Accepted Manuscript

Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling

G. Pataro, D. Carullo, Md A. Bakar Siddique, M. Falcone, F. Donsì, G. Ferrari

PII: S0260-8774(18)30146-8

DOI: 10.1016/j.jfoodeng.2018.03.029

Reference: JFOE 9213

To appear in: Journal of Food Engineering

Received Date: 22 December 2017

Revised Date: 20 March 2018

Accepted Date: 29 March 2018

Please cite this article as: G. Pataro, D. Carullo, Md A. Bakar Siddique, M. Falcone, F. Donsì, G. Ferrari, Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling, *Journal of Food Engineering* (2018), doi: 10.1016/j.jfoodeng.2018.03.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Improved extractability of carotenoids from tomato peels as side
- 2 benefits of PEF treatment of tomato fruit for more energy-efficient
- 3 steam-assisted peeling
- 4 G. Pataro^{1*}, D. Carullo¹, Md A. Bakar Siddique², M. Falcone², F. Donsì¹, G. Ferrari^{1,2}
- ¹ Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132,
- 6 84084 Fisciano (SA), Italy
- 7 ProdAl Scarl University of Salerno, via Ponte don Melillo, 84084 Fisciano (SA),
- 8 Italy

Abstract

11	The combination of steam blanching (SB) with Pulsed Electric Fields (PEF) treatments
12	of whole tomatoes, in addition to reducing the energy required for tomato peeling, can
13	significantly contribute to the recovery of carotenoids from the peels.
14	In this work, PEF (0.25-0-75 kV/cm, 1 kJ/kg) and SB (1 min at 50-70°C), as pre-
15	treatment prior to hand peeling, were investigated to assess their ability, separately and
16	in combination, to induce the cell permeabilization of tomato peels, and hence to improve
17	the carotenoids extraction in acetone (4 h at 25°C).
18	PEF and SB, by inducing significant damages at the cuticular level, caused the increase
19	of the yield in total carotenoids (up to 188% for PEF and 189% for SB) and antioxidant
20	power (up to 372% for PEF and 305% for SB) with respect to the peels from untreated
21	tomatoes. The application of a combined treatment (PEF+SB) significantly increased the
22	carotenoid content and the antioxidant power of the extracts, with a synergistic effect
23	observed already at 60°C (37.9 mg/100 g fresh weight tomato peels). HPLC analyses
24	revealed that lycopene was the main carotenoid extracted and that neither PEF nor SB
25	caused any selective release or degradation of lycopene.
26	Results obtained from this study demonstrate that the integration of PEF in the processing
27	line of tomato fruits prior to SB contributes to the valorization of tomato processing by-
28	products.
29	

- Keywords—PEF, steam blanching, extraction, tomato by-products, HPLC, carotenoids, 30
- lycopene, antioxidant activity. 31

1. Introduction

33

Tomato (Lycopersicon eculentum L.) is grown throughout the world, with an annual 34 35 production that, in 2014, has exceeded 170 million tons (FAOSTAT, 2014). The majority of tomato fruits produced are consumed in processed form, such as peeled tomato (whole 36 37 or diced), juices, sauce and ketchup, whose manufacture often requires peel removal (Rock et al., 2012). 38 Thus, the industrial transformation of tomatoes typically includes a peeling phase of the 39 fruits, consisting in the use of either hot lye solutions or steam blanching (SB), which, 40 however, suffers from various disadvantages such as disposal of caustic, high pH waste 41 solution, and excessive water and energy consumption (Pan et al., 2009; Rock et al., 42 43 2012). Recently, the "FieldFood" (635632-FieldFOOD-H2020) project investigated the 44 possibility of coupling a mild pre-treatment of whole tomatoes by pulsed electric field 45 (PEF) at field strength and energy input below 1 kV/cm and 1 kJ/kg, respectively, with 46 SB, as a less energy-intensive peeling treatment, as compared with a conventional peeling 47 process (TecnAlimentaria-Food Industry, 2017). 48 49 However, as suggested by the vast literature on the topic, PEF pre-treatment might be expected to have a beneficial effect also on the permeabilization of the tomato peels, 50 enabling the recovery of valuable intracellular compounds (Barba et al., 2015). The main 51 effect of the application of PEF pre-treatment of plant tissues, at an electric field of 52 moderate intensity (E<10 kV/cm) and relatively low energy (W_T<10 kJ/kg), is the 53 54 permeabilization of the cell membranes, which facilitates the selective recovery of 55 intracellular compounds from the inner parts of the cells (Barba et al., 2015; Donsì et al., 56 2010; Pataro et al., 2017).

- Tomato peels, together with seeds and unused pulp, are the main by-products of tomato
- fruit processing, representing 2-5 % in weight of the total processed tomatoes (Knoblich
- 59 et al., 2005).
- The tomato peels currently find low-added value uses as animal feed and fertilizers
- 61 (Knoblich et al., 2005; Strati & Oreopoulou, 2014), or are directly sent to landfill (Rossini
- et al., 2013). However, they are still rich in important nutrients, such as proteins, lipids,
- 63 carbohydrates, and fibers, and constitute a primary source of several carotenoids
- 64 (Knoblich et al., 2005; Strati & Oreopoulou, 2014).
- 65 Carotenoid compounds are natural pigments, with health-beneficial properties, which are
- accumulated in the chloroplasts and chromoplasts of several fruits during ripening (Pataro
- et al., 2015; Singh et al., 2015). Lycopene is the most abundant carotenoid in tomato
- 68 processing by-products. In particular, it accumulates in the peels (Strati & Oreopoulou,
- 69 2014), at concentrations about five times higher than in tomato seeds (Knoblich et al.,
- 70 2005) and pulp (Luengo et al., 2014).
- Lycopene, along with β -carotene, is an authorized natural pigment for several types of
- food products (Strati & Oreopoulou, 2014). Moreover, due to its remarkable antioxidant
- activity, it is also widely used in skin cosmetic products for its anti-aging properties
- 74 (Lenucci et al. 2015). Because of the its activity in reducing the risk of cardiovascular
- diseases, atherosclerosis, prostate cancer and cognitive impairment, it is also used as food
- supplement or nutraceutical ingredient in the formulation of food products (Lin & Chen,
- 77 2003; Queralt et al., 2013; Strati & Oreopoulou, 2014; Zuorro et al., 2011).
- For all the above reasons, in the last decade the global market of carotenoids exhibited a
- tremendous growth, which is expected to reach around US\$ 1.53 billion in 2021, with a
- 80 compound annual growth rate (CAGR) of 3.78% between 2016 and 2021

81	(MarketsandMarkets, 2016). This increasing trend is also reflected by the growing
82	number of patents deposited worldwide on the extraction processes of carotenoids from
83	natural sources (Riggi, 2010; Strati & Oreopoulou, 2014).
84	Conventional extraction processes of carotenoids are usually based on the maceration of
85	the by-products using an organic solvent (e.g., acetone, hexane, ethanol, diethyl ether,
86	methanol and petroleum ether) or a solvent mixture with high affinity for lipid-soluble
87	compounds (Lin & Chen, 2003; Strati & Oreopolou, 2011a, 2011b). However, these
88	methods are time-consuming, and often require large amounts of solvents, relatively high
89	temperature, and may eventually lead to the degradation of the thermosensitive
90	compounds, such as carotenoids, as well as to the co-extraction of undesirable
91	components, thus increasing the downstream processing costs (Luengo et al., 2014; Strati
92	& Oreopoulou, 2014). In addition, before extraction, the by-products often require a pre-
93	treatment, mainly comminution and drying, which is costly and may cause significant
94	losses of valuable compounds (Knoblich et al., 2005; Luengo et al., 2014; Strati &
95	Oreopoulou, 2014).
96	Therefore, the implementation of an innovative wet disruption method, such as PEF, has
97	been proposed as an intensification pre-treatment in the extraction of valuable
98	intracellular compounds from food residues, which is also able to prevent their
99	degradation, reduce the energy costs, the solvent consumption and shorten the treatment
100	time (Luengo et al., 2014).
101	Many investigations have proved that PEF can enhance the extraction yield of water-
102	soluble natural pigments and antioxidant compounds such as polyphenols, flavonoids,
103	and anthocyanins from a wide range of food processing by-products (Barba et al., 2015;
104	Bobinaité et al., 2015; Boussetta et al., 2012; Chemat et al., 2017; Corrales et al., 2008;

105	Luengo et al., 2013; Parniakov et al., 2016; Pataro et al., 2017), while there are limited
106	data about the effect of PEF on the extraction of non-polar compounds (Luengo et al.,
107	2014; Roohinejad et al., 2014; Wiktor et al., 2015; Yin et al., 2008).
108	In particular, to date, only the study of Luengo et al. (2014) has addressed the PEF-
109	assisted extraction of lipid-soluble compounds, such as carotenoids, from tomato peels,
110	which have been treated by PEF after hand peeling of fresh tomatoes.
111	In addition, no studies have been published on the extractability of carotenoids from
112	tomato processed by-products (peels), after steam blanching (SB) of whole tomato fruits.
113	The objective of this work was to investigate the use of PEF, alone and in combination
114	with SB, as pre-treatment of whole tomato fruits, with the aim of improving the
115	extractability of carotenoids from tomato processing by-products (peels).
116	Specifically, the effects of different electric field strengths and steam blanching
117	emperatures on the cell disintegration index of peel tissue, as well as on the total content
118	and composition of carotenoids and antioxidant activity of the extracts were investigated.
119	
120	2. Materials & Methods
121	2.1. Chemicals and raw material
122	Fully ripened tomatoes of the "Pachino" variety were purchased from a local supermarket
123	and stored in dark under refrigerated conditions (4±1 °C) until use, within 5 days from
124	purchase.
125	Color measurements were performed on the surface of tomatoes with a tristimulus
126	colorimeter CR400 Chroma Meter (Konika Minolta Inc., Japan). Five readings were
127	taken at random positions from each fruit. Data were collected in CIE L*a*b* color space
	reconstruction of the control of the

128	and the values of L*, a* and b* were recorded and used to evaluate the combination
129	parameter hue (H) angle, which indicates the actual color or the redness.
130	Tomatoes of similar size (about 2.6 cm in diameter) and color (H=45.8±1.8) were selected
131	prior to PEF, SB or PEF+SB pre-treatments, in order to use fruits that exhibited a
132	homogeneous carotenoid concentration (Luengo et al 2014; Pataro et al., 2015).
133	Physical-chemical parameters of selected tomatoes, such as total soluble solids (6.53 \pm
134	0.15 °Brix), titratable acidity (0.44 \pm 0.05 g citric acid/100g fresh weight tomatoes) and
135	moisture content (90.2 \pm 0.8 g _{water} /100g fresh weight tomatoes), were also determined.
136	HPLC grade methanol and acetonitrile as well as acetone, iron (III) chloride hexahydrate
137	(FeCl $_3$ ·6H $_2$ O), citric acid and 2,4,6-tripyridyl-s-triazine (TPTZ) were purchased from
138	Sigma-Aldrich (Steinheim, Germany). Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
139	2-carboxylic acid) was obtained from Acros Organics (Geel, Belgium). Sodium acetate
140	and acetic acid were purchased, respectively, from Panreac (Panreac Quimica, Barcelona,
141	Spain) and Fisher (Fisher Scientific, Rodano, Italy).
142	
143	2.2. PEF apparatus
144	PEF-assisted extraction of carotenoids from tomato peels was carried out using a
145	laboratory scale batch system. It consisted of a high voltage pulsed power (20 kV-500 A)
146	generator (Modulator PG, ScandiNova, Uppsala, Sweden) able to generate monopolar
147	square wave pulses (3-25 $\mu s,1\text{-}450~Hz).$ The generator was connected by a high voltage
148	cable to a batch parallel plate treatment chamber (Donsì et al., 2011) with an electrode
149	area of 75 cm ² , while the distance between the electrodes could be adjusted up to 5 cm,
150	depending on the volume of the treated sample. The actual voltage and current signals in
151	the treatment chamber were measured using a high voltage probe (Tektronix, P6015A,

152	Wilsonville, OR, USA) and a Rogowski coil (2-0.1 Stangenes, Inc., USA)	connected to
153	a 300 MHz digital oscilloscope (Tektronix, TDS 3034B, Wilsonville, OR	, USA). The
154	maximum electric field intensity (E, in kV/cm) and total specific energy is	nput (W _T , in
155	kJ/kg) were calculated as reported in Bobinaitė et al. (2015).	

156

157

2.3. PEF, SB, and PEF+SB-assisted extraction

For each experiments, approximately 150 g of whole tomatoes (10 fruits) were subjected 158 to PEF, SB or PEF+SB pre-treatments. In a first set of experiments, tomato fruits were 159 160 loaded into the PEF treatment chamber with tap water at a constant solid to liquid ratio (1:1 g/mL) and exposed to different field strengths (E = 0.25, 0.50, and 0.75 kV/cm) at a 161 constant total specific energy input (1 kJ/kg), frequency (10 Hz) and pulse width (20 µs). 162 These PEF parameters were determined on the basis of preliminary experiments to ensure 163 the preservation of the fruit integrity, and improve its peelability (TecnAlimentaria–Food 164 Industry, 2017) while inducing a sufficient degree of cell membrane permeabilization of 165 tomato peels at minimum energy consumption. In all PEF experiments, the initial 166 temperature of the samples was 20±1 °C and no appreciable temperature increase was 167 detected due to the low energy input delivered during the treatment. All the PEF 168 169 treatments were performed in triplicate. 170 After the electrical pre-treatment, tomato fruits were hand peeled, and square pieces (1) cm²) were cut out of the removed peels. Approximately 1 g of tomato peels was 171 172 immediately placed into a 100 mL pyrex flask, where acetone was added at a constant solid to liquid ratio (1:40 g/mL). The flasks were incubated for 4 hours in a water bath set 173 at 25 °C, under constant shaking at 160 rpm. These extraction conditions were sufficient 174 to reach significant extraction yields of the target intracellular compounds (data not 175

176	shown). Moreover, in agreement with previous works, the low extraction temperature
177	contributes not only to limit the operation cost, but also to avoid undesirable degradation
178	reactions of the carotenoids (Singh et al., 2015; Strati & Oreopoulou, 2011a).
179	Samples of identical size and shape were manually cut from the peels recovered from
180	untreated tomato fruits, to be used as controls.
181	A second set of experiments investigated the effect of the pre-treatment of tomato fruits,
182	based either on SB alone or on its combination with PEF (PEF+SB), on the extraction
183	yield of carotenoids from the tomato peels. Fresh and PEF treated tomato fruits were
184	subjected to SB in a lab-scale steam oven (Minea, SO25P, France) for 1 min at different
185	blanching temperatures (T_{SB} = 50, 60, and 70 °C). All SB and PEF+SB treatments were
186	performed in triplicates. After treatment, the fruits were hand peeled and subjected to the
187	same extraction protocol described above.
188	The extracts from untreated and treated (PEF, SB, PEF+SB) samples were then
189	centrifuged at $5700 \times g$ (PK121R model, ALC International, Cologno Monzese, IT) for
190	10 min at 4 °C to separate the supernatant, which was then filtered through 0.45 μm
191	syringe filters. The final extracts were then stored at -20 °C until further analysis.

2.4. Cell disintegration index

Cell disintegration index (Z_P) was used to quantify the degree of cell membrane permeabilization of tomato peel tissues induced by PEF, SB, or PEF+SB pre-treatments of whole tomato fruits before extraction. The determination of Z_P via impedance analyses was carried out according to the method described by Bobinaitė et al. (2015). Triplicate measurements of electrical complex impedance in frequency sweep ($10^3 - 10^7$ Hz) were carried out by loading 5 g of square pieces (1 cm^2) cut out of the peels of untreated or treated tomato fruits into the measuring cell connected to an impedance analyzer (Solartron 1260, UK). For each treatment condition investigated, the Z_P value, ranging from 0 (for intact tissue) to 1 (for fully permeabilized tissue), was calculated on the basis of the measurement of the absolute value of the complex impedance of untreated (Z_{untr}) and treated tissue (Z_{tr}) in the low (1 kHz) and high (1 MHz) frequency ranges (Donsì et al. 2010).

$$Z_{p} = \frac{|Z_{untr(1kHz)}| - |Z_{tr(1kHz)}|}{|Z_{untr(1kHz)}| - |Z_{tr(1MHz)}|}$$
(1)

2.5. Determination of total carotenoid (TC) content

The total carotenoid (TC) content of tomato peels extracts from untreated and treated samples was determined according to the method described by Lichtenthaler & Wellburn (1983). The absorbance of undiluted extracts was measured at 470 nm (A_{470}), 645 nm (A_{645}), and 662 nm (A_{662}), in a V-650 UV-Vis spectrophotometer (Jasco Inc., Easton, USA). Absolute acetone was used as a blank. The total content of carotenoids, expressed

- 215 in mg/100 g of fresh weight (FW) peels, was calculated from the following equations for
- 216 100% acetone:

$$C_a = 11.75 A_{662} - 2.35 A_{645}$$
 (2)

$$C_{b} = 18.61 A_{645} - 3.96 A_{662}$$
 (3)

219
$$C_{x+c} = (1000 A_{470} - 2.27 C_a - 81.4 C_b)/227$$
 (4)

- where C_a is the content of chlorophyll a, C_b is the content of chlorophyll b, and C_{x+c} is the
- content of carotenoids. All the assays were performed in triplicate.

- 2.6. Evaluation of ferric reducing antioxidant power (FRAP) of extracts
- FRAP assay of tomato peels extracts was carried out according to the method described
- by Benzie & Strain (1996) with some modification. Before the measurements, 0.3 M
- sodium acetate buffer (pH 3.6) was prepared by dissolving 3.1 g of sodium acetate and
- 227 16 mL of acetic acid in 1000 mL of distilled water; 10 mM TPTZ solution was prepared
- by dissolving 0.031 g TPTZ in 10 mL of 40 mM HCl; 20 mM ferric solution was
- prepared by dissolving 0.054 g of FeCl₃·6H₂O in 10 mL of distilled water.
- 230 The FRAP working solution was prepared by freshly mixing 0.3 M sodium acetate
- buffer, 10 mM TPTZ solution, and 20 mM ferric solution at a ratio of 10:1:1 (v/v/v). For
- the analysis, 2.5 mL of freshly prepared FRAP working solution and 0.5 mL of undiluted
- extract were mixed and incubated for 10 min at ambient temperature. The change in
- absorbance due to the reduction of ferric-tripyridyltriazine (Fe III-TPTZ) complex by
- the antioxidants contained in the samples was monitored at 593 nm using a V-650 UV-
- Vis spectrophotometer (Jasco Inc., Easton, USA). The absorption of blank samples

237	(applying the same analysis conditions) were tested each time before and after analysis.
238	Trolox was used as the standard for calibration curve and the FRAP values were
239	expressed as mmol of Trolox equivalents (mmol TE) per 100 g of FW tomato peels. All
240	the assays were performed in triplicate.
241	
242	2.7 HPLC analysis of carotenoid compounds
243	For the identification of individual carotenoids, the tomato peel extracts of untreated and
244	treated samples were further analyzed by high-performance liquid chromatography
245	(HPLC).
246	Carotenoids were separated using a Waters 1525 series HPLC system, equipped with a
247	Waters 2996 photodiode array detector (DAD) (Waters Corporation, USA). Analytical
248	separation of carotenoids was carried out in a Waters Spherisorb C18 reverse phase
249	column (5 µm ODS2, 4,6 mm x 250 mm, Water Corporation, USA). The temperature of
250	the HPLC column was set at 30 °C. Before the injection, the tomato peel extracts were
251	filtered through $0.20\ \mu m$ filters. The mobile phase consisted of acetonitrile/methanol
252	(30:70, v/v). The flow rate of the mobile phase through the column and the injection
253	volume were 1.5 mL/min and 100 $\mu L,$ respectively. The absorbance detection wavelength
254	was 472 nm.
255	The identification of the major carotenoids in tomato peel extracts was carried out by
256	comparing their retention times and absorption spectra with those described in the
257	literature data (Naviglio et al., 2006).
258	
259	2 & Statistical analysis

260	All experiments and analysis of collected samples were performed in triplicate, and the
261	mean values and standard deviations (SD) of experimental data were calculated.
262	Statistically significant differences ($p \le 0.05$) between the means were evaluated using
263	one-way analysis of variance (ANOVA), and the Tukey's test. The Pearson's product-
264	moment correlation coefficient was used to measure the strength of the linear relationship
265	between two variables. Statistical analyses were carried out using SPSS 20 (SPSS Inc.,
266	Chicago, USA) statistical package.
267	
268	
269	3. Results and discussion
270	3.1. Effect of PEF treatment intensity on the carotenoid content and antioxidant power of
271	tomato peel extracts
272	Figure 1 shows total carotenoid (TC) content in the peel extracts of untreated (0 kV/cm)
273	and PEF-treated tomato fruits.
274	The amount of TC extracted from the untreated samples was $9.26 \text{ mg}/100 \text{ g FW}$ tomato
275	peels, which is consistent with previous observations showing that a substantial amount
276	of carotenoids (in particular lycopene) are accumulated in the skins of tomato fruits
277	(Knoblich et al., 2005; Luengo et al., 2014; Strati & Oreopoulou, 2014). Moreover, the
278	results also highlight that, despite the compactness of the plant tissue (Zuorro et al., 2011),
279	acetone is a good extraction solvent, because it is able to penetrate the intact plant cells
280	of tomato peels, where carotenoids are enclosed, and to dissolve them (Luengo et al.,
281	2014; Strati & Oreopoulou al., 2011a; 2011b). The application of PEF pre-treatment to

the tomato fruits before peeling resulted in the intensification of the extractability of

283	carotenoids, with a significantly ($p \le 0.05$) higher TC content in the extracts, compared to
284	the control samples. Moreover, when PEF intensity was increased, the extractability of
285	carotenoid compounds increased by 44%, 144% and 189% at 0.25, 0.50 and 0.75 kV/cm,
286	respectively, compared with the control extraction.
287	The permeabilization degree of the cell membranes of the tomato peel tissues upon the
288	exposure of the whole fruits to an external electric field was determined in terms of Z_p
289	values of the tomato peels, evaluated via impedance measurements. The Z_p values
290	exhibited a statistically significant increase (p \leq 0.05) when the field strength increased
291	from 0.25 (Z_p =0.20) to 0.50 kV/cm (Z_p =0.61), while a slight, not statistically significant
292	increase was observed when the PEF intensity was increased to 0.75 kV/cm (Z_p =0.66).
293	Remarkably, a highly positive correlation was observed between TC content and Z_P
294	values (Table 1), which can be explained by the reduced mass transfer resistances, due to
295	the permeabilization the cell membranes of the tomato peel tissues, and consequent
296	increment in the extraction yield of carotenoids (Luengo et al., 2014).
297	PEF-induced permeabilization of cell membranes is effective in improving pigments
298	extractability from plant tissues, such as anthocyanins from grape pomace, blueberry
299	press cake, purple-fleshed potato, red prickly pear peels and red cabbage (Barba et al.,
300	2015; Bobinaite et al., 2015; Corrales et al., 2008; Gaschovska et al., 2010; Koubaa et al.
301	2016; Pataro et al., 2017; Puertolas et al., 2013), or betanin from red beets (Chalermchat
302	et al., 2004; López et al., 2009). Moreover, Luengo et al. (2014), who investigated the
303	extraction of carotenoid compounds from peels of fresh tomato (commercial variety:
304	tomate canario), found that 90-µs PEF treatment at 5 kV/cm increased the extraction
305	yields in acetone by 50%, as compared to a conventional solvent extraction. However,
306	differently from this work, the authors applied PEF pre-treatment directly to the fresh

307	tomato peels rather than to tomato fruits, and found a lower concentration of carotenoids
308	in the extracts (about 3.2 mg/100 g FW tomato peels). This could be attributed to the
309	biological diversity of the tomatoes, which likely led to lower Z_P values (about 0.2 at 5
310	kV /cm and 90 μ s), despite an applied field strength higher than this work.
311	A qualitative analysis of the composition of the peel extracts was carried out via HPLC,
312	with the resulting chromatogram profiles, detected at 470 nm, reported in Figure 2. The
313	profiles of the extracts from untreated and PEF-treated samples appeared to be similar,
314	suggesting that the electrical pre-treatment neither promoted the selective extraction of
315	specific compounds nor caused isomerization or degradation reactions. This is in
316	agreement with the observations reported by other authors (Luengo et al. 2013; Luengo
317	et al., 2014; Lopez et al. 2009; Pataro et al., 2017), who found that PEF pre-treatment did
318	not significantly alter the HPLC chromatogram profiles of the extracts, probably due to
319	the relatively mild intensity of the applied treatment (Kahmič-Kalamiza et al. 2014).
320	In particular, in Figure 2, the main peak can be associated with all-trans lycopene,
321	detected at an elution time of 12.65 min (Naviglio et al., 2006). These results are
322	consistent with those obtained via spectrophotometric analyses, which showed visible
323	spectra with a maximum absorption at the characteristic wavelength (470 nm) of lycopene
324	(data not shown). This is perfectly coherent with the fact that lycopene represents more
325	than 80% of the total carotenoid content in the fully ripened tomatoes (Pataro et al., 2015).
326	The strong positive correlation, observed also between TC content and lycopene content
327	in peel extracts (Table 1), further confirmed that lycopene was the most predominant
328	carotenoid in the extracts from tomato peels.
329	Moreover, it is worth noting that, in comparison with the control sample, the application
330	of PEF pre-treatment caused a remarkable increment of the lycopene peak area of 52%,

331	192%, and 231% at 0.25, 0.50 and 0.75 kV/cm, respectively. Similar results were
332	observed by other authors, when comparing the anthocyanin profile in the extracts from
333	PEF treated blueberries and purple-fleshed potato (Pataro et al., 2017; Puértolas et al.,
334	2013).
335	Additionally, also the antioxidant power of the carotenoids (particularly lycopene)
336	contained in the peel extracts was assessed using the FRAP assay.
337	As shown in Figure 3, the extracts obtained from the peels of PEF-treated tomato fruits
338	possessed a significantly (p \leq 0.05) higher antioxidant activity than the control extracts
339	(66-372 %). In general, the higher the field strength, the greater the antioxidant power,
340	but significant differences (p≤0.05) were detected only between the extracts of PEF
341	treated samples at 0.25 and $0.50kV/cm$. Moreover, as previously observed (Luengo et al.
342	2014), a highly positive correlation was found between TC (Figure 1), lycopene content
343	(Figure 2) and antioxidant activity (Figure 3) of peel extracts (Table 1), which clearly
344	indicates that the lycopene contained in the tomato peels predominantly contributes to the
345	antioxidant activity of the extracts.
346	The results of this study hence suggest that, within the range of field strength investigated,
347	the cell disintegration level ($Z_p = 0.61$) achieved with the intermediate PEF treatment
348	intensity (0.5 kV/cm) corresponds to the most favorable conditions to intensify the
349	extractability of carotenoid compounds with the highest antioxidant activity. It is likely
350	that higher PEF treatment intensity (>0.75 kV/cm) might further enhance the Zp value of
351	peel tissues and, consequently, improve the extraction yield of valuable intracellular
352	compounds. However, the application of more severe PEF treatment conditions seriously
353	impair the integrity of tomato fruits (data not shown), which is in contrasts with the aim

354	of achieving, in addition to the valorization of tomato by-products, also high quality
355	peeled tomatoes, as envisaged in the FieldFood project.
356	Further investigations of PEF pre-treatment in combination with SB of tomato fruits
357	were, therefore, carried out at 0.5 kV/cm with a constant energy input of 1 kJ/kg.
358	
359	3.2. Combined effect of PEF and SB pre-treatments on Z_p , carotenoid content and
360	antioxidant power of tomato peels extracts
361	Steam blanching (SB) is a unit operation typically used to facilitate peel removal from
362	tomato fruits during the manufacturing of several tomato products. Therefore, in view of
363	the exploitation as a cheap and rich source of natural carotenoids of the large amounts of
364	tomato processed by-products (peels) currently produced at the industrial level, the
365	impact of SB pre-treatment on the cell structure of peel tissues and the subsequent
366	recovery of these compounds should be evaluated. Eventually, the application of a mild
367	cell disintegration technique such as PEF in combination with SB of tomato fruits could
368	be used to further intensify the extractability of valuable intracellular compounds.
369	In this work, extracts obtained from peels of whole tomato fruits pre-treated by SB (1
370	min) alone or by the sequence of PEF (E=0.50 kV/cm, W_T =1 kJ/kg) and SB (1 min) at
371	different steam blanching temperature (50, 60 and 70 °C), were analyzed in order to
372	evaluate the impact of either the single thermal treatment or the combined treatment on
373	the extractability of carotenoid compounds with high antioxidant activity.
374	The results of Figure 4 show that the extraction yield of carotenoids from peels of mildly
375	SB-treated fruits was significantly improved (60-189%), as compared with the control
376	extraction performed from fresh tomato peels (Figure 1). However, no significant

377	difference was detected between the TC content of the SB-treated samples at 50 and 60
378	$^{\circ}\text{C}$, whereas a significant (p \leq 0.05) difference was observed when the blanching
379	temperature was increased from 60 to 70 °C.
380	It is likely that in the blanching temperature range examined, the improved extractability
381	of carotenoids when increasing temperature can be related to the thermal damage induced
382	at the cuticular level (Strati & Oreopoulou, 2011a). In fact, as shown in Figure 5, the \mathbb{Z}_P
383	values of tomato peels obtained from the SB pre-treatment of tomato fruits at 50, 60, and
384	70 °C, increased to 0.2, 0.36, and 0,57, respectively, with a significant difference
385	observed only when the temperature was increased from 50 to 70 °C. Moreover, a strong
386	positive correlation was observed between Z_p and TC content (Table 2). To the best of
387	our knowledge, no previous work investigated the effect of SB of tomato fruits on the
388	extractability of carotenoids from the peel residues, while several works dealt with the
389	effect of the extraction temperature on the recovery of carotenoids. To this purpose, for
390	example, Strati and Oreopoulou (2011a) observed that an increase of extraction
391	temperature from 25 to 70 °C caused an increase in the carotenoids concentration in
392	acetone extracts from tomato peel powder, which was attributed to the destruction of the
393	cellular structure.
394	In contrast, when PEF pre-treatment was applied prior to SB, the TC content rose to
395	significantly higher values (p \leq 0.05) with respect to the thermally treated samples for
396	blanching temperatures of 50 and 60 °C, while a slight but not significant increase was
397	observed when the temperature was increased to 70 °C. No statistical difference was,
398	instead, observed among the PEF+SB treated samples (Figure 4).
399	However, it is worth noting that the combined treatment showed an additive effect in the
400	extraction yield of TC at the blanching temperature of 50 $^{\circ}$ C, whereas a synergistic effect

401	was observed at 60 °C, corresponding to a maximum value of 37.9 mg/100 g FW tomato
402	peels. Further increasing the SB temperature up to 70 °C, instead, caused a slight but not
403	significant decrease in the amount of TC extracted, as compared with the combined
404	treatment performed at lower temperatures. From these results, it might be concluded that
405	the electroporation effect induced by PEF prior to the thermal treatment enables the
406	intensified recovery of valuable compounds at lower blanching temperature, probably
407	because of the reduced thermal stress that could negatively affect the extraction and
408	bioavailability of thermolabile compounds. Similarly, previously published works
409	demonstrated that PEF permeabilization of plant tissue before extraction has the potential
410	of decreasing the extraction temperature without affecting the extraction yield (Loginova
411	et al., 2011; López et al., 2009; Puértolas et al., 2013).
412	The results of Figure 4 positively correlate with the higher values of Z_P detected when
413	PEF was applied prior to SB treatment (Figure 5, Table 2), indicating that the combined
414	treatment has the potential to further enhance the degree of structural damages at the
415	cuticular level, thus facilitating the penetration capacity of the solvent and the recovery
416	of the carotenoid compounds.
417	Moreover, the results of Figure 4 are consistent with the HPLC chromatogram profiles of
418	the extracts obtained upon the application of SB (Figure 6a) alone or of PEF+SB (Figure
419	6b). Interestingly, it can be observed that, once again, only the peak of lycopene was
420	detected and that no isomerization or degradation occurred upon the application of either
421	a mild SB treatment or the combination of PEF with SB. In contrast, SB or PEF+SB
422	increased the yield compared to the extraction from untreated fresh peels or peels obtained
423	upon the PEF pre-treatment of tomato fruits (Figure 2). In particular, the results of Figure
424	6 also indicate that the combined PEF+SB treatment markedly increased the area of the

425	lycopene peak, which rose approximately of 200 %, 220 %, and 20 % at blanching
426	temperatures of 50 °C, 60 °C, and 70 °C, compared to the peel extracts of SB-treated
427	tomato fruits at the same temperatures. It is likely that the moderate temperature and PEF
428	treatment intensity used in our experiments were high enough to intensify the
429	extractability of carotenoid compounds but sufficiently mild to induce any degradation of
430	carotenoids. Despite our results show a slight decrease in the TC content at the highest
431	blanching temperature, they appears to be consistent with findings of Strati and
432	Oreopoulou (2011a), who found that the increase of extraction temperature up to 70 $^{\circ}\text{C}$
433	did not cause any alterations to lycopene and other carotenoids from tomato waste, while
434	it increased the yield, compared to an extraction at 25 °C.
435	As expected, the greater release of carotenoids, particularly of lycopene, detected in the
436	extracts of peels obtained after SB or PEF+SB of tomato fruits, markedly increased also
437	the antioxidant power of the extracts, as shown in Figure 7. In particular, in comparisons
438	to the control extracts achieved from fresh peels (Figure 3), the extracts of peels obtained
439	from SB-treated fruits exhibited a stronger antioxidant power, which rose approximately
440	of 183%, 187%, and 301%, when the tomato fruits were thermally-treated at 50, 60, and
441	70 °C, respectively.
442	Furthermore, the combination of PEF with SB resulted in a significantly (p \leq 0.05) higher
443	antioxidant activity of the extracts, as compared with the thermally treated samples,
444	without any statistical difference detected only at the highest blanching temperature
445	investigated.
446	The observed increase in the antioxidant activities of the peel extracts, detected after SB
447	alone or in combination with PEF (PEF+SB) when increasing the blanching temperature,
448	correlate well with the higher content of carotenoids and lycopene in the extracts, showing

449	a stronger correlation especially for samples obtained from fruits treated by SB alc	one
450	(Table 2).	

4. Conclusions

The results of this study have demonstrated the efficacy of the pre-treatment of whole
tomato fruits, typically applied to facilitate tomato peelability, also on the extractability
of carotenoids from tomato peels. In particular, the cell disintegration induced at the
cuticular level by either the electrical and/or thermal treatment improves the penetration
of the solvent into the cytoplasm and the subsequent mass transfer of the solubilized
intracellular pigments, thus intensifying the extractability of carotenoid compounds.
More specifically, the application of a pulsed electric field treatment (E = $0.5 \ kV/cm$; W_T
= 1 kJ/kg; T) prior to steam blanching of tomato fruits at 60 °C, exhibited a synergistic
effect on promoting the extraction yield of TC. HPLC analyses revealed that lycopene
was the most predominant carotenoid in the peel extracts, hence responsible for their
antioxidant activity. Moreover, these analyses also showed no evidence of isomerization
or degradation of lycopene upon the application of the electrical and/or thermal pre-
treatment.
This work demonstrates the potential of PEF pre-treatment, in combination with mild
steam blanching, to be implemented in the industrial processing of tomato fruits, to
achieve the valorization of the tomato processing by-products.
However, further studies are required to fully validate the implementation of PEF
technology at industrial scale, through the extension of this research to other tomato

471	cultivars in semi-industrial/real industrial conditions, also as a function of the ripening
472	stage of the raw material.
473	
474	Acknowledgments
475	This research was supported by the European Commission (635632-FieldFOOD-H2020).
476	

REFERENCES

- Barba, F.J., Parniakov, O., Pereira, S.A., Wiktor, A., Grimi, N., Boussetta, N., Saraiva,
- J.A., Raso, J., Martin-Belloso, O., Witrowa-Rajchert, D., Lebovka, N., Vorobiev, E.
- 480 (2015). Current applications and new opportunities for the use of pulsed electric fields in
- food science and industry. *Food Research International*, 77, 773-798.
- Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a
- measure of "antioxidant power": the FRAP assay. *Analytical Biochemistry*, 239, 70 76.
- Bobinaitė, R., Pataro, G., Lamanauskas, N., Šatkauskas, S., Viškelis, P., & Ferrari, G.
- 485 (2015). Application of pulsed electric field in the production of juice and extraction of
- 486 bioactive compounds from blueberry fruits and their by-products. Journal of Food
- 487 *Science & Technology*, http://dx.doi.org/10.1007/s13197-014-1668-0.
- Boussetta, N., Vorobiev, E., Le, L.H., Cordin-Falcimaigne, A., & Lanoiselle, J.-L. (2012).
- Application of electrical treatments in alcoholic solvent for polyphenols extraction from
- 490 grape seeds. LWT Food Science and Technology, 46, 127 134.
- Chalermchat, Y., Fincan, M., & Dejmek, P. (2004). Pulsed electric field treatment for
- solid-liquid extraction of red beetroot pigment: mathematical modelling of mass transfer.
- 493 *Journal of Food Engineering*, 64, 229-236.
- Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S.,
- & Abert-Vian, M. (2017). Review of Green Food Processing techniques. Preservation,
- 496 transformation, and extraction. *Innovative Food Science and Emerging Technologies*, 41,
- 497 357-377.
- 498 Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of
- anthocyanins from grape by-products assisted by ultrasonic, high hydrostatic pressure or

- 500 pulsed electric field: A comparison. Innovative Food Science and Emerging
- 501 *Technologies*, 9, 85 91.
- 502 Donsì, F., Ferrari, G., & Pataro, G. (2010). Applications of Pulsed Electric Field
- 503 Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food
- 504 *Engineering Reviews*, 2, 109 130.
- Donsi, F., Ferrari, G., Fruilo, M., & Pataro, G. (2011). Pulsed Electric Field-Assisted
- Vinification of Aglianico and Piedirosso Grapes. Journal of Agricultural and Food
- 507 *Chemistry*, 58, 11606–11615.
- 508 FAOSTAT (Food and Agriculture Organization of the United Nations), (2013).
- 509 http://www.fao.org/faostat/en/#data/QC.
- Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H., & Snow, D. (2010).
- 511 Enhanced Anthocyanin Extraction from Red Cabbage Using Pulsed Electric Field
- Processing. *Journal of Food Science*, 75, E323-E329.
- Kahmič-Kalamiza, S., Vorobiev, E., & Miklavčič, D. (2014). Electroporation in food
- processing and biorefinery. *The Journal of Membrane Biology*, 247, 1279–1304.
- Knoblich, M., Anderson, B., & Latshaw, D. (2005). Analyses of tomato peel and seed
- byproducts and their use as a source of carotenoids. *Journal of the Science of Food and*
- 517 *Agriculture*, 85, 1166–1170.
- Koubaa, M., Barba, F.J., Grimi, N., Mhemdi, H., Koubaa, W., Boussetta, N., & Vorobiev,
- E. (2016). Recovery of colorants from red prickly pear peels and pulps enhanced by
- 520 pulsed electric field and ultrasound. *Innovative Food Science & Emerging Technologies*,
- 521 37, 336-344.
- Lenucci, M.S., De Caroli, M., Marrese, P.P., Iurlaro, A., Rescio, L., Bohm, V.,
- Dalessandro, G., & Piro, G. (2015). Enzyme-aided extraction of lycopene from high-

- 524 pigment tomato cultivars by supercritical carbon dioxide. Food Chemistry, 170, 193 –
- 525 202.
- 526 Lichtenthaler, H., Wellburn, A. (1983). Determination of Total Carotenoids and
- 527 Chlorophyll A and B of Leaf Extracts in Different Solvents. Biochemical Society
- 528 *Transactions*, 11, 591 592.
- Lin, C. H., & Chen, B. H. (2003). Determination of carotenoids in tomato juice by liquid
- 530 chromatography. *Journal of Chromatography*, 1012, 103 109.
- Loginova, K. V., Vorobiev, E., Bals, O., & Lebovka, N. I. (2011). Pilot study of
- countercurrent cold and mild heat extraction of sugar from sugar beets, assisted by
- pulsed electric fields. *Journal of Food Engineering*, 102, 340–347.
- Lopéz, N., Puertolas, E., Condon, S., Raso, J., & Alvarez, I. (2009). Enhancement of
- the extraction of betanine from red beetroot by pulsed electric fields. *Journal of Food*
- 536 *Engineering*, 90, 60-66.
- Luengo, E., Alvarez, A., & Raso, J. (2013). Improving the pressing extraction of
- 538 polyphenols of orange peel by pulsed electric fields. Innovative Food Science &
- 539 *Emerging Technology*, 17, 79 84.
- Luengo, E., Alvarez, I., & Raso, J. (2014). Improving carotenoids extraction from
- tomato waste by pulsed electric fields. Frontiers in Nutrition, 1, 1 10.
- MarketsandMarkets, (2016). Carotenoids Market by Type (Astaxanthin, Beta-
- Carotene, Canthaxanthin, Lutein, Lycopene, & Zeaxanthin), Source (Synthetic and
- Natural), Application (Supplements, Food, Feed, and Cosmetics), & by Region -
- Global Trends & Forecasts to 2021. https://www.marketsandmarkets.com/Market-
- Reports/carotenoid-market-158421566.html.

- Naviglio, D., Pizzolongo, F., Santini, A., Ferrara, L., & Naviglio, B. (2006).
- 548 Estrazione del licopene ad elevato grado di purezza dagli scarti di pomodoro.
- 549 *Ingredienti Alimentari*, 5, 11 14.
- Pan, Z., Li, X., Bingol, G., McHugh, T., & Atungulu, G. (2009). Development of infrared
- radiation heating method for sustainable tomato peeling. Applied Engineering in
- 552 *Agriculture*, 25, 935–941.
- Parniakov, O., Barba, F.J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction
- assisted by pulsed electric energy as a potential tool for green and sustainable recovery
- of nutritionally valuable compounds from mango peels. *Food Chemistry*, 192, 842 848.
- Pataro, G., Sinik, M., Capitoli, M. M., Donsì, F, & Ferrari, G. (2015). The influence of
- Post-harvest UV-C and Pulsed Light treatments on quality and antioxidant properties of
- tomato fruits during storage. Innovative Food Science and Emerging Technologies, 30,
- 559 103–111.
- Pataro G., Bobinaité, R., Bobinas, Č., Šatkauskas, S., Raudonis, R., Visockis, M., Ferrari,
- 561 G., & Viskelis, P. (2017). Improving the Extraction of Juice and Anthocyanins from
- Blueberry Fruits and Their By-products by Application of Pulsed Electric Fields. *Food*
- *Bioprocess Technology*, http://dx.doi.org/10.1007/s11947-017-1928-x.
- Puertolas, E., Cregenzan, O., Luengo, E., Alvarez, I., & Raso, J. (2013). Pulsed –
- electric field assisted extraction of anthocyanins from purple fleshed potatoes.
- *Food Chemistry*, 136, 1330 1336.
- Queralt, A.V., Oms Oliu, G., Odriozola-Serrano, I., Lamuela-Raventos, R.M., Martin-
- Belloso, O., & Elez-Martinez, P. (2013). Metabolite profiling of phenolic and carotenoid
- 569 contents in tomatoes after moderate-intensity pulsed electric field treatments. Food
- 570 *Chemistry*, 136, 199 205.

- Riggi, E. (2010). Recent patents on the extraction of carotenoids. *Recent Patents on Food*,
- 572 *Nutrition and Agriculture*, 2, 75-82.
- Rock, C., Yang, W., Goodrich-Schneider, R., & Feng, H. (2012). Conventional and
- alternative methods for tomato peeling. *Food Engineering Reviews*, 4, 1 15.
- 875 Roohinejad, S., Oey, Y., & Everett, D. W. (2014). Effect of pulsed electric field
- 576 processing on carotenoid extractability of carrot purée. *International Journal of Food*
- 577 *Science & Technology*, 49, 2120-2127.
- Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Foppa Pedretti, E., & Riva, G. (2013).
- Analysis of the characteristics of the tomato manufacturing residues finalized to the
- energy recovery. *Biomass and Bioenergy*, 51, 177 182.
- Singh, A., Ahmad, S., & Ahmad, A. (2015). Green extraction methods and environmental
- applications of carotenoids-a review. *The Royal Society of Chemistry Advances*, 5, 62358
- -62393.
- Strati, I.F., & Oreopoulou, V. (2011a). Effect of extraction parameters on the carotenoid
- recovery from tomato waste. *International Journal of Food Science and Technology*, 46,
- $586 \quad 23 29.$
- Strati, I.F., & Oreopoulou, V. (2011b). Process optimisation for recovery of carotenoids
- 588 from tomato waste. *Food Chemistry*, 129, 747 752.
- Strati, I.F., & Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing
- 590 by-products a review. *Food Research International*, 65, 311 321.
- TecnAlimentaria–Food Industry (2017). "The field food project", N° 8, December 2017,
- 592 210-211. http://www.tecnalimentaria.it/category/tecnalimentaria-food-industry/.
- Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W., & Witrova-
- Rajchert, D. (2015). The impact of pulsed electric field treatment on selected bioactive

compound content and color of plant tissue. *Innovative Food Science & Emerging Technologies*, 30, 69-78.
Yin, Y., Cui, J., & Ding, H. (2008). Optimization of betulin extraction process from
Inonotus Obliquus with pulsed electric fields. *Innovative Food Science & Emerging Technologies*, 9, 306-310.
Zuorro, A., Fidaleo, M., Lavecchia, R. (2011). Enzyme-assisted extraction of lycopene

from tomato processing waste. *Enzyme and Microbial Technology*, 49, 567 – 573.

Fig.1

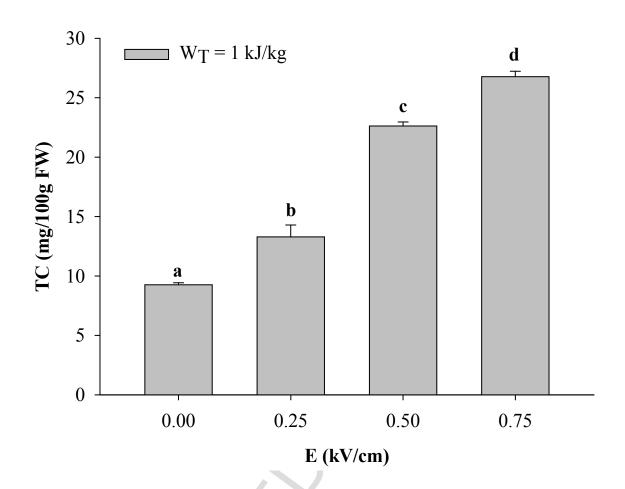


Fig. 2

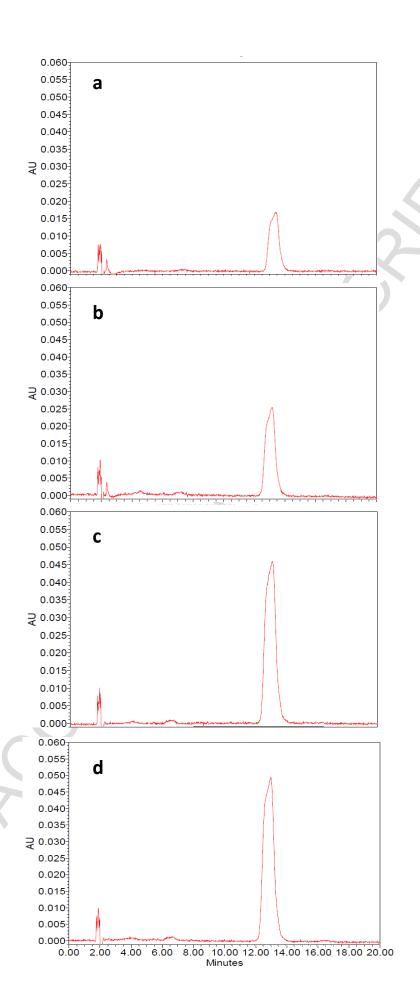


Fig. 3

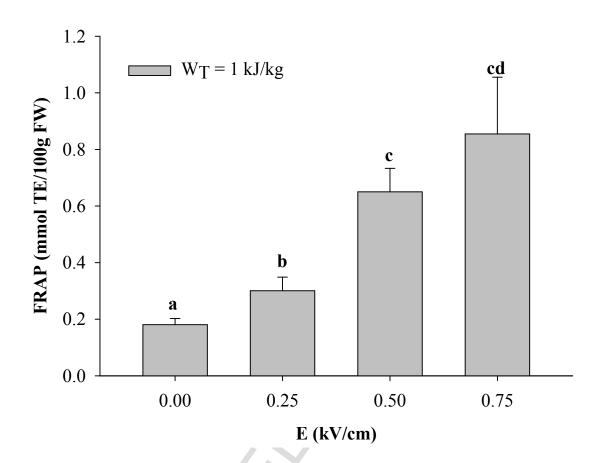


Fig. 4

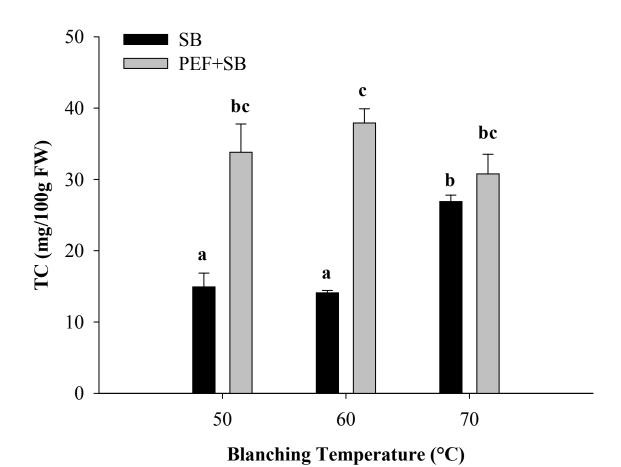


Fig.5

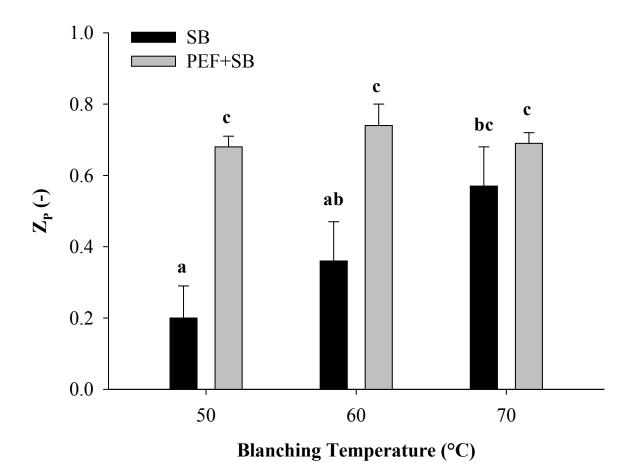


Fig. 6a

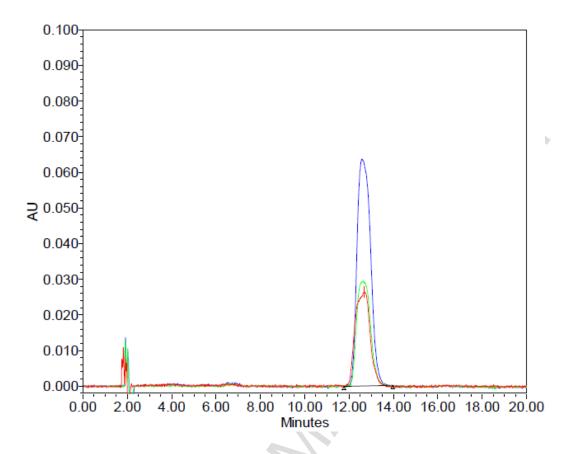


Fig. 6b

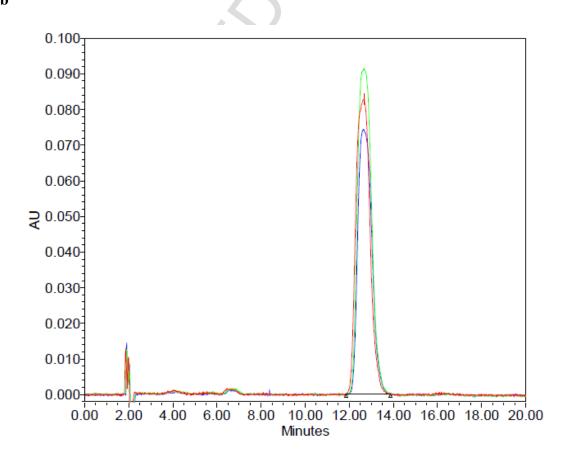
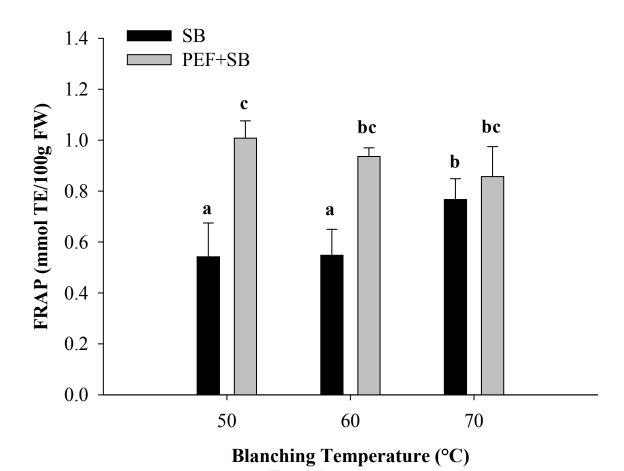



Fig. 7

Highlights

- PEF is combined with steam blanching (SB) to intensify carotenoids extraction
- PEF and SB treatments of whole tomatoes induced peel damages at cuticular level
- Combined PEF and SB showed a synergistic effect on carotenoids recovery from peels
- All-trans-lycopene was the most abundant carotenoid in tomato peels extract
- PEF and SB did not cause any degradation/isomerization of lycopene

- **Table 1** Correlation coefficient among cell disintegration index (Z_p) of tomato peel, and TC
- 2 content, antioxidant activity (AA), and lycopene (Lyc) content of extracts from peels of untreated
- and PEF treated whole tomato fruits at different field strength (0.25-0-75 kV/cm).

Properties	Zp	TCC	AA	Lyc
Zp	1.000	0.978	0.961	0.994
TCC	0.978	1.000	0.997	0.998
AA	0.961	0.997	1.000	0.991
Lyc	0.994	0.998	0.991	1.000

4

Table 2. Correlation coefficient among cell disintegration index (Z_p) of tomato peel, and TC

content, antioxidant activity (AA), and lycopene (Lyc) content of extracts from peels obtained after

peeling of whole tomato fruits pre-treated by SB (1min) or PEF (E=0.50 kV/cm, W_T=1 kJ/kg) +

9 SB (1 min) at different blanching temperature (50, 60, and 70°C).

Properties	Zp	TCC	TCC	AA	AA	Lyc (SB)	Lyc
		(SB)	(PEF-SB)	(SB)	(PEF-SB)		(PEF-SB)
Zp	1.000	0.876	0.830	0.912	-0.128	0.906	0.705
TCC (SB)	0.876	1.000	-	0.997	-	0.998	-
TCC (PEF-SB)	0.830	-	1.000	-	0.447	-	0.981
AA (SB)	0.912	0.997	-	1.000	- (1.000	-
AA (PEF-SB)	-0.128	-	0.447	-	1.000	-	0.613
Lyc (SB)	0.906	0.998	-	1.000	1-7	1.000	-
Lyc (PEF-SB)	0.705	-	0.981	-	0.613	-	1.000

10

7

8

11

12