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Abstract. Nucleon spin structure, transversity and the tensor charge are of central importance to understanding

the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the

proton via twist 3 GPDs is shown. The “flexible parametrization" of chiral even GPDs is reviewed and its

transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on

π0 and η electroproduction.

1 Introduction

Understanding the nature of angular momenta among the

quark and gluon fields that compose the nucleon has been

of great interest for decades. Recently there has been

considerable attention focused on the interpretation of Or-

bital Angular Momentum (OAM) within the constraints of

gauge invariance and Lorentz covariance. We will briefly

present a method for measuring the twist 3 GPD G2 that

is associated with “dynamical OAM" [1]. Then we will

summarize the “flexible parametrization" for chiral even,

leading twist GPDs that have been applied extensively to

DVCS [2] and EM form factor data [3]. Using the helicity

representation for GPDs, the chiral odd sector normaliza-

tions are nearly determined [4]. The resulting observables

are compared to experimental data.

Why are chiral odd GPDs important? For one thing,

they are related to the transversity distribution of the fields

in the polarized nucleon, h1(x) [5]. That distribution,

which gives this workshop its name [6], is on an equal

footing with the helicity distribution, g1(x), and contains

as much information about spin and angular momentum

in the soft QCD regime. The importance of that transver-

sity distribution has long been recognized [7]. However,

accessing transversity is hampered by its connection to

chiral odd interactions, so that it has to be extracted from

semi-inclusive or exclusive processes. The experiments

and the modeling have been underway for quite a while.

The first moment of the transversity distribution is the ten-

sor charge, δq, for which there are predictions from model

calculations for the soft QCD physics and some extrac-

tions from SIDIS data, shown in Fig. 1. We will present
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our own determinations [8], based on the modeling and

parametrizing we have examined.

2 Orbital Angular Momentum -
Measurements

Recent work interpreting OAM, summarized in E.

Leader’s presentation [9], has led us to consider higher

twist contributions, as encoded in GPDs or Generalized

Transverse Momentum Distributions (GTMDs). From the

Ji sum rule [10] expressing quark OAM, Ref. [11] showed

that the OAM arose as the first moment of a twist 3 GPD,

G2(x, ξ,Δ). Specifically,∫
dx x Gq

2
(x, 0, 0) =

1

2

[
−
∫

dxx(Hq(x, 0, 0)

+Eq(x, 0, 0)) +

∫
dxH̃q(x, 0, 0)

]
(1)

We have shown [1] that the left side can be obtained

from DVCS electroproduction data for a longitudinally

polarized target (with respect to the virtual photon direc-

tion), while the twist 2 GPDs on the right side can be ob-

tained from pdf’s and independent measurements. More

precisely, the longitudinal asymmetry involves the inter-

ference between the GPD handbag amplitudes, including

twist 3 G2, and the Bethe-Heitler amplitudes [12]. The

corresponding asymmetry AUL can be decomposed into

azimuthal modulations

AUL =
asinφ + bsin2φ

c0 + c1cosφ + c2cos2φ
(2)

where φ is the azimuthal angle of the hadron plane rel-

ative to the lepton plane. The sinφ is a twist 2 term (in

the interference between the GPD and the Bethe-Heitler
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amplitudes), while the sin2φ term is proportional to the

twist 3 G2. Fig. 2 shows the result of evaluating the two

asymmetries in our model for the GPDs, having used the

Wandzura-Wilczek approximation for the twist 3 GPD.

The near agreement with HERMES data [13] is quite en-

couraging for obtaining OAM from asymmetry measure-

ments.

3 Chiral even “flexible parametrization"

The four quark chiral even GPDs, H, E, H̃, Ẽ are depen-

dent on kinematic variables (x, ξ, t), and evolve in Q2.

These GPDs are constrained in several ways - first by DIS

data and by pdf’s, Hq(x, 0, 0) = q(x) and H̃q(x, 0, 0) =

Δq(x). The first moments of H and E are the EM form

factors F1(t) and F2(t), respectively. The first moments of

H̃q(x, ξ, t) and Ẽq(x, ξ, t) are the axial form factors Gq
A(t)

and the pseudoscalar form factor Gq
P(t). We applied a re-

cursive procedure to match these constraints, systemati-

cally, and to provide a flexible parametrization [2]. We

developed a model for the GPDs that has spectator scalar

and axial vector diquarks. Regge behavior arises from a

spectral distribution of spectator diquark masses [14–16],

leading to a hybrid form [2], generically, for any of the

four GPDs

F(X, ζ, t) = NGMΛ

MX ,m
(X, ζ, t)Rα,α

′
p (X, ζ, t) (3)

where the Regge factor is

Rα,α
′

p (X, ζ, t) = X−[α+α′(X)t+β(ζ)t] (4)

while G has the diquark form. The latter can be written in

terms of a proton-quark-diquark vertex, with a form factor,

or helcity dependent light front wave functions for the in-

coming states convoluted with the corresponding outgoing

states as illustrated in Fig. 3

The overall helicity amplitudes for DVCS factorize,

via a handbag picture, into the hard part (γ∗+quark → γ+
quark′) and the soft, GPD part (p → quark : quark′ → p′).
The GPD contribution has been expressed in terms of he-

licity amplitudes AΛ′
p,λ′;Λp,λ, with helicity labels from the

outgoing nucleon, the returning quark , incoming nucleon,

outgoing quark, respectively.

This model leads to predictions for measured pro-

cesses. One example of the data match (from JLab Hall

A) with this model is the beam polarization asymmetry,

shown in Fig. 10. Another example, the beam charge

asymmetry, is shown in Fig. 4 and compared with HER-

MES data. For many such predictions, see [2].

Recent data on EM form factors [19] have been used

to make more precise flavor separation for the GPDs and

their first moments [3]. The form factor data and our

model results are shown in Fig. 5. With our well tuned

chiral even model for Hq(x, 0, 0) and Eq(x, 0, 0) we obtain

quark angular momenta from Ji’s sum rule [10],

Jq =
1

2

∫ 1

−1

dx x(Hq(x, 0, 0; Q2) + Eq(x, 0, 0; Q2)), (5)

This paper Q2 = 1 GeV Q2 = 4 GeV
Bacchetta et al. Q2= 1 GeV2, exp. x range full x range
Anselmino et al. (2012) Q2=2 GeV2

He and Ji (Bag model, 1997)
Gamberg and Goldstein (GVMD, 2003) Q2=1 GeV2

Wakamatsu (CSQM, 2008) Q2=1 GeV2

Lattice (2005) Q2= 4 GeV2

Lattice (2012) Q2= 4 GeV2
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Figure 1. Predictions and determinations of tensor charges

δu, δd, adapted from Ref. [8].
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Figure 2. The asymmetry AUL twist two (sin φ) and twist three

(sin 2φ) modulations plotted vs. −t, compared to HERMES data

[13] at xB j and Q2 of the data. The blue bands are predictions

from GPD model of [2, 3]. Adapted from Ref. [1].

and the quarks orbital angular momentum obtained as,

Lq = Jq − 1

2

∫ 1

−1

dx H̃q(x, 0, 0; Q2) (6)

where Q2 is the process’ scale. Our results obtained evolv-

ing all GPDs at leading order [2] are shown in Figures 6,7.
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Figure 3. Vertex structures defining the spectator model tree

level diagrams.
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Figure 4. Coefficients of the beam charge asymmetry, AC ∝ A0
C+

A1
Ccosφ, extracted from experiment [17, 18]. The lower panel

is the coefficient for the cos φ dependent term, while the upper

panel is the cos φ independent term. Adapted from Ref. [1].

4 Chiral odd sector

The chiral odd GPDs are HT , ET , H̃T , ẼT . Of particular

interest is HT (x, ξ, t), which gives the Transversity distri-

bution, HT (x, 0, 0) = h1(x). Starting all over to obtain a

viable model for these chiral odd GPDs would leave us

with few constraints on the normalizations and t, ξ de-

pendences. However, because we developed a successful

model for the chiral even sector we can use a simple parity

relation to obtain chiral odd GPDs. Simply put, consider

the scalar diquark model for the helicity amplitudes illus-

trated in Fig. 3. Each side corresponds to a function φΛ,λ
to form

A(0)
Λ′λ′,Λλ =

∫
d2k⊥φ∗Λ′λ′ (k

′, P′)φΛλ(k, P), (7)
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Figure 5. t2Fq
1
, q = u, d (above) and κ−1

q t2Fq
2

(below) plotted vs.

−t, from our parametrization [3]. Data from Ref.[19]. Dotted =

diquark Eq.(3); dashed = Regge Eq.(4), adapted from Ref. [3].
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Figure 6. Quarks angular momentum, Jq, and orbital angular

momentum, Lq, plotted vs. the scale Q2. Adapted from Ref. [3]

with vertex structures

φΛ,λ(k, P) = Γ(k)
ū(k, λ)U(P,Λ)

k2 − m2
(8)

φ∗Λ′λ′ (k
′, P′) = Γ(k′)

U(P′,Λ′)u(k′, λ′)
k′ 2 − m2

. (9)

where we defined the proton-quark-diquark coupling as,

Γ = gs
k2 − m2

q

(k2 − Mq 2

Λ
)2
. (10)
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Figure 7. Ju vs. Jd obtained from our Ref. [2, 3] as constrained

by flavor separated Dirac and Pauli form factors, compared to

other determinations. Adapted from Ref. [3].

A very similar form follows for axial vector diquarks, al-

though complicated by the matching of the diquark helic-

ities from left to right.

The Parity relations for the vertices in Fig.3 read,

φ−Λ−λ = (−1)Λ−λφ∗Λλ. (11)

Since for S = 0 the helicity structure of Fig.3 corresponds

to a factorized form – the product of two independently

varying φ functions – and, as shown in Eq.(11), these two

components transform under Parity independently from

one another, The following relations hold between the chi-

ral odd amplitudes and the chiral even ones for S = 0,

A(0)
++,−− = A(0)

++,++ (12a)

A(0)
++,+− = −A(0)∗

++,−+ (12b)

A(0)
+−,++ = −A(0)∗

−+,++, (12c)

Notice that these relations are valid only if one of the two

φ functions is real. By using Parity symmetry one cannot

connect directly the chiral odd amplitude A+−,−+, with its

chiral even counterpart A+−,+− since both involve complex

φ functions. Physically this corresponds to the fact that

A+−,−+ involves a double spin flip, and it must therefore

be proportional to Δ2⊥ = (t0 − t)(1 − ζ), while A+−,+− is

non-flip.

In Fig.8 we show both the chiral even GPDs (left

panel) and the chiral odd GPDs (right panel) evaluated us-

ing the model described in this paper at ζ = 0, t = 0,

plotted vs. X at fixed Q2 = 2 GeV2. The chiral even

GPDs were already evaluated in Ref.[2] by using the re-

cursive fitting procedure described above. Notice that as
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Figure 9. The transversity function, h1(x,Q2) ≡ H̃T (X, 0, 0,Q2)

plotted along with theoretical errors (hashed area) for the up (top

panel) and down (bottom panel) quarks. The other curves in the

figure represent the Soffer bound on the magnitude of h1, and the

values of gu,d
1

, respectively. Adapted from Ref. [4].

a byproduct of our analysis we obtain an independent ex-

traction of, Hq
T (X, 0, 0; Q2) ≡ hq

1
(X,Q2) (upper panels). In

Fig.9 we show transversity in more detail, compared with

g
q
1
(X), and the Soffer bound, f1(X) + g1(X). It is interest-

ing to notice how, from exclusive pseudoscalar electropro-

duction data, we obtain an independent extraction of this

quantity.

In Fig. 11 we show the predicted [8] “transverse

spin-flavor dipole moments", defined by Burkardt as the

transversity analog of the anomalous magnetic dipole mo-

ments [20].

Finally we consider the observable cross sections for

exclusive π0 electroproduction. The various GPDs cal-

culated for the chiral odd sector enter the cross section

terms for π0 electroproduction, which, using the notation

of Ref.[21] (based on [22]), can be defined as,

d4σ

dxB jdydφdt

= Γ[FUU,T + εFUU,L + ε cos 2φFcos 2φ
UU

+
√
ε(ε + 1) cos φFcos φ

UU . . .] (13)

where we leave out all the polarized beam or target terms

for brevity.

In Fig. 12 we show the unpolarized cross section com-

ponents for the kinematics xB j = 0.13, Q2 = 1.2 GeV2.

Other kinematics, along with various asymmetries can be

seen in Ref. [4, 8]. Overall, the agreement with data is

notable.
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Figure 8. The chiral even (left panel) and chiral odd GPDs (right panel) evaluated using the model described in the text at ζ = 0, t = 0,

plotted vs. X at fixed Q2 = 2 GeV2. Adapted from Ref. [4]
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