (𝛼

2
𝐷
1
) 𝑞
𝑥
1
𝑡𝑡

−
𝜀

2 (1 − 𝜌)
𝜕
𝑡
(𝑞
𝑥
1

+ 𝛾
2
𝑞
𝑥
2

)
2

− 𝑖𝜇
𝜌

(1 − 𝜌)

𝑄
𝑥
1
𝑡𝑡

sinh (𝛼
2
𝐷
1
)
+ 𝑜 (𝜀𝜇

2
) ;

(65)

by equating (65) and (58), we get the second generalized Bous-
sinesq equation:

𝛼
1
(𝑞
𝑥
1
𝑥
1

+ 𝛾
2
𝑞
𝑥
2
𝑥
2

) −
𝜇

(1 − 𝜌)
𝑞
𝑡𝑡

−
𝜀𝜇

(1 − 𝜌)
𝜕
𝑥
1

(𝑞
𝑡
𝑞
𝑥
1

) −
𝜀𝜇

2 (1 − 𝜌)
𝜕
𝑡
(𝑞
𝑥
1

)
2

− 𝑖𝛼
1
𝜇

𝜌

(1 − 𝜌)
coth (𝛼

2
𝐷
1
) 𝑞
𝑥
1
𝑡𝑡

− 𝑖𝜇
2 𝜌

(1 − 𝜌)

𝑄
𝑥
1
𝑡𝑡

sinh (𝛼
2
𝐷
1
)
+ 𝑜 (𝜀𝜇

2
) = 0.

(66)

We now expand (52) and take the IFT, getting

𝑄
𝑥
1

= −𝑖𝜇 coth (𝜇𝐷
1
) 𝜂
2𝑡
+ 𝑜 (𝜇

2
) , (67)

while from the expansion of (54) we get

𝜂
2
=

𝜌

(1 − 𝜌)
𝑄
𝑡
−

𝜇

(1 − 𝜌)
𝑃
𝑡

+
𝜀

2

𝜌

(1 − 𝜌)
(𝑄
𝑥
1

+ 𝛾
2
𝑄
𝑥
2

)
2

+ 𝑜 (𝜀𝜇
2
) .

(68)

On the other hand, from (52), it is also useful to derive the
following expansion:

𝜂
2𝑡
= 𝑄
𝑥
1
𝑥
1

+ 𝛾
2
𝑄
𝑥
2
𝑥
2

− 𝜀𝜕
𝑥
1

(𝜂
2
𝑄
𝑥
1

) + 𝑜 (𝜀𝜇) . (69)

We use (68) at L.O. in (69) and get

𝜂
2𝑡
= 𝑄
𝑥
1
𝑥
1

+ 𝛾
2
𝑄
𝑥
2
𝑥
2

− 𝜀
𝜌

(1 − 𝜌)
𝜕
𝑥
1

(𝑄
𝑡
𝑄
𝑥
1

) + 𝑜 (𝜀𝜇) .

(70)

In order to get an expression for 𝑃
𝑡
in (68), we now expand

(50), getting

𝑃
𝑥
1

= 𝑖 sinh (𝛼
2
𝐷
1
) 𝜂
1𝑡
+ cosh (𝛼

2
𝐷
1
) 𝑄
𝑥
1

+ 𝑜 (𝜀𝜇) . (71)

By taking the 𝑡-derivative of (71) and integrating with respect
to 𝑥
1
, we get

𝑃
𝑡
= −𝑖

𝛼
1

𝜇
sinh (𝛼

2
𝐷
1
) 𝑞
𝑥
1
𝑡
+ cosh (𝛼

2
𝐷
1
) 𝑄
𝑡
+ 𝑜 (𝜀𝜇) ,

(72)

where the L.O. of (58) has also been used.
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When we substitute (72) back into (68) and take the 𝑡-
derivative, we obtain

𝜂
2𝑡
= 𝑖

𝛼
1

(1 − 𝜌)
sinh (𝛼

2
𝐷
1
) 𝑞
𝑥
1
𝑡𝑡

+
𝜌

(1 − 𝜌)
𝑄
𝑡𝑡
−

𝜇

(1 − 𝜌)
cosh (𝛼

2
𝐷
1
) 𝑄
𝑡𝑡

+
𝜀

2

𝜌

(1 − 𝜌)
𝜕
𝑡
(𝑄
𝑥
1

)
2

+ 𝑜 (𝜀𝜇
2
) = 0.

(73)

By equating (70) and (73), we finally obtain the third general-
ized Boussinesq equation:

𝑄
𝑡𝑡
−
(1 − 𝜌)

𝜌
(𝑄
𝑥
1
𝑥
1

+ 𝛾
2
𝑄
𝑥
2
𝑥
2

)

+ 𝑖
𝛼
1

𝜌
sinh (𝛼

2
𝐷
1
) 𝑞
𝑥
1
𝑡𝑡

+
𝜀

2
𝜕
𝑡
(𝑄
𝑥
1

)
2

−
𝜇

𝜌
cosh (𝛼

2
𝐷
1
) 𝑄
𝑡𝑡

+ 𝜀𝜕
𝑥
1

(𝑄
𝑡
𝑄
𝑥
1

) + 𝑜 (𝜀𝜇) = 0.

(74)

The system of 3 generalized Boussinesq equations (60),
(66), and (74) will now be reduced to a system of 2 indepen-
dent equations.We first take the shallow water limit, given by
𝛼
1
≪ 1 in (60) and 𝛼

2
≪ 1 in (66), obtaining the following

reductions:

𝑞
𝑥
1
𝑥
1

+ 𝛾
2
𝑞
𝑥
2
𝑥
2

−
𝜇

𝛼
1

1

(1 − 𝜌)
𝑞
𝑡𝑡

−
𝜀𝜇

𝛼
1

1

(1 − 𝜌)
𝜕
𝑥
1

(𝑞
𝑡
𝑞
𝑥
1

)

−
𝜀𝜇

𝛼
1

1

2 (1 − 𝜌)
𝜕
𝑡
(𝑞
𝑥
1

)
2

+
𝜇
2

𝛼
1

𝜌

(1 − 𝜌)
𝑄
𝑡𝑡
+ 𝑜 (𝜀𝜇

2
) = 0,

(75)

𝑞
𝑥
1
𝑥
1

+ 𝛾
2
𝑞
𝑥
2
𝑥
2

−
𝜇

𝛼
1

1

(1 − 𝜌)
𝑞
𝑡𝑡

−
𝜀𝜇

𝛼
1

1

(1 − 𝜌)
𝜕
𝑥
1

(𝑞
𝑡
𝑞
𝑥
1

)

−
𝜀𝜇

𝛼
1

1

2 (1 − 𝜌)
𝜕
𝑡
(𝑞
𝑥
1

)
2

−
𝜇

𝛼
2

𝜌

(1 − 𝜌)
𝑞
𝑡𝑡

−
𝜇
2

𝛼
2
𝛼
1

𝜌

(1 − 𝜌)
𝑄
𝑡𝑡
+ 𝑜 (𝜀𝜇

2
) = 0.

(76)

Next, the combination of (75) and (76) gives

𝑄
𝑡𝑡
= −

𝛼
1

𝛼
2

1

𝜇
𝑞
𝑡𝑡
−
1

𝛼
2

𝑄
𝑡𝑡
, (77)

which we substitute back into (74) and we obtain

𝑄
𝑡𝑡
−
(1 − 𝜌)

𝜌
(𝑄
𝑥
1
𝑥
1

+ 𝛾
2
𝑄
𝑥
2
𝑥
2

)

=
𝛼
1
𝛼
2

𝜌
𝑞
𝑥
1
𝑥
1
𝑡𝑡
−
𝜀

2
𝜕
𝑡
(𝑄
𝑥
1

)
2

−
𝛼
1

𝛼
2

1

𝜌
𝑞
𝑡𝑡
−
𝜇

𝛼
2

1

𝜌
𝑄
𝑡𝑡
− 𝜀𝜕
𝑥
1

(𝑄
𝑡
𝑄
𝑥
1

) .

(78)

Rearranging (66), we get

𝑞
𝑡𝑡
−
𝛼
1

𝜇
(1 − 𝜌) (𝑞

𝑥
1
𝑥
1

+ 𝛾
2
𝑞
𝑥
2
𝑥
2

)

=
𝛼
1

𝛼
2

𝜌𝑞
𝑡𝑡

− 𝜀𝜕
𝑥
1

(𝑞
𝑡
𝑞
𝑥
1

) −
𝜀

2
𝜕
𝑡
(𝑞
𝑥
1

)
2

+
𝜇

𝛼
2

𝜌𝑄
𝑡𝑡
;

(79)

then the system of weakly nonlinear, shallow water equations
is given by (78) and (79).

4. Multiple Scale Derivation: Special Case

In order to obtain some interesting limiting equations, we
now make the assumption of maximal balance (the small
terms are of the same order) 𝜀 = 𝜇 = 𝛾2.This reflects a balance
of weak nonlinearity and weak dispersion.

In this section, we study a Special Case, that is, when the
waves velocities in the shallow water equations (78) and (79)
are the same:

𝛼
1

𝜇
(1 − 𝜌) =

1 − 𝜌

𝜌
=: 𝑐
2

𝑜
. (80)

Here below, we assume the following asymptotic expan-
sions for 𝑞, 𝑄, and 𝑄:

𝑞 = 𝑞
0
+ 𝜀𝑞
1
+ ⋅ ⋅ ⋅ , (81)

𝑄 = 𝑄
0
+ 𝜀𝑄
1
+ ⋅ ⋅ ⋅ , (82)

𝑄 = 𝑄
0
+ 𝜀𝑄
1
+ ⋅ ⋅ ⋅ . (83)

We also introduce new variables:
𝜉 = 𝑥
1
− 𝑐
0
𝑡, 𝜁 = 𝑥

1
+ 𝑐
0
𝑡,

𝑇 = 𝜀𝑡, 𝑦 = 𝑥
2
,

(84)

which are travelling waves variables and describe the direction
of waves propagation along the positive 𝑥-axis: 𝜉 represents
right moving waves and 𝜁 represents left moving waves.

In terms of the new variables, one obtains

𝜕𝑡 = −𝑐
0
𝜕𝜉 + 𝑐

0
𝜕𝜁 + 𝜀𝜕𝑇; 𝜕𝑥

1
= 𝜕𝜉 + 𝜕𝜁. (85)

Considering the assumption ofmaximal balance together
with (80), (79) becomes

𝑞
𝑡𝑡
− 𝑐
2

𝑜
𝑞
𝑥
1
𝑥
1

−
𝜌

𝛼
2

𝜀 [𝑄
𝑡𝑡
+ 𝑞
𝑡𝑡
] +

𝜀

2
𝜕𝑡 (𝑞
𝑥
1

2
)

− 𝜀𝑐
2

0
𝑞
𝑥
2
𝑥
2

+ 𝜀𝜕𝑥
1
(𝑞
𝑡
𝑞
𝑥
1

) = 0.

(86)
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Substituting the expansions (81), (83) into (86) and equating
L.O. terms yield the wave equations: 𝑞

0𝑡𝑡
−𝑞
0𝑥𝑥
= 0 and𝑄

0𝑡𝑡
−

𝑄
0𝑥𝑥

= 0, whose solutions, respectively, are 𝑞
0
= 𝐹(𝜉, 𝑇) +

𝐺(𝜁, 𝑇) and 𝑄
0
= 𝐹(𝜉, 𝑇) + 𝐺(𝜁, 𝑇).

We also assume unidirectional waves and only work with
the right moving waves, so that

𝑞
0
= 𝐹 (𝜉, 𝑇) ,

𝑄
0
= 𝐹 (𝜉, 𝑇) ,

𝑄
0
= 𝐹 (𝜉, 𝑇) .

(87)

Then, keeping the 𝑜(𝜀) terms, (86) becomes

−4𝑐
2

0
𝑞
1𝜉𝜁
= 2𝑐
0
𝐹
𝜉𝑇
+
𝜌𝑐
2

0

𝛼
2

[𝐹
𝜉𝜉
+ 𝐹
𝜉𝜉
] + 3𝑐

0
𝐹
𝜉
𝐹
𝜉𝜉
+ 𝑐
2

0
𝐹
𝑦𝑦
.

(88)
In order to remove secular terms, the right-hand side of

(88) needs to be set to zero (see [18]):

2𝑐
0
𝐹
𝜉𝑇
+
𝜌𝑐
2

0

𝛼
2

[𝐹
𝜉𝜉
+ 𝐹
𝜉𝜉
] + 3𝑐

0
𝐹
𝜉
𝐹
𝜉𝜉
+ 𝑐
2

0
𝐹
𝑦𝑦
= 0. (89)

Following the same steps as above for (78), together with
(89), and studying only the (1 + 1)-dimensional case, we
obtain a set of two equations:

2𝑐
0
𝐹
𝜉𝑇
+
𝜌𝑐
2

0

𝛼
2

[𝐹
𝜉𝜉
+ 𝐹
𝜉𝜉
] + 3𝑐

0
𝐹
𝜉
𝐹
𝜉𝜉
= 0,

2𝑐
0
𝐹
𝜉𝑇
−
1

𝜌𝜌
(2𝑐
0
𝐹
𝜉𝑇
+ 𝑐
0
𝐹
𝜉
𝐹
𝜉𝜉
) +

𝛼
2
𝑐
2

0

𝜌
𝐹
𝜉𝜉𝜉𝜉

+ 3𝑐
0
𝐹
𝜉
𝐹
𝜉𝜉
= 0.

(90)

In the following, we will study only the (1 + 1)-dimen-
sional case of the derivation.

Finally, define the functions 𝑈 = 𝐹
𝜉
, 𝑈̃ = 𝐹

𝜉
; then, differ-

entiating (90) with respect to 𝜉, we can write the resulting
equations in terms of 𝑈 and 𝑈̃ as

2𝑈
𝜉𝑇
+
𝑐
0
𝜌

𝛼
2

[𝑈̃
𝜉𝜉
+ 𝑈
𝜉𝜉
] +

3

2
𝜕
2

𝜉
(𝑈
2
) = 0, (91)

2𝑈̃
𝜉𝑇
−
1

𝜌𝜌
[2𝑈
𝜉𝑇
+
1

2
𝜕
2

𝜉
(𝑈
2
)] +

𝛼
2
𝑐
0

𝜌
𝑈
𝜉𝜉𝜉𝜉

+
3

2
𝜕
2

𝜉
(𝑈̃
2
) = 0.

(92)
Substitute (91) into (92) and obtain

2𝜌𝜌𝑈̃
𝜉𝑇
+
𝑐
0
𝜌

𝛼
2

𝑈̃
𝜉𝜉
+
𝑐
0
𝜌

𝛼
2

𝑈
𝜉𝜉
+ 𝜕
2

𝜉
(𝑈
2
) + 𝛼
2
𝜌𝑐
0
𝑈
𝜉𝜉𝜉𝜉

+
3

2
𝜌𝜌𝜕
2

𝜉
(𝑈̃
2
) = 0.

(93)

Our multiple scale derivation leads therefore to having a
system of two equations: (91) and (93) constitute a system of
coupled nonlinear shallow water equations.

The two coupled shallow water equations will be studied
numerically as a function of the parameters entering the
theory, in order to prove the existence of solitary waves and
analyze their behaviour.
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itu

de

Negative speed

Figure 2: Amplitude versus negative speed for 𝛼
2
= 0.2, 𝜇 = 0.1.

4.1. Numerical Investigation of Traveling Wave Solutions of
the Coupled Shallow Water Equations. We now investigate
whether (91) and (93) possess traveling wave solutions. For
convenience, take 𝑐

0
= 1. Passing to a traveling coordinate

systemmoving with velocity 𝑐 in the 𝜉 direction, (91) and (93)
become, respectively,

−2𝑐𝑈
𝜉𝜉
+
𝜌

𝛼
2

[𝑈̃
𝜉𝜉
+ 𝑈
𝜉𝜉
] +

3

2
𝜕
2

𝜉
(𝑈
2
) = 0,

− 2𝑐𝜌𝜌𝑈̃
𝜉𝜉
+
𝜌

𝛼
2

[𝑈̃
𝜉𝜉
+ 𝑈
𝜉𝜉
] + 𝛼
2
𝜌𝑈
𝜉𝜉𝜉𝜉

+ 𝜕
2

𝜉
(𝑈
2
)

+
3

2
𝜌𝜌𝜕
2

𝜉
(𝑈̃
2
) = 0.

(94)

To solve (94) numerically, we use the spectral renor-
malization (SPRZ) method, developed in [19]. We take the
Fourier transform of the previous equations and get, upon
rearranging,

𝑈̂ =
2𝑐𝜌𝜌

̂̃
𝑈 + (1/2)𝑈2 − (3/2) 𝜌𝜌

̂̃
𝑈2

2𝑐 + 𝜌𝑘2
1
𝛼
2

, (95)

̂̃
𝑈 =

−2𝑐𝛼
2
𝑈̂ − 𝜌𝑈̂ + (3/2) 𝛼

2
𝑈2

𝜌
. (96)

In general, we cannot find a solution to (95)-(96) by naive
iteration. Instead, we assume that 𝑈 = 𝜆V and 𝑈̃ = 𝜆̃Ṽ,
where 𝜆, 𝜆̃ are unknown parameters and V, Ṽ are unknown
functions (this step is the renormalization part). Then, (95)
can be written in terms of 𝜆 and V as

V̂ =
1

𝜆
(
2𝑐𝜌𝜌 (𝜆̃̂̃V) + (1/2) 𝜆2V̂2 − (3/2) 𝜌𝜌 (𝜆̃2 ̂̃V2)

2𝑐 + 𝜌𝑘2
1
𝛼
2

) . (97)
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Figure 3: 𝑥 cross sections of 𝑈 and 𝑈̃ for 𝛼
2
= 0.2, 𝜇 = 0.05, 𝑐 = −1, 𝜌 = 0.5, and 𝜌 = 0.7.

Note that by multiplying (97) by V̂ (where V̂ denotes the
conjugate of V̂), rearranging and integrating the result we get

𝜆 =
∫
R
[2𝑐𝜌𝜌 (𝜆̃̂̃V) + (1/2) 𝜆2V̂2 − (3/2) 𝜌𝜌 (𝜆̃2 ̂̃V2)] V̂ 𝑑𝑘

1

∫
R
[2𝑐 + 𝜌𝑘2

1
𝛼
2
] V̂V̂ 𝑑𝑘

1

.

(98)

Along the same line, (96) can be written in terms of 𝜆̃ and Ṽ
as

̂̃V =
1

𝜆̃
(
−2𝑐𝛼
2
(𝜆V̂) − 𝜌 (𝜆V̂) + (3/2) 𝛼

2
(𝜆
2V̂2)

𝜌
) . (99)
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Bymultiplying (99) by ̂̃V (where ̂̃V denotes the conjugate of ̂̃V),
rearranging and integrating the result we get

𝜆̃ =
∫
R
[−2𝑐𝛼

2
(𝜆V̂) − 𝜌 (𝜆V̂) + (3/2) 𝛼

2
(𝜆
2V̂2)] ̂̃V 𝑑𝑘

1

∫
R
𝜌̂̃V̂̃V 𝑑𝑘

1

.

(100)

We use the above SPRZ scheme to solve for the modes 𝑈
and 𝑈̃ when 𝛼

2
= 0.2, 𝑐 = −1, 𝜌 = 0.5, and 𝜌 = 0.7.

Figure 2 displays the resulting speed versus amplitude
relationship, which is nearly linear for𝛼

2
= 0.2 (shallowwater

regime). Note that the horizontal axis in Figure 2 is −𝑐.
Figure 3 shows the 𝑥 cross sections of𝑈 and 𝑈̃; on the left

there are the solutions starting from a Gaussian function and
on the right the ones starting from a step function, both for a
typical speed 𝑐 = −1 in the shallow water regime.

After obtaining these results, it would nowbe of particular
interest from the applied point of view to address the issue of a
local breakdown of the nonlinear internal waves propagating
in the density stratified fluid [20]. Phenomena of this kind
can induce localized turbulence in the stratified fluid and
are relevant for their occurrence in the atmosphere and the
oceans. We plan to address this issue in the future together
with a generalization of our model to the (2+1)-dimensional
case.
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