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1. Introduction 

In the steelmaking cycle, continuous casting is the process where molten steel is solidified in different 
semi-finished products, and it is the starting point of the Hot Rolling Mill (HRM) process. Slabs are 
one of these intermediate products, characterized by a rectangular cross-section, and transformed into 
flat steel products. The primary thickness reduction of a slab can be gained via the roughing mill process 
where the heated slab enters, after a descaling phase, while the finishing mill process refines the thickness 
of the strip providing the final thickness and definitively changing the slab into a long and thin product 
called a strip. From an industrial point of view, a serious concern is represented by the hot-rolled 
products shape defects and particularly those concerning the strip flatness. Such types of defects, in fact, 
highlight non-uniformities within the hot rolling process but can be detected only at the end of the 
process and thus cannot be recovered in time before the next slab is being processed. The main 
consequence is the evident degradation of the quality of the final product that leads to economic losses 
due to non-compliant quality of the products. 

Flatness defects are, on the one hand, due to different elongation in the internal strip fibre caused by 
uneven stress along the width or by the high rolling speed process that leads to fluttering strips. On the 
other hand, flatness defects are an uneven thermal gradient across the strip that is responsible for flatness 
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 Classification of surface defects in the steelworks industry plays a significant 
role in guaranteeing the quality of the products. From an industrial point 
of view, a serious concern is represented by the hot-rolled products shape 
defects and particularly those concerning the strip flatness. Flatness defects 
are typically divided into four sub-classes depending on which part of the 
strip is affected and the corresponding shape. In the context of this 
research, the primary objective is evaluating the improvements of exploiting 
the self-supervised learning paradigm for defects classification, taking 
advantage of unlabelled, real, steel strip flatness maps. Different pre-
training methods are compared, as well as architectures, taking advantage 
of well-established neural subnetworks, such as Residual and Inception 
modules. A systematic approach in evaluating the different performances 
guarantees a formal verification of the self-supervised pre-training 
paradigms evaluated hereafter. In particular, pre-training neural networks 
with the EgoMotion meta-algorithm shows classification improvements 
over the AutoEncoder technique, which in turn is better performing than 
a Glorot weight initialization.   
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defects generating waviness. Uneven heating or cooling process is the main cause of the latter type of 
defects due to internal stresses that can locally overcome the yield stress of the material leading to plastic 
deformation of the strip [1] [2]. Defects due to different elongation of the fibre are particularly relevant, 
as they are directly connected to rolling process parameters such as the inflection of the working rolls 
(bending) or the relative sliding of the work rolls along the transverse axis (shifting). 

Flatness defects are typically divided into two sub-classes, depending on whether the edge of the strip 
is affected or not. When the edge is affected, the defect is typically referred to as a “wave defect,” while 
a buckle typically refers to a defect that does not affect the strip edge. In addition, the position along the 
transverse direction of the strip allows categorizing buckles in center- or quarter-buckles. In the former 
case, the defect occurs near the longitudinal centerline of the strip, while in the latter case, it occurs in 
the transverse regions that engage the upper/lower strip at a distance of about one-quarter of the width 
from the strip edge.  

The strip planarity is usually measured by considering the strip as formed by a series of adjacent 
longitudinal fibres: if all the fibres have the same length, the strip is perfectly flat. The presence of 
flatness defects derives from the fact that the fibres do not stretch independently, and when they have 
different lengths, flatness defects appear as waves on the strip. The main parameter used for the 
numerical evaluation of strip flatness is the so-called I-Unit index, which is computed for each fibre as 
follows: 

𝐼 − 𝑈𝑛𝑖𝑡 (𝑖) = (
𝐿𝑖 – 𝐿𝑟𝑒𝑓

𝐿𝑟𝑒𝑓
) ∙ 105  

where 𝐿𝑖 is the length of fibre 𝑖, and 𝐿𝑟𝑒𝑓 is the length of a reference fibre. Typically, the reference fibre 

is the shortest one, and the I-Unit assumes only non-negative values. 

The transversal flatness profiles of each strip are usually concatenated and represented as a bi-
dimensional map of the strip flatness, which is read directly from a measuring system installed at the 
end of the finishing mill. The procedure to detect and isolate each defect on the strip surface, which is 
detailed in [3], provides defect sub-images from the full strip image. HRM surface defects classification 
was tackled in recent years by exploiting Support Vector Machines (SVM) [4], supervised Neural 
Network with Back Propagation [5], unsupervised classifiers via Self-Organizing Maps (SOM) [6], or 
Learning Vector Quantiser (LVQ)[7].  

In general, industrial surface defects detection and classification systems currently applied in the steel 
sector exploit Artificial Intelligence-based approaches at different levels: in the preliminary pre-
processing stage, for instance for removal of unreliable data [8] and feature selection [9][10] as well as 
in the actual classification stage [11]–[13]. Moreover, machine learning approaches are applied to 
correlate the different kinds of defects with their potential causes [14][15]. However, in this context, 
the potential of high capacity networks has not yet been fully exploited. Very recently, in [3], the use of 
Convolutional Neural Network (CNN) is also introduced to cope with the classification problem of 
surface defects.  

In this paper, the classification problem is extended and tackled from a different point of view. In 
particular, we explore the idea of using unsupervised pre-training of CNNs, which does not require 
manual labeling of a dataset. Later fine-tuning on a labelled dataset via transfer learning lets us compare 
the effectiveness of the considered methods to increase classification accuracy over the use of mere 
supervised learning 

2. Method 

2.1. Self-Supervised Learning Techniques 

High capacity networks are solving many different machine learning tasks, ranging from large-scale 
image classification [16], segmentation [17], and image generation [18] to natural speech understanding 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 15 
 Vol. 6, No. 1, March 2020, pp. 13-22 

 

 Galli et al. (Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry) 

[19] and realistic text-to-speech [20]. A few general trends are easily identified in academia and industry: 
deeper networks show increasingly better results [21] as long as they are fed with ever-larger amounts 
of data, and labelled data in particular. Computational and economic costs increase linearly with the size 
of the dataset. For this reason, in the latest years, some unsupervised approaches were aimed at the 
exploitation of unlabelled data. The intuition behind many of these techniques was emulating the human 
brain's ability to self-determine the task goal and to improve it. 

Advancements in algorithms able to exploit labels inherently contained within an unlabelled dataset 
gave rise to what is now referenced as self-supervised learning. LeNet-5 [22] popularized convolutional 
operators by embedding apriori knowledge of the data into networks by preserving the spatial correlation 
of the pixel of an image as the signal proceeds through the layers of the network itself. Similarly, self-
supervision embeds apriori knowledge about a dataset into a network, but not by introducing a different 
operator. Instead, the output of the network is typically constrained to be coherent with a known 
transformation of the inputs. Since the input and the transformations are known, we can picture this 
situation as deriving labels from the input data and forcing the network to converge to those labels. 
Assuming weights learned through self-supervised learning generalize to a similar task, one can use 
transfer learning [23][24] to fine-tune the network on a labelled dataset. A few examples of self-
supervised techniques include: 

a) Physics and Domain Knowledge [25]: The authors show how a CNN fed with images of a video 
stream of a falling ball learns to predict the height of a falling object, just by forcing the output to be 
coherent with the coordinates of a parabola, which is the physically feasible trajectory of a falling 
body.  

b) Unsupervised Jigsaw Puzzles [26]: quoting the authors “By following the principle of self-supervision, 
the authors build a CNN that can be trained to solve jigsaw puzzles as a pretext task, which requires 
no manual labeling. The CNN is later repurposed to solve classification and detection via transfer 
learning”.  

c) Colorization [27]: the auxiliary task is to predict two color channels of an image. It has given the 
luminosity of each pixel. Also, the representations of the internal feature are learned by colorizing 
unlabelled images, which can be fine-tuned for classification and detection. 

The above methods could not be exploited because: a) our system does not provide a video stream; 
b) classified objects do not have strong structural properties that identify each shape and c) images are 
greyscale, not having color channels other than luminosity. Conversely, the method proposed by Agrawal 
et al. [28] investigates if the awareness of EgoMotion could be used as a supervisory signal for feature 
learning. In other words, images of a moving item show different instances of the same object, i.e., a 
fixed label for different samples. Edges, texture, and colors needed to recognize the object are visual 
features that persist independently of the location of the object itself. 

One way to emulate the situation of learning via EgoMotion is to: 

1) Present a (bottom) CNN with the image of an unlabelled object and let it output a w·h·f tensor where 
f is the number of filters of the last layer, and w, h are the width and height of the feature maps. 

2) Feed the same network a randomly transformed version of the same image, by translating/rotating 
it and let it output a new tensor w·h·f. 

3) Concatenate the two outputs to form a w·h·2f tensor and feed it to a (top) CNN tasked with predicting 
the random transformation, which is known, and constitutes the label. 

The schematics of the network is shown in Fig. 1. 
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(a) (b) 

Fig. 1.  The EgoMotion (a) and AutoEncoder learning architectures (b) 

The self-supervised learning problem is framed as a supervised learning problem and, by 
backpropagating and iterating over the unlabelled dataset, the solution is a network that exploits visual 
features to predict the random transformations applied to the image. It is a reasonable assumption that 
these features can instead be repurposed to classify an image, via transfer learning, which is the goal of 
our approach.  

Another example of a self-supervised technique for learning considered in this work is that of 
autoencoders, which consist of a neural network that tries to learn the identity function ℎ𝑊,𝑏(𝑥) ≈ 𝑥 

[29]. Without placing some form of information bottleneck inside the function ℎ, the task of learning 
the identity function would be trivial. Instead, the amount of information that passes through the 
network is reduced by having layers with smaller representation capacity, in a way that allows projecting 
input data in a latent space characteristic of the training data. As the autoencoder is forced to prioritize 
which aspects of the input should be transferred, it often learns useful properties of the data. 
Autoencoders are typically composed of two parts: An encoder, that takes the input and generates the 
latent encoding, and a decoder, that takes the latent encoding and generates the reconstruction of the 
input. Depending on the task at hand, a different type of autoencoders can be used, for instance: 

a) Under complete autoencoders [30]: the latent space representation in the bottleneck layer is achieved, 
constraining the dimension of the output of the encoder to be smaller than the dimension of the 
input by placing less hidden units than input units. 

b) Regularized autoencoders [31]:  a loss function with regularization used to encourage the model to 
have representation sparsity (Sparse Autoencoders [32]) and robustness noise/missing inputs 
(Denoising Autoencoders [33]), rather than limiting the model to reduce the hidden units number. 

Since we are dealing with images and we need to reduce the image representation to a tensor coherent 
with the one produced by the networks pre-trained with EgoMotion, under-complete Convolutional 
AutoEncoders represent a reasonable solution. These models present a series of convolutional and max-
pooling layers to reduce the input to a certain encoding. While resorting is used to transpose 
convolutional and up-sampling layers for decoding. 

2.2. Architectures 

Throughout the experiments, we used a repeating pattern to develop network architectures of 
different representational capacity. Independently of the self-supervision method applied for pre-
training, every network shares the same type of layers. Specifically, we built two modules:  

1) Inception module: based on Szegedy et al. [34], we derived an inception layer where the input 
branches out to four convolutional modules with different kernel sizes, such as the one reported in 
Fig. 2(a). 
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2) Residual module: similarly, based on He et al. [35], we defined a residual layer where the input 
undergoes heavier convolutional processing on one path while being left almost untouched on 
another path. Both signals are summed to produce the module’s output, as shown in Fig. 2(b). 

 

  
(a) (b) 

Fig. 2. – Inception (a) and Residual (b) modules 

Both modules provide the possibility to apply batch normalization, as well as different convolutional 
strides. We define a number of base networks composed of the above modules, and the corresponding 
naming convention is, e.g., EMInc4BN for a network of four Inception modules with Batch 
Normalization and pre-trained with EgoMotion, and AERes8 for a network of 8 Residual modules 
without Batch normalization and pre-trained with AutoEncoders. Table 1 shows the structure of 4 
models with increasing complexity. Each structure is composed of either Inception or Residual modules, 
for a total of 8 networks. They have been trained with and without batch normalization, totaling to 16 
models. 

Table 1.  The network structure for different depths: C64s4 means Inception or Residual module with 64 filters 

and 4x4 strides. MP4 means the Max Pooling layer with 4x4 windows and strides. The output of each 

model is a 7x7x64 tensor of 64 7x7 feature maps 

Depth Base Structure 
8 C64→C64→MP2→C128→C128→MP2→C128→C128→MP2→C64→C64→MP2 

4 C64→MP2→C128→MP2→C128→MP2→C64→MP2 

2 C128s2→MP2→C64s2 

1 C64s4→MP4 

3. Results and Discussion 

3.1. Experiments 

Every single model undergoes three different training techniques, such as pre-training with 
EgoMotion and transfers learning on the classification dataset, pre-training with AutoEncoder, and 
transfer learning on the classification dataset, and training from scratch on the classification dataset. 

During transfer learning, every layer is left trainable, and weights learned during pre-training were 
not frozen when turning to classification. In the context of pre-training with EgoMotion, each one of 
the base networks described in Section 2.1 constitutes the bottom CNN, while the top CNN consists of 
a dense layer of 300 ELU units [36], followed by a 0.3 rate dropout and the output layer. This learning 
technique requires three outputs: one for predicting rotations and two for vertical and horizontal 
translations. As in Agrawal et al. [28], the problem is framed as a classification task, so every output is 
an array of softmax units predicting the bin corresponding to the right transformation. 

In the context of pre-training with AutoEncoders, each one of the base networks described in Section 
2.2 constitutes the encoding part, which outputs a 7x7x64 tensor. The decoder architecture is common 
to each model and is composed of 5 transposed convolutional layers preceded by up-sampling layers. The 
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last convolution has sigmoid activation functions, which are a good fit for regressing pixel luminosity 
values scaled to the 0-1 range. 

Every network is trained using Adam [37] optimizer for 100 epochs with early stopping and L2 
regularization to prevent overfitting.  Once pre-training is completed, every network is repurposed for 
classification by removing either the top CNN or the decoder for EgoMotion and AutoEncoders, 
respectively, and by plugging a 0.3 rate dropout layer, a 20 ELU unit dense layer, and a final four softmax 
unit layer. Adam optimizer was run for 100 epochs every 64-sample batch, and training was terminated 
with early stopping. Heavy artificial data augmentation was part of the process, applying random affine 
transformations to the input images, such as horizontal and vertical flip, width and height shift, and 
zooming. Similarly, the training process for classification was also carried out without pre-training of 
the networks and using Glorot initialization [38]. In order to have better confidence in the performance 
scores, training on the classification dataset was run three times, and the results averaged. 

3.2. Dataset 

In this work, we exploit the data used in Vannocci et al. [3] for what concerns the labelled dataset, 
where a thorough explanation of how the built dataset is presented. Using the same data, we can compare 
pre-training techniques against a common baseline to establish the effectiveness of self-supervision. Here 
we propose a summary of the main features of the exploited dataset. 

Defect images are extracted from the overall image of the strip and manually classified in 4 different 
categories - Wave, Buckle, Multiwave, and Multibuckle (see Fig. 3) by expert personnel. Every strip 
image is affected by a varying number of defects, so dataset splits refer to defect images, not the strip 
images. Of these, ~80% is devoted to the training and validation sets, while the remaining ~20% are test 
images. This results in a dataset composed of 4806 images: 3938 images were used for training and 
validation in a 70-30% split, 868 images were used for testing. The class distribution is shown in Table 
2. For what concerns the data used for self-supervised training, we ran the bounding box algorithm in 
Vannocci et al. [3] on new strips to recover 32437 new unlabelled defect images. 

 

Fig. 3.  Flatness defect samples 

Table 2.  Distribution of flatness defect classes in the labeled dataset [3] 

Class TR&VD TS 

Wave 1209 225 

Buckle 1201 261 

Multiwave 840 179 

Multibuckle 688 203 

Total 3938 868 

3.3. Results 

The results of all experiments are summarized in Table 3 and Table 4. Fig. 4 showed each model's 
performance, comparing the accuracy of the same model with different pre-training policies. In the vast 
majority of models, we see an increase in validation accuracy whenever pre-training occurs. Pre-training 
with EgoMotion almost always guarantees a better classification accuracy over training from scratch, 
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where initial weights are initialized with Glorot [38]. Specifically, the overall average accuracy increase is 
equal to 1.03%, which for a validation accuracy of 90%, would mean a relative decrease in the error rate 
of about 10%. Similarly, pre-training with AutoEncoders shows a performance increase when the model 
is simpler - typically when the model is 1 or 2 modules deep. The overall average accuracy increase is 
still positive and equal to 0.41%. 

Table 3.  Validation accuracies on the classification dataset for NN with Inception modules. With and without 
Batch Normalization, and with weight initialization via EgoMotion, AutoEncoder, or Glorot. The total 

parameter number is also included. 

 
BN-Depth No BN-depth 

1 2 4 8 1 2 4 8 

EgoMotion 

1 0.8864 0.8892 0.9195 0.9141 0.8631 0.8909 0.9195 0.9123 

2 0.8614 0.8837 0.9052 0.9204 0.8515 0.8962 0.9168 0.9097 

3 0.8685 0.8703 0.9141 0.9213 0.8426 0.8909 0.924 0.9079 

Glorot 

1 0.88524 0.8614 0.9079 0.9114 0.7916 0.8837 0.9079 0.9044 

2 0.8301 0.8007 0.9258 0.9195 0.8229 0.8819 0.915 0.9186 

3 0.839 0.856 0.9177 0.9168 0.7934 0.8694 0.9177 0.9123 

AutoEncoder 

1 0.8519 0.8976 0.912 0.9162 0.8528 0.8756 0.909 0.9078 

2 0.8596 0.8935 0.9069 0.9146 0.846 0.8858 0.9019 0.9086 

3 0.8689 0.8976 0.9061 0.9154 0.8376 0.8909 0.9044 0.9078 

#Parameters 63,720 138,660 360,00 730,782 63,404 137,000 358,000 727,000 

Table 4.  Validation accuracies on the classification dataset for NN with Residual modules. With and 

without Batch Normalization, and with weight initialization via EgoMotion, AutoEncoder, or Glorot. 

The total parameter number is also included. 

 
BN-Depth No BN-depth 

1 2 4 8 1 2 4 8 

EgoMotion 

1 0.8989 0.9249 0.9106 0.907 0.8891 0.9061 0.9195 0.9141 

2 0.881 0.9114 0.9222 0.9177 0.8775 0.9302 0.9106 0.9186 

3 0.8989 0.9106 0.9258 0.9213 0.9034 0.9159 0.9132 0.9132 

Glorot 

1 0.8971 0.9114 0.9034 0.9007 0.873 0.9061 0.9079 0.9168 

2 0.8846 0.9097 0.9141 0.9088 0.8739 0.9052 0.9123 0.915 

3 0.8846 0.9088 0.9123 0.9052 0.8739 0.9159 0.9195 0.9114 

AutoEncoder 

1 0.8968 0.912 0.9154 0.9129 0.8646 0.9078 0.9108 0.9069 

2 0.8934 0.9044 0.9112 0.9078 0.8942 0.9052 0.9069 0.8968 

3 0.89 0.8968 0.9188 0.9078 0.8799 0.9095 0.9019 0.9069 

#Parameters 101,544 333,992 350,568 1,494,760 100,520 330,920 744,484 1,482,472 
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Fig. 4. Average validation accuracies over three runs for each model and pre-training policy. 

4. Conclusion 

The problem of classification of surface defects in the steel industry has been examined and advanced 
in this study by exploiting unlabelled data. By doing so, the improvements in classification accuracy come 
without a corresponding increase in costs due to expert personnel devoted to assembling a bigger labelled 
dataset. In particular, we have shown that using self-supervised learning algorithms for pre-training 
different Convolutional Neural Network architectures leads to increased accuracy once the models are 
fine-tuned via transfer learning on the classification task. Concerning similar results on Vannocci et al. 
[3] on the same classification dataset, we underline four major achievements. The first, validation 
accuracy is generally improved, with the best performing network EMRes2 outperforming the results of 
previous research, 92.7% to 93.0%. Second, All the models evaluated in this context have drastically 
reduced the number of parameters needed to achieve a comparable - if not better - performance. EMRes2 
has more than 160-times fewer parameters than Inception 311 in Vannocci et al. [3]. Third, the accuracy 
of EMRes2 (90.6%) showed overfitting signs, but it still increased with respect to Inception311 (89.2%). 
At last, we can conclude the increase in accuracy comes without the need of additional labelled images, 
by adopting self-supervised algorithms for pre-training. 
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