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We consider thewell-known characterization of theGolden ratio as limit of the ratio of consecutive terms of the Fibonacci sequence,
and we give an explanation of this property in the framework of the Difference Equations Theory. We show that the Golden ratio
coincides with this limit not because it is the root with maximum modulus and multiplicity of the characteristic polynomial, but,
from a more general point of view, because it is the root with maximum modulus and multiplicity of a restricted set of roots,
which in this special case coincides with the two roots of the characteristic polynomial. This new perspective is the heart of the
characterization of the limit of ratio of consecutive terms of all linear homogeneous recurrences with constant coefficients, without
any assumption on the roots of the characteristic polynomial, which may be, in particular, also complex and not real.

In this paper, we consider a well-known property of the
Fibonacci sequence, defined by

𝐹
0
= 𝐹
1
= 1, 𝐹

𝑛
= 𝐹
𝑛−1
+ 𝐹
𝑛−2
, 𝑛 > 1, (1)

namely, the fact that the limit of the ratio of consecutive terms
(the sequence defined from the ratio between each term and
its previous one) is Φ, the highly celebrated Golden ratio:

lim
𝑛→∞

𝐹
𝑛+1

𝐹
𝑛

= Φ. (2)

Many proofs already exist and arewell known since long time,
and we do not wish to add one more to the repertory.

The Fibonacci sequence can be studied in the framework
of the Difference Equations Theory (e.g., see [1] Chapter 3
Page 43), where, roughly speaking, the properties of themore
general sequences (𝐹

𝑛
) satisfying

𝐹
𝑛
+ 𝑎
𝑘−1
𝐹
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

0
𝐹
𝑛−𝑘
= 0 ∀𝑛 ≥ 𝑘, (3)

where 𝑎
0
̸= 0, 𝑎
1
, . . . , 𝑎

𝑘−1
∈ C, are studied. The first step of

the theory consists in considering the associated characteris-
tic polynomial
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whose complex roots 𝜆
1
, . . . , 𝜆

ℎ
, with respective multiplicity
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1
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= 𝑘 permit to express explicitly the

terms 𝐹
𝑛
by means of the representation, known as Binet’s

formula:
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(5)

where 𝑐
𝑖,𝑗

are (complex) numbers uniquely determined by
𝐹
0
, . . . , 𝐹

𝑘−1
. In the case of the Fibonacci sequence, (3), (4),

and (5) become, respectively,
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= 0, (6)
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where the last equality comes out taking into account the
initial conditions 𝐹

0
= 𝐹
1
= 1. Well, the fact that the

Golden ratio, limit of the ratio of adjacent terms, coincides
with one of the roots of the characteristic polynomial (7)
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is not a coincidence. It can be very easily seen that this is
always the case, also for general order-k linear homogeneous
recurrences with constant coefficients; the limit of the ratio of
adjacent terms (in the following, we will refer to this limit as
the Kepler limit of (𝐹

𝑛
)), if it exists, is always one of the roots

of the characteristic polynomial. It suffices to write, starting
from (3),
𝐹
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0
= 0

(9)

and to substitute each ratio with its limit.
The question is:

Q: if for an order-k linear homogeneous recurrence with
constant coefficients, the limit of the ratio of adjacent
terms exists, which root is it?

In the case of the Fibonacci sequence, it is clear that the
Golden ratio is the root of the characteristic polynomial with
maximummodulus, and all the proofs of (2) use more or less
implicitly this property. And the same machinery works with
several other examples of recurrences (e.g., see the pioneering
paper [2]).

Surprisingly, the correct answer to the question is not
that the limit of the ratio of adjacent terms is the root with
maximum modulus. The fact that the Golden ratio is the
unique root of maximum modulus is just a coincidence! In
fact, consider, for instance, the sequence

𝐹
0
= 1, 𝐹

1
= 1 − Φ,

𝐹
𝑛
= 𝐹
𝑛−1
+ 𝐹
𝑛−2
, 𝑛 > 1,

(10)

with different initial conditions and same characteristic
polynomial (7). Here, Binet’s formula reads 𝐹

𝑛
= (1 − Φ)

𝑛

(the term containing Φ𝑛 is in some sense “killed” by the
initial conditions). In this case, the sequence is geometric,
and the Kepler limit is the other root of the characteristic
polynomial: the smaller. This sequence (along with those
obtained multiplying each term by a nonzero constant) is
known as an “exception”, and much attention is devoted
in the literature to the roots of maximum modulus; up to
some assumptions which should exclude the exceptions, it
is known that the Kepler limit exists if, among the roots
of maximum modulus of (4), there exists a unique root
of maximal multiplicity (the “dominant” root; see [3] and
references therein).

Another surprise: the existence of the dominant root is
independent of the existence of the Kepler limit, and also the
value of the limit is not necessarily the dominant root.This is
shown by the following examples. Consider the sequence

𝐹
0
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𝐹
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=−1, 𝐹

3
= 1,

𝐹
𝑛
= 3𝐹
𝑛−1
− 3𝐹
𝑛−2
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− 2𝐹
𝑛−4
, 𝑛 > 3;

(11)

the characteristic polynomial is 𝑝(𝜆) = 𝜆4−3𝜆3+3𝜆2−3𝜆+2,
whose roots are 2, 1, −𝑖, 𝑖; Binet’s formula is

𝐹
𝑛
= 1
𝑛
+ (−𝑖)

𝑛
+ 𝑖
𝑛
. (12)

In this case, the dominant root exists, while the Kepler limit
does not. In the case

𝐹
0
= 1, 𝐹
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(13)

the characteristic polynomial is𝑝(𝜆) = 𝜆3−𝜆2+4𝜆−4, whose
roots are −2𝑖, 2𝑖, 1. Binet’s formula is

𝐹
𝑛
= 1
𝑛
. (14)

Here, the characteristic polynomial has 𝑛𝑜𝑡 a dominant root,
but there exists the Kepler limit, which is the root 1 (note that
1 is not among the roots of maximummodulus).

These phenomena attracted several researchers since
Poincaré, who proved in a more general context (e.g., see [4])
the following result.

Theorem A. Let 𝜆
1
, . . . , 𝜆

𝑘
be the roots of the characteristic

equation
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0
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of (3), and suppose that |𝜆
𝑖
| ̸= |𝜆
𝑗
| for 𝑖 ̸= 𝑗. Then, either 𝐹

𝑛
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for all large n or there exists an index 𝑖 ∈ {1, . . . , 𝑘} such that

lim
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𝐹
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𝐹
𝑛

= 𝜆
𝑖
. (16)

The condition about the pairwise distinct moduli is
optimal (namely, necessary and sufficient) if one requires the
existence of the Kepler limit for all possible initial conditions;
in other words, if there exist two distinct roots with the
same modulus, then it is always possible to consider initial
conditions such that the Kepler limit does not exist.

What can be said about the general case, also when the
moduli of the roots are not necessarily distinct? Is there a
necessary and sufficient condition for the existence of the
Kepler limit?

Well, for a given linear recurrence with constant coeffi-
cients (𝐹

𝑛
), consider the “essential Binet’s formula represen-

tation”; namely, write it in the form (5) where the coefficients
𝑐
𝑖,𝑗
have been computed starting from the initial conditions,

and where only the nonzero coefficients 𝑐
𝑖,𝑗
appear:

𝐹
𝑛
= ∑

𝑙

𝑐
𝑖
𝑙
,𝑗
𝑙

𝑛
𝑗
𝑙
−1
𝜆
𝑛

𝑖
𝑙

. (17)

In this representation, one can see only a 𝑠𝑢𝑏𝑠𝑒𝑡 of the 𝑘
addends of the right hand side of (5). In some sense, the
addends not appearing in the right hand side of (17) can
be considered as “killed” by the initial conditions. In this
representation, among the addends containing the “survived”
roots, count how many, among them, have maximum mod-
ulus and contain the maximum power of 𝑛 (let us call them
“leading”). For instance, the classical Fibonacci sequence (1)
admits the Golden Ratio Φ as unique leading root (see (8));
the sequence (10) has the same characteristic polynomial of
(1), but the unique leading root is 1−Φ; in the case of (11), the
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leading roots are 1, −𝑖, 𝑖 (see (12)). Moreover, if we consider
the sequence

𝐹
0
= 1, 𝐹

1
= −3, 𝐹

2
= −11,

𝐹
𝑛
= 6𝐹
𝑛−1
− 11𝐹

𝑛−2
+ 6𝐹
𝑛−3
, 𝑛 > 2,

(18)

the characteristic polynomial is 𝑝(𝜆) = (𝜆 − 3)(𝜆 − 2)(𝜆 − 1),
and Binet’s formula is

𝐹
𝑛
= 5 ⋅ 1

𝑛
+ (−4) ⋅ 2

𝑛
, (19)

the unique leading root being 2.
In [3], it is proved that if you count exactly one leading

term, then the Kepler limit exists, and in such case, the Kepler
limit is exactly the corresponding root (“the unique leading
root”). When this happens, we say that the initial conditions
are in agreement with the characteristic polynomial.

Thus, Theorem A is, of course, an immediate corollary;
it is trivial that in the case of pairwise distinct moduli,
independently of the “killed” roots, the set of the “survived”
roots, whatever it is, must contain a unique leading root.

On the other hand, for a general order-k linear homoge-
neous recurrence with constant coefficients, it may happen
that (e.g., see (11)) there aremore than one leading root.What
can be said, in this case, about the existence of the Kepler
limit? A third surprise, in this case, is that the Kepler limit
does not exist; the condition given earlier (i.e., the uniqueness
of the leading root) is also necessary.

In the end, the notion of agreement gives us the answer to
the original question Q: the unique leading root.

The importance of this study relies upon the fact that
the ratio of consecutive terms tells that all linear recurrences
in agreement behave at infinity like geometric sequences,
and the first terms (which give the initial conditions), along
with the law (which can be conjectured after a reasonable
number of tests), permit to predict the ratio. This may be
very important for all applications, where linear recurrences
represent mathematical models.
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