
International Journal of Advances in Intelligent Informatics ISSN 2442-6571

Vol. 6, No. 1, March 2020, pp. 13-22 13

 http://dx.doi.org/10.26555/ijain.v6i1.410 http://ijain.org ijain@uad.ac.id

Self-supervised pre-training of CNNs for flatness defect
classification in the steelworks industry

Filippo Galli a,1,*, Antonio Ritacco a,2, Giacomo Lanciano a,3, Marco Vannocci a,4,

Valentina Colla a,5, Marco Vannucci a,6

a Scuola Superiore Sant’Anna, Via G. Moruzzi 1, Pisa, Italy
1 filippo.galli@santannapisa.it; 2 antonio.ritacco@santannapisa.it; 3 giacomo.lanciano@santannapisa.it;
4 marco.vannocci@santannapisa.it; 5 valentina.colla@santannapisa.it; 6 marco.vannucci@santannapisa.it

* corresponding author

1. Introduction

In the steelmaking cycle, continuous casting is the process where molten steel is solidified in different
semi-finished products, and it is the starting point of the Hot Rolling Mill (HRM) process. Slabs are
one of these intermediate products, characterized by a rectangular cross-section, and transformed into
flat steel products. The primary thickness reduction of a slab can be gained via the roughing mill process
where the heated slab enters, after a descaling phase, while the finishing mill process refines the thickness
of the strip providing the final thickness and definitively changing the slab into a long and thin product
called a strip. From an industrial point of view, a serious concern is represented by the hot-rolled
products shape defects and particularly those concerning the strip flatness. Such types of defects, in fact,
highlight non-uniformities within the hot rolling process but can be detected only at the end of the
process and thus cannot be recovered in time before the next slab is being processed. The main
consequence is the evident degradation of the quality of the final product that leads to economic losses
due to non-compliant quality of the products.

Flatness defects are, on the one hand, due to different elongation in the internal strip fibre caused by
uneven stress along the width or by the high rolling speed process that leads to fluttering strips. On the
other hand, flatness defects are an uneven thermal gradient across the strip that is responsible for flatness

A RTIC L E IN F O

ABSTRACT

Article history

Received July 18, 2019

Revised August 5, 2019

Accepted October 29, 2019

Available online March 31, 2020

 Classification of surface defects in the steelworks industry plays a significant
role in guaranteeing the quality of the products. From an industrial point
of view, a serious concern is represented by the hot-rolled products shape
defects and particularly those concerning the strip flatness. Flatness defects
are typically divided into four sub-classes depending on which part of the
strip is affected and the corresponding shape. In the context of this
research, the primary objective is evaluating the improvements of exploiting
the self-supervised learning paradigm for defects classification, taking
advantage of unlabelled, real, steel strip flatness maps. Different pre-
training methods are compared, as well as architectures, taking advantage
of well-established neural subnetworks, such as Residual and Inception
modules. A systematic approach in evaluating the different performances
guarantees a formal verification of the self-supervised pre-training
paradigms evaluated hereafter. In particular, pre-training neural networks
with the EgoMotion meta-algorithm shows classification improvements
over the AutoEncoder technique, which in turn is better performing than
a Glorot weight initialization.

This is an open access article under the CC–BY-SA license.

Keywords

Self-supervision

Steelworks

Deep learning

CNN

http://dx.doi.org/10.26555/ijain.v6i1.410
http://ijain.org/index.php/IJAIN/index
mailto:ijain@uad.ac.id?subject=[IJAIN]
mailto:filippo.galli@santannapisa.it
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.26555/ijain.v6i1.410&domain=pdf

14 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

defects generating waviness. Uneven heating or cooling process is the main cause of the latter type of
defects due to internal stresses that can locally overcome the yield stress of the material leading to plastic
deformation of the strip [1] [2]. Defects due to different elongation of the fibre are particularly relevant,
as they are directly connected to rolling process parameters such as the inflection of the working rolls
(bending) or the relative sliding of the work rolls along the transverse axis (shifting).

Flatness defects are typically divided into two sub-classes, depending on whether the edge of the strip
is affected or not. When the edge is affected, the defect is typically referred to as a “wave defect,” while
a buckle typically refers to a defect that does not affect the strip edge. In addition, the position along the
transverse direction of the strip allows categorizing buckles in center- or quarter-buckles. In the former
case, the defect occurs near the longitudinal centerline of the strip, while in the latter case, it occurs in
the transverse regions that engage the upper/lower strip at a distance of about one-quarter of the width
from the strip edge.

The strip planarity is usually measured by considering the strip as formed by a series of adjacent
longitudinal fibres: if all the fibres have the same length, the strip is perfectly flat. The presence of
flatness defects derives from the fact that the fibres do not stretch independently, and when they have
different lengths, flatness defects appear as waves on the strip. The main parameter used for the
numerical evaluation of strip flatness is the so-called I-Unit index, which is computed for each fibre as
follows:

𝐼 − 𝑈𝑛𝑖𝑡 (𝑖) = (
𝐿𝑖 – 𝐿𝑟𝑒𝑓

𝐿𝑟𝑒𝑓
) ∙ 105

where 𝐿𝑖 is the length of fibre 𝑖, and 𝐿𝑟𝑒𝑓 is the length of a reference fibre. Typically, the reference fibre

is the shortest one, and the I-Unit assumes only non-negative values.

The transversal flatness profiles of each strip are usually concatenated and represented as a bi-
dimensional map of the strip flatness, which is read directly from a measuring system installed at the
end of the finishing mill. The procedure to detect and isolate each defect on the strip surface, which is
detailed in [3], provides defect sub-images from the full strip image. HRM surface defects classification
was tackled in recent years by exploiting Support Vector Machines (SVM) [4], supervised Neural
Network with Back Propagation [5], unsupervised classifiers via Self-Organizing Maps (SOM) [6], or
Learning Vector Quantiser (LVQ)[7].

In general, industrial surface defects detection and classification systems currently applied in the steel
sector exploit Artificial Intelligence-based approaches at different levels: in the preliminary pre-
processing stage, for instance for removal of unreliable data [8] and feature selection [9][10] as well as
in the actual classification stage [11]–[13]. Moreover, machine learning approaches are applied to
correlate the different kinds of defects with their potential causes [14][15]. However, in this context,
the potential of high capacity networks has not yet been fully exploited. Very recently, in [3], the use of
Convolutional Neural Network (CNN) is also introduced to cope with the classification problem of
surface defects.

In this paper, the classification problem is extended and tackled from a different point of view. In
particular, we explore the idea of using unsupervised pre-training of CNNs, which does not require
manual labeling of a dataset. Later fine-tuning on a labelled dataset via transfer learning lets us compare
the effectiveness of the considered methods to increase classification accuracy over the use of mere
supervised learning

2. Method

2.1. Self-Supervised Learning Techniques

High capacity networks are solving many different machine learning tasks, ranging from large-scale
image classification [16], segmentation [17], and image generation [18] to natural speech understanding

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 15
 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

[19] and realistic text-to-speech [20]. A few general trends are easily identified in academia and industry:
deeper networks show increasingly better results [21] as long as they are fed with ever-larger amounts
of data, and labelled data in particular. Computational and economic costs increase linearly with the size
of the dataset. For this reason, in the latest years, some unsupervised approaches were aimed at the
exploitation of unlabelled data. The intuition behind many of these techniques was emulating the human
brain's ability to self-determine the task goal and to improve it.

Advancements in algorithms able to exploit labels inherently contained within an unlabelled dataset
gave rise to what is now referenced as self-supervised learning. LeNet-5 [22] popularized convolutional
operators by embedding apriori knowledge of the data into networks by preserving the spatial correlation
of the pixel of an image as the signal proceeds through the layers of the network itself. Similarly, self-
supervision embeds apriori knowledge about a dataset into a network, but not by introducing a different
operator. Instead, the output of the network is typically constrained to be coherent with a known
transformation of the inputs. Since the input and the transformations are known, we can picture this
situation as deriving labels from the input data and forcing the network to converge to those labels.
Assuming weights learned through self-supervised learning generalize to a similar task, one can use
transfer learning [23][24] to fine-tune the network on a labelled dataset. A few examples of self-
supervised techniques include:

a) Physics and Domain Knowledge [25]: The authors show how a CNN fed with images of a video
stream of a falling ball learns to predict the height of a falling object, just by forcing the output to be
coherent with the coordinates of a parabola, which is the physically feasible trajectory of a falling
body.

b) Unsupervised Jigsaw Puzzles [26]: quoting the authors “By following the principle of self-supervision,
the authors build a CNN that can be trained to solve jigsaw puzzles as a pretext task, which requires
no manual labeling. The CNN is later repurposed to solve classification and detection via transfer
learning”.

c) Colorization [27]: the auxiliary task is to predict two color channels of an image. It has given the
luminosity of each pixel. Also, the representations of the internal feature are learned by colorizing
unlabelled images, which can be fine-tuned for classification and detection.

The above methods could not be exploited because: a) our system does not provide a video stream;
b) classified objects do not have strong structural properties that identify each shape and c) images are
greyscale, not having color channels other than luminosity. Conversely, the method proposed by Agrawal
et al. [28] investigates if the awareness of EgoMotion could be used as a supervisory signal for feature
learning. In other words, images of a moving item show different instances of the same object, i.e., a
fixed label for different samples. Edges, texture, and colors needed to recognize the object are visual
features that persist independently of the location of the object itself.

One way to emulate the situation of learning via EgoMotion is to:

1) Present a (bottom) CNN with the image of an unlabelled object and let it output a w·h·f tensor where
f is the number of filters of the last layer, and w, h are the width and height of the feature maps.

2) Feed the same network a randomly transformed version of the same image, by translating/rotating
it and let it output a new tensor w·h·f.

3) Concatenate the two outputs to form a w·h·2f tensor and feed it to a (top) CNN tasked with predicting
the random transformation, which is known, and constitutes the label.

The schematics of the network is shown in Fig. 1.

16 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

(a) (b)

Fig. 1. The EgoMotion (a) and AutoEncoder learning architectures (b)

The self-supervised learning problem is framed as a supervised learning problem and, by
backpropagating and iterating over the unlabelled dataset, the solution is a network that exploits visual
features to predict the random transformations applied to the image. It is a reasonable assumption that
these features can instead be repurposed to classify an image, via transfer learning, which is the goal of
our approach.

Another example of a self-supervised technique for learning considered in this work is that of
autoencoders, which consist of a neural network that tries to learn the identity function ℎ𝑊,𝑏(𝑥) ≈ 𝑥

[29]. Without placing some form of information bottleneck inside the function ℎ, the task of learning
the identity function would be trivial. Instead, the amount of information that passes through the
network is reduced by having layers with smaller representation capacity, in a way that allows projecting
input data in a latent space characteristic of the training data. As the autoencoder is forced to prioritize
which aspects of the input should be transferred, it often learns useful properties of the data.
Autoencoders are typically composed of two parts: An encoder, that takes the input and generates the
latent encoding, and a decoder, that takes the latent encoding and generates the reconstruction of the
input. Depending on the task at hand, a different type of autoencoders can be used, for instance:

a) Under complete autoencoders [30]: the latent space representation in the bottleneck layer is achieved,
constraining the dimension of the output of the encoder to be smaller than the dimension of the
input by placing less hidden units than input units.

b) Regularized autoencoders [31]: a loss function with regularization used to encourage the model to
have representation sparsity (Sparse Autoencoders [32]) and robustness noise/missing inputs
(Denoising Autoencoders [33]), rather than limiting the model to reduce the hidden units number.

Since we are dealing with images and we need to reduce the image representation to a tensor coherent
with the one produced by the networks pre-trained with EgoMotion, under-complete Convolutional
AutoEncoders represent a reasonable solution. These models present a series of convolutional and max-
pooling layers to reduce the input to a certain encoding. While resorting is used to transpose
convolutional and up-sampling layers for decoding.

2.2. Architectures

Throughout the experiments, we used a repeating pattern to develop network architectures of
different representational capacity. Independently of the self-supervision method applied for pre-
training, every network shares the same type of layers. Specifically, we built two modules:

1) Inception module: based on Szegedy et al. [34], we derived an inception layer where the input
branches out to four convolutional modules with different kernel sizes, such as the one reported in
Fig. 2(a).

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 17
 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

2) Residual module: similarly, based on He et al. [35], we defined a residual layer where the input
undergoes heavier convolutional processing on one path while being left almost untouched on
another path. Both signals are summed to produce the module’s output, as shown in Fig. 2(b).

(a) (b)

Fig. 2. – Inception (a) and Residual (b) modules

Both modules provide the possibility to apply batch normalization, as well as different convolutional
strides. We define a number of base networks composed of the above modules, and the corresponding
naming convention is, e.g., EMInc4BN for a network of four Inception modules with Batch
Normalization and pre-trained with EgoMotion, and AERes8 for a network of 8 Residual modules
without Batch normalization and pre-trained with AutoEncoders. Table 1 shows the structure of 4
models with increasing complexity. Each structure is composed of either Inception or Residual modules,
for a total of 8 networks. They have been trained with and without batch normalization, totaling to 16
models.

Table 1. The network structure for different depths: C64s4 means Inception or Residual module with 64 filters

and 4x4 strides. MP4 means the Max Pooling layer with 4x4 windows and strides. The output of each

model is a 7x7x64 tensor of 64 7x7 feature maps

Depth Base Structure
8 C64→C64→MP2→C128→C128→MP2→C128→C128→MP2→C64→C64→MP2

4 C64→MP2→C128→MP2→C128→MP2→C64→MP2

2 C128s2→MP2→C64s2

1 C64s4→MP4

3. Results and Discussion

3.1. Experiments

Every single model undergoes three different training techniques, such as pre-training with
EgoMotion and transfers learning on the classification dataset, pre-training with AutoEncoder, and
transfer learning on the classification dataset, and training from scratch on the classification dataset.

During transfer learning, every layer is left trainable, and weights learned during pre-training were
not frozen when turning to classification. In the context of pre-training with EgoMotion, each one of
the base networks described in Section 2.1 constitutes the bottom CNN, while the top CNN consists of
a dense layer of 300 ELU units [36], followed by a 0.3 rate dropout and the output layer. This learning
technique requires three outputs: one for predicting rotations and two for vertical and horizontal
translations. As in Agrawal et al. [28], the problem is framed as a classification task, so every output is
an array of softmax units predicting the bin corresponding to the right transformation.

In the context of pre-training with AutoEncoders, each one of the base networks described in Section
2.2 constitutes the encoding part, which outputs a 7x7x64 tensor. The decoder architecture is common
to each model and is composed of 5 transposed convolutional layers preceded by up-sampling layers. The

18 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

last convolution has sigmoid activation functions, which are a good fit for regressing pixel luminosity
values scaled to the 0-1 range.

Every network is trained using Adam [37] optimizer for 100 epochs with early stopping and L2
regularization to prevent overfitting. Once pre-training is completed, every network is repurposed for
classification by removing either the top CNN or the decoder for EgoMotion and AutoEncoders,
respectively, and by plugging a 0.3 rate dropout layer, a 20 ELU unit dense layer, and a final four softmax
unit layer. Adam optimizer was run for 100 epochs every 64-sample batch, and training was terminated
with early stopping. Heavy artificial data augmentation was part of the process, applying random affine
transformations to the input images, such as horizontal and vertical flip, width and height shift, and
zooming. Similarly, the training process for classification was also carried out without pre-training of
the networks and using Glorot initialization [38]. In order to have better confidence in the performance
scores, training on the classification dataset was run three times, and the results averaged.

3.2. Dataset

In this work, we exploit the data used in Vannocci et al. [3] for what concerns the labelled dataset,
where a thorough explanation of how the built dataset is presented. Using the same data, we can compare
pre-training techniques against a common baseline to establish the effectiveness of self-supervision. Here
we propose a summary of the main features of the exploited dataset.

Defect images are extracted from the overall image of the strip and manually classified in 4 different
categories - Wave, Buckle, Multiwave, and Multibuckle (see Fig. 3) by expert personnel. Every strip
image is affected by a varying number of defects, so dataset splits refer to defect images, not the strip
images. Of these, ~80% is devoted to the training and validation sets, while the remaining ~20% are test
images. This results in a dataset composed of 4806 images: 3938 images were used for training and
validation in a 70-30% split, 868 images were used for testing. The class distribution is shown in Table
2. For what concerns the data used for self-supervised training, we ran the bounding box algorithm in
Vannocci et al. [3] on new strips to recover 32437 new unlabelled defect images.

Fig. 3. Flatness defect samples

Table 2. Distribution of flatness defect classes in the labeled dataset [3]

Class TR&VD TS

Wave 1209 225

Buckle 1201 261

Multiwave 840 179

Multibuckle 688 203

Total 3938 868

3.3. Results

The results of all experiments are summarized in Table 3 and Table 4. Fig. 4 showed each model's
performance, comparing the accuracy of the same model with different pre-training policies. In the vast
majority of models, we see an increase in validation accuracy whenever pre-training occurs. Pre-training
with EgoMotion almost always guarantees a better classification accuracy over training from scratch,

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 19
 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

where initial weights are initialized with Glorot [38]. Specifically, the overall average accuracy increase is
equal to 1.03%, which for a validation accuracy of 90%, would mean a relative decrease in the error rate
of about 10%. Similarly, pre-training with AutoEncoders shows a performance increase when the model
is simpler - typically when the model is 1 or 2 modules deep. The overall average accuracy increase is
still positive and equal to 0.41%.

Table 3. Validation accuracies on the classification dataset for NN with Inception modules. With and without
Batch Normalization, and with weight initialization via EgoMotion, AutoEncoder, or Glorot. The total

parameter number is also included.

BN-Depth No BN-depth

1 2 4 8 1 2 4 8

EgoMotion

1 0.8864 0.8892 0.9195 0.9141 0.8631 0.8909 0.9195 0.9123

2 0.8614 0.8837 0.9052 0.9204 0.8515 0.8962 0.9168 0.9097

3 0.8685 0.8703 0.9141 0.9213 0.8426 0.8909 0.924 0.9079

Glorot

1 0.88524 0.8614 0.9079 0.9114 0.7916 0.8837 0.9079 0.9044

2 0.8301 0.8007 0.9258 0.9195 0.8229 0.8819 0.915 0.9186

3 0.839 0.856 0.9177 0.9168 0.7934 0.8694 0.9177 0.9123

AutoEncoder

1 0.8519 0.8976 0.912 0.9162 0.8528 0.8756 0.909 0.9078

2 0.8596 0.8935 0.9069 0.9146 0.846 0.8858 0.9019 0.9086

3 0.8689 0.8976 0.9061 0.9154 0.8376 0.8909 0.9044 0.9078

#Parameters 63,720 138,660 360,00 730,782 63,404 137,000 358,000 727,000

Table 4. Validation accuracies on the classification dataset for NN with Residual modules. With and

without Batch Normalization, and with weight initialization via EgoMotion, AutoEncoder, or Glorot.

The total parameter number is also included.

BN-Depth No BN-depth

1 2 4 8 1 2 4 8

EgoMotion

1 0.8989 0.9249 0.9106 0.907 0.8891 0.9061 0.9195 0.9141

2 0.881 0.9114 0.9222 0.9177 0.8775 0.9302 0.9106 0.9186

3 0.8989 0.9106 0.9258 0.9213 0.9034 0.9159 0.9132 0.9132

Glorot

1 0.8971 0.9114 0.9034 0.9007 0.873 0.9061 0.9079 0.9168

2 0.8846 0.9097 0.9141 0.9088 0.8739 0.9052 0.9123 0.915

3 0.8846 0.9088 0.9123 0.9052 0.8739 0.9159 0.9195 0.9114

AutoEncoder

1 0.8968 0.912 0.9154 0.9129 0.8646 0.9078 0.9108 0.9069

2 0.8934 0.9044 0.9112 0.9078 0.8942 0.9052 0.9069 0.8968

3 0.89 0.8968 0.9188 0.9078 0.8799 0.9095 0.9019 0.9069

#Parameters 101,544 333,992 350,568 1,494,760 100,520 330,920 744,484 1,482,472

20 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

Fig. 4. Average validation accuracies over three runs for each model and pre-training policy.

4. Conclusion

The problem of classification of surface defects in the steel industry has been examined and advanced
in this study by exploiting unlabelled data. By doing so, the improvements in classification accuracy come
without a corresponding increase in costs due to expert personnel devoted to assembling a bigger labelled
dataset. In particular, we have shown that using self-supervised learning algorithms for pre-training
different Convolutional Neural Network architectures leads to increased accuracy once the models are
fine-tuned via transfer learning on the classification task. Concerning similar results on Vannocci et al.
[3] on the same classification dataset, we underline four major achievements. The first, validation
accuracy is generally improved, with the best performing network EMRes2 outperforming the results of
previous research, 92.7% to 93.0%. Second, All the models evaluated in this context have drastically
reduced the number of parameters needed to achieve a comparable - if not better - performance. EMRes2
has more than 160-times fewer parameters than Inception 311 in Vannocci et al. [3]. Third, the accuracy
of EMRes2 (90.6%) showed overfitting signs, but it still increased with respect to Inception311 (89.2%).
At last, we can conclude the increase in accuracy comes without the need of additional labelled images,
by adopting self-supervised algorithms for pre-training.

References

[1] V. B. Ginzburg, Flat Rolling Fundamentals, 2000, doi: 10.1201/9781482277357.

[2] A. Bhaduri, “Rolling,” 2018, doi: 10.1007/978-981-10-7209-3_12.

https://doi.org/10.1201/9781482277357
https://doi.org/10.1007/978-981-10-7209-3_12

ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 21
 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

[3] M. Vannocci et al., “Flatness Defect Detection and Classification in Hot Rolled Steel Strips Using
Convolutional Neural Networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, doi: 10.1007/978-3-030-20518-8_19.

[4] G. Wu, H. Kwak, S. Jang, K. Xu, and J. Xu, “Design of online surface inspection system of hot rolled strips,”
in Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2008, 2008, doi:
10.1109/ICAL.2008.4636548.

[5] S. Ghorai, A. Mukherjee, M. Gangadaran, and P. K. Dutta, “Automatic defect detection on hot-rolled flat
steel products,” IEEE Trans. Instrum. Meas., 2013, doi: 10.1109/TIM.2012.2218677.

[6] P. Caleb and M. Steuer, “Classification of surface defects on hot rolled steel using adaptive learning
methods,” Int. Conf. Knowledge-Based Intell. Electron. Syst. Proceedings, KES, 2000, doi:
10.1109/kes.2000.885769.

[7] G. Wu, K. Xu, and J. Xu, “Application of a new feature extraction and optimization method to surface
defect recognition of cold rolled strips,” J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. (Eng Ed), 2007,
doi: 10.1016/S1005-8850(07)60086-3.

[8] S. Cateni, V. Colla, and G. Nastasi, “A multivariate fuzzy system applied for outliers detection,” J. Intell.
Fuzzy Syst., 2013, doi: 10.3233/IFS-2012-0607.

[9] S. Cateni, V. Colla, and M. Vannucci, “A hybrid feature selection method for classification purposes,” in
Proceedings - UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation,
EMS 2014, 2014, doi: 10.1109/EMS.2014.44.

[10] S. Cateni, V. Colla, and M. Vannucci, “A genetic algorithm-based approach for selecting input variables and
setting relevant network parameters of a SOM-based classifier,” Int. J. Simul. Syst. Sci. Technol., 2011,
available at: Google Scholar.

[11] A. Borselli, V. Colla, M. Vannucci, and M. Veroli, “A fuzzy inference system applied to defect detection in
flat steel production,” in 2010 IEEE World Congress on Computational Intelligence, WCCI 2010, 2010, doi:
10.1109/FUZZY.2010.5584036.

[12] A. Borselli, V. Colla, and M. Vannucci, “Surface defects classification in steel products: A comparison
between different artificial intelligence-based approaches,” in Proceedings of the 11th IASTED International
Conference on Artificial Intelligence and Applications, AIA 2011, 2011, doi: 10.2316/P.2011.717-068.

[13] M. Vannucci, V. Colla, M. Sgarbi, and O. Toscanelli, “Thresholded Neural Networks for Sensitive Industrial
Classification Tasks,” 2009, pp. 1320–1327, doi: 10.1007/978-3-642-02478-8_165.

[14] J. Brandenburger, V. Colla, G. Nastasi, F. Ferro, C. Schirm, and J. Melcher, “Big Data Solution for Quality
Monitoring and Improvement on Flat Steel Production,” IFAC-PapersOnLine, 2016, doi:
10.1016/j.ifacol.2016.10.096.

[15] M. Appio, A. Ardesi, and A. Lugnan, “Automatic surface inspection in steel products ensures safe, cost-
efficient and timely defect detection in production,” in AISTech - Iron and Steel Technology Conference
Proceedings, 2018, doi: 10.5151/1983-4764-31378.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in
3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015,
available at: Google Scholar.

[17] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic Image
Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs,” IEEE
Trans. Pattern Anal. Mach. Intell., 2018, doi: 10.1109/TPAMI.2017.2699184.

[18] A. Creswell and A. A. Bharath, “Denoising Adversarial Autoencoders,” IEEE Trans. Neural Networks Learn.
Syst., 2019, doi: 10.1109/TNNLS.2018.2852738.

[19] A. Kumar et al., “Ask me anything: Dynamic memory networks for natural language processing,” in 33rd
International Conference on Machine Learning, ICML 2016, 2016, available at: Google Scholar.

[20] S. Arik et al., “Deep voice: Real-time neural text-to-speech,” in 34th International Conference on Machine
Learning, ICML 2017, 2017, available at: Google Scholar.

https://doi.org/10.1007/978-3-030-20518-8_19
https://doi.org/10.1109/ICAL.2008.4636548
https://doi.org/10.1109/TIM.2012.2218677
https://doi.org/10.1109/kes.2000.885769
https://doi.org/10.1016/S1005-8850(07)60086-3
https://doi.org/10.3233/IFS-2012-0607
https://doi.org/10.1109/EMS.2014.44
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+genetic+algorithm-based+approach+for+selecting+input+variables+and+setting+relevant+network+parameters+of+a+SOM-based+classifier&btnG=
https://doi.org/10.1109/FUZZY.2010.5584036
https://doi.org/10.2316/P.2011.717-068
https://doi.org/10.1007/978-3-642-02478-8_165
https://doi.org/10.1016/j.ifacol.2016.10.096
https://doi.org/10.5151/1983-4764-31378
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Very+deep+convolutional+networks+for+large-scale+image+recognition&btnG=
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TNNLS.2018.2852738
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ask+me+anything%3A+Dynamic+memory+networks+for+natural+language+processing&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+voice%3A+Real-time+neural+text-to-speech&btnG=

22 International Journal of Advances in Intelligent Informatics ISSN 2442-6571

 Vol. 6, No. 1, March 2020, pp. 13-22

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry)

[21] H. Mhaskar, Q. Liao, and T. Poggio, “When and why are deep networks better than shallow ones?,” in 31st
AAAI Conference on Artificial Intelligence, AAAI 2017, 2017, available at: Google Scholar.

[22] S. Wu, W. Wei, and L. Zhang, “Comparison of machine learning algorithms for handwritten digit
recognition,” in Communications in Computer and Information Science, 2018, doi: 10.1007/978-981-13-1651-
7_47.

[23] S. J. Pan and Q. Yang, “A survey on transfer learning,” 2010, doi: 10.1109/TKDE.2009.191.

[24] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2018, doi: 10.1007/978-3-030-01424-7_27.

[25] R. Stewart and S. Ermon, “Label-free supervision of neural networks with physics and domain knowledge,”
in 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 2017, available at: Google Scholar.

[26] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2016, doi: 10.1007/978-3-319-46466-4_5.

[27] G. Larsson, M. Maire, and G. Shakhnarovich, “Colorization as a proxy task for visual understanding,” in
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017, doi:
10.1109/CVPR.2017.96.

[28] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, doi: 10.1109/ICCV.2015.13.

[29] D. H. Ballard, “Modular Learning in Neural Networks,” Aaai, 1987, available at: Google Scholar.

[30] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn., 2009, doi:
10.1561/2200000006.

[31] M. Guarascio, G. Manco, and E. Ritacco, “Deep learning,” 2018, doi: 10.1016/B978-0-12-809633-8.20352-
X.

[32] A. Makhzani and B. Frey, “k-Sparse autoencoders,” in 2nd International Conference on Learning
Representations, ICLR 2014 - Conference Track Proceedings, 2014, available at: Google Scholar.

[33] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, “Stacked denoising autoencoders:
Learning Useful Representations in a Deep Network with a Local Denoising Criterion,” J. Mach. Learn.
Res., 2010, available at: Google Scholar.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for
Computer Vision,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016, doi: 10.1109/CVPR.2016.308.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, doi:
10.1109/CVPR.2016.90.

[36] D. A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential
linear units (ELUs),” in 4th International Conference on Learning Representations, ICLR 2016 - Conference
Track Proceedings, 2016, available at: Google Scholar.

[37] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference
on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015, available at: Google Scholar.

[38] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in
Journal of Machine Learning Research, 2010, available at: Google Scholar.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=When+and+why+are+deep+networks+better+than+shallow+ones&btnG=
https://doi.org/10.1007/978-981-13-1651-7_47
https://doi.org/10.1007/978-981-13-1651-7_47
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1007/978-3-030-01424-7_27
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Label-free+supervision+of+neural+networks+with+physics+and+domain+knowledge&btnG=
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1109/CVPR.2017.96
https://doi.org/10.1109/ICCV.2015.13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modular+Learning+in+Neural+Networks&btnG=
https://doi.org/10.1561/2200000006
https://doi.org/10.1016/B978-0-12-809633-8.20352-X
https://doi.org/10.1016/B978-0-12-809633-8.20352-X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=k-Sparse+autoencoders&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stacked+denoising+autoencoders%3A+Learning+Useful+Representations+in+a+Deep+Network+with+a+Local+Denoising+Criterion&btnG=
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.90
https://scholar.google.com/scholar?q=Fast+and+accurate+deep+network+learning+by+exponential+linear+units+(ELUs)&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adam%3A+A+method+for+stochastic+optimization&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+the+difficulty+of+training+deep+feedforward+neural+networks&btnG=

