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Motivation: The inference, or ‘reverse-engineering’, of gene regulatory networks from expression data
and the description of the complex dependency structures among genes are open issues in modern
molecular biology.
Results: In this paper we compared three regularized methods of covariance selection for the inference of
gene regulatory networks, developed to circumvent the problems raising when the number of observa-
tions n is smaller than the number of genes p. The examined approaches provided three alternative esti-
mates of the inverse covariance matrix: (a) the ‘PINV’ method is based on the Moore–Penrose
pseudoinverse, (b) the ‘RCM’ method performs correlation between regression residuals and (c) ‘‘2C’
method maximizes a properly regularized log-likelihood function. Our extensive simulation studies
showed that ‘2C outperformed the other two methods having the most predictive partial correlation esti-
mates and the highest values of sensitivity to infer conditional dependencies between genes even when a
few number of observations was available. The application of this method for inferring gene networks of
the isoprenoid biosynthesis pathways in Arabidopsis thaliana allowed to enlighten a negative partial cor-
relation coefficient between the two hubs in the two isoprenoid pathways and, more importantly, pro-
vided an evidence of cross-talk between genes in the plastidial and the cytosolic pathways. When
applied to gene expression data relative to a signature of HRAS oncogene in human cell cultures, the
method revealed 9 genes (p-value < 0.0005) directly interacting with HRAS, sharing the same Ras-respon-
sive binding site for the transcription factor RREB1. This result suggests that the transcriptional activation
of these genes is mediated by a common transcription factor downstream of Ras signaling.
Availability: Software implementing the methods in the form of Matlab scripts are available at: http://
users.ba.cnr.it/issia/iesina18/CovSelModelsCodes.zip.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license. 
1. Introduction comprehensive information of the mechanisms that govern the
A challenging goal of systems biology is to provide quantitative
models for the study of complex interaction patterns among genes
and their products that are the result of many biological processes
in the cell, such as biochemical interactions and regulatory activi-
ties [23]. Among these models, gene regulatory networks (GRNs)
are essential representations for the comprehension of the devel-
opment, functioning and pathology of biological organisms. In-
deed, it is widely believed that the GRNs embody the
expression of the genes in the cell [28]. In particular, the GRNs in-
ferred by genome-wide expression data depend on environmental
factors, tissue type, disease-state and experimental conditions.
This condition-specificity of GRNs play a major role for the study
of biological processes in distinct phenotypical conditions. Indeed,
under different conditions, networks exhibit different interaction
patterns that can enlighten the understanding of cell development
and the identification of key drivers such as disease-related genes
or altered biological processes [28,51,31].

One of the simplest and most popular approaches in bioinfor-
matics is to compute the sample Pearson correlation between
every pair of genes [7]. The resulting relevance network considers
two genes ‘not-linked’ in the case of marginal independence. This
method, although useful for unveiling co-expression of genes
implicated in the same biological process, has important shortcom-
ings for the investigation of GRNs. For assessing co-expression
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between two genes, the Pearson correlation does not take into ac-
count the activities of the remaining genes in the cell. Moreover,
this method does not distinguish between direct and indirect inter-
actions, and is not able to highlight regulations by a common gene.

These drawbacks may be overcome exploiting partial correla-
tion, a more sophisticated statistical model which is able to infer
relations of conditional dependences among random variables
[10,47]. In this framework, Gaussian Graphical Models (GGMs)
have been exploited to study and describe dependency structures
between random variables [14,26]. In our context, partial correla-
tion assesses association between two genes by removing the ef-
fects of a set of controlling genes. Moreover, in a GGM an edge
uniquely indicates a direct interaction between a gene A and a gene
B, that can be interpreted biologically as one of the following
mechanisms [32]:

� A and B are regulated by the same transcription factor (TF)
which is not included in the network;
� A encodes a TF which directly regulates B;
� A encondes a TF which directly regulates an intermediate gene C

which encodes a TF that in turn regulates gene B, and C is not
included in the network;
� A encodes a protein which interacts with the TF encoded by an

intermediate gene, and modifies its action on the transcription
of gene B.

In recent years, several reverse-engineering approaches have
been proposed for inferring regulatory networks from gene
expression data. The nature of the data makes this problem
clearly ill-posed. Indeed, the genomic data are typically charac-
terized by a huge number p of genes and by a small number n
of samples. The simplest solution proposed to overcome this
problem was to reduce the numbers of genes in order to reach
the n > p regime [45]. Other solutions have been proposed to cir-
cumvent the problem of computing full partial correlation coeffi-
cients by using only zero and first order coefficients [48,8,19].
However, these approaches do not take into account all multi-
gene effects on each pair of variables. More sophisticated
approaches determine regularized estimates of the covariance
matrix and its inverse [50,17,49]. A fundamental assumption usu-
ally adopted by these methods in n < p regime is the sparsity of
biological networks: only a few edges are supposed to be present
in the gene regulatory networks, so that reliable estimates of the
graphical model can be inferred also in small sample case [8]. A
regularized GGM method based on a Stein-type shrinkage has
been applied to genomic data [13] and the network selection
has been based on false discovery rate multiple testing. The same
procedure to select the network has been adopted, with a
Moore–Penrose pseudoinverse method to obtain the precision
matrix [39]. Finally, the authors in [34] suggested an attractive
and simple approach based on lasso-type regression to select
the non-vanishing partial correlations, paving the way to a num-
ber of analysis and novel algorithms based on lasso ‘1 regulariza-
tions [50,17,49,18].

To date, a comparative analysis of these methods is missing. In
this work, we focus on recently proposed methods developed in
the general framework of regularization and statistical learning
theories which provide the state-of-art approaches for the study
of ill-posed problems as the ones in which the signal is over-
whelmed by the noise and the number of variables is much larger
than the number of observations [46]. In particular, we focus on
regularized methods for the estimation of the precision matrix in
an undirected GGM. We present a comparative study of three
methods in terms of AUC (area under the Receiving Operative
Characteristic curve), mean square error (MSE), positive predictive
values (PPV) and sensitivity (SE). The first method is based on
Moore–Penrose pseudoinverse (PINV); the second one provides
an estimate of the partial correlation coefficients based on Regular-
ized Least Square regression (RCM); the third method determines
an estimate of the precision matrix by maximizing a log-likelihood
function properly regularized by an ‘2 penalty term (‘2C). The con-
ditional dependence between each pair of variables was assessed
by using the Efron’s bootstrap method [22]. Due to the lack of a
perfectly known ground truth related to real biological networks
[4], we measured the performance of the three methods by gener-
ating simulated data based on golden standard interaction pat-
terns, built according to biological inspired different topologies
[18,40]. We found that the ‘2C method exhibited the most predic-
tive partial correlation estimates. More importantly, this method
had the highest values of sensitivity showing its ability to infer true
conditional dependencies between genes also when a few number
of observations is available.

We assessed the ability of the ‘2C method to infer GRNs in two
real biological contexts: the isoprenoid biosynthesis pathways in
Arabidopsis thaliana and the HRAS oncogenic signature in human
cell cultures. In the first case, the method enlightened known rele-
vant pathway properties. In particular, it revealed a negative par-
tial correlation coefficient between the two hubs in the two
isoprenoid pathways. This suggests a different response of the
pathways to the several tested experimental conditions and, to-
gether with the high connectivity of the two hubs, provides an evi-
dence of cross-talk between genes in the plastidial and the
cytosolic pathways. In the second case, ‘2C method highlighted
34 genes directly interacting with HRAS. In particular, 9 of these
genes (p-value < 0.0005) shared the same Ras responsive transcrip-
tion factor binding site, suggesting that their transcriptional activa-
tion is mediated by a common transcription factor downstream of
Ras signaling.

2. Methods

Let X ¼ ðX1; . . . ;XpÞ 2 Rp be a random vector distributed accord-
ing a multivariate normal distribution N ðl;RÞ. The interaction
structure among these variables can be described by means of a
graph G = (V,E), where V is the vertex set and E is the edge set. If
vertices of V identify the random variables X1, . . . , Xp, then the
edges of E represent the conditional dependence between the ver-
tices. In other words, the absence of an edge between the ith and
jth vertex means a conditional independence between the associ-
ated variables Xi and Xj. The structure of a graph is properly de-
scribed by a p � p matrix, called adjacency matrix A, with
elements aij = 1 if the variables Xi and Xj (vertices) are connected
by an edge and 0 otherwise.

In this study, we shall consider only undirected Gaussian graphs
G with pairwise Markov property, such that for all (i, j) R E one has

Xi �XjjXVnfi;jg i; j ¼ 1; . . . ;p; ð1Þ

i.e. Xi and Xj are conditionally independent being fixed all other
variables XVn{i,j}. Since X follows a p � variate normal distribution,
the condition (1) turns out to be qij�Vn{i,j} = 0, where qij�Vn{i,j} is the
partial correlation coefficient between the ith and jth variable, being
fixed all other variables. It has been shown [26] that partial correla-
tion matrix elements are related to the precision matrix (or inverse
covariance matrix) H = R�1, as:

qij�Vnfi;jg ¼ �
hijffiffiffiffiffiffiffiffiffi
hiihjj

p i – j; ð2Þ

where hij are elements of H. In general, when the number of obser-
vations n is greater than the number of variables p, it is straightfor-
ward to evaluate hij in Eq. (2) by inverting the sample covariance
matrix. Moreover, in this case, a simple parametric test exists for
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assessing the conditional independence between two variables [3].
Unfortunately, a typical genomic dataset is characterized by n < p,
so that the sample covariance matrix becomes not invertible [11].
In the successive sections we analyze three regularized methods
for estimating partial correlation matrixes and a simple non-para-
metric test based on Efron’s bootstrap method to use when n < p
for assessing conditional independence [22].

2.1. Partial correlation matrix estimation

For describing the three methods that we have analyzed, let us
consider the n � p data matrix

X ¼ ðX1;X2; . . . ;XpÞ

where each column fXigi¼1;...;p 2 Rn is a n � dimensional vector, with
n < p. Let S be the sample estimate of the covariance matrix R and Ĥ
be the estimate of inverse covariance matrix R�1.

2.1.1. Pseudoinverse method ðPINVÞ
The estimated precision matrix Ĥ can be obtained as pseudoin-

verse of S, by using the Singular Value Decomposition (SVD). In-
deed, since S is a real and symmetric matrix, then its singular
value decomposition reduces to S = UKU> where U is a p � p uni-
tary matrix whose columns are the eigenvectors of S and U> is
the transpose of U;K is p � p diagonal matrix whose entries are
the non-negative eigenvalues of S. Then, the pseudoinverse of S
is S+ = UK+U>, where K+ is obtained by replacing each positive
diagonal element of K with its reciprocal.

To improve the estimate of the partial correlation coefficients,
we evaluated a bootstrap version of Ĥ [39]. In particular, we gen-
erated B bootstrap replications Xb of the sample with b = 1, . . . , B
obtained by random sampling with replacement the raws of X.
For each replication, we evaluated the bootstrap replication Sb of
S and used these estimates for obtaining the bootstrap mean
SB ¼ 1

B

PB
b¼1Sb. Then the bootstrap estimate of Ĥ was obtained as

ĤB ¼ SþB .
Finally, we estimated the partial correlation matrix as

q̂ ¼ � ĤBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagĤBdiagĤ>B

q : ð3Þ
2.1.2. Covariance-regularized method (‘2C)
Let us consider the loss function [3]

LlðS;HÞ ¼ TrðSHÞ � log detðSHÞ � p ð4Þ

that vanishes when SH = I and is positive when SH – I. Since we
are dealing with the case of p > n, an estimate of H could be ob-
tained minimizing with respect to H the ‘2-penalized loss
function:

LpðS;H; kÞ ¼ LlðS;HÞ þ Jðk;HÞ; ð5Þ

where

Jðk;HÞ ¼ kkHk2
F ð6Þ

with k > 0 and kHk2
F ¼ trðH>HÞ is the Frobenius norm of H.

Note that, the minimization of Lp(S, H, k) with respect to H is
equivalent to the maximization of the penalized log-likelihood
[49]:

log detðHÞ � TrðSHÞ � kkHk2
F : ð7Þ

Differentiating with respect to H means to solve the following
equation

Ĥ�1 � 2kĤ ¼ S: ð8Þ
Consequently, the problem turns out to be an eigenvalue prob-
lem. Indeed, if hi are eigenvalues of Ĥ with eigenvectors ui,

Ĥui ¼ hiui ð9Þ

then si are the eigenvalues of S with the same eigenvectors, and the
relation between hi and si is h�1

i � 2khi ¼ si. Therefore the eigen-
values hi of Ĥ can be evaluated as function of the eigenvalues si of S:

h�i ¼ �
si

4k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i þ 8k
q

4k
: ð10Þ

Since precision matrix must be positive definite, the correct va-
lue of hi is hþi . Then, for the spectral theorem, Ĥ is given by

Ĥ ¼
X‘
i¼1

hþi uiu>i : ð11Þ

The regularization parameter k was selected by using the cross
validation procedure. In particular, for each value of k in a suitable
range, we carried out 20 random splits of the dataset in training Xt

and validation Xv sets and evaluated the corresponding sample
covariance matrices St and Sv. Consequently, we estimated Hk

t by
minimizing the penalized loss function in Eq. (5) and evaluated
the loss function in Eq. (4), averaged over the 20 splits,
hLlðSv ;H

k
t Þi. The selected k value was

k� ¼ arg minkhLlðSv ;H
k
t Þi: ð12Þ

This procedure selected the lambda minimizing the distance be-
tween the empirical inverse precision matrix computed on the
training set Xt and the sample covariance matrix computed on the
validation set Xv.

2.1.3. Residual correlation method ðRCMÞ
Let us consider a linear regression model for the variables Xi and

Xj given all the p � 2 remaining variables:

Xi ¼ Xninjbi Xj ¼ Xninjbj ð13Þ

where bi 2 Rp�2 is the regression coefficient vector referred to the
ith gene; Xi is the ith column of the matrix X and Xninj is X without
the ith and jth column. Note that the bias term is implicitly present
in our model. This is done by including a component constant and
equal to one to the input vectors. The Regularized Least Square
(RLS) [20,2] method evaluates the regression models (13) by solving

minbi2Rp�2
1
n
kXi � Xninjbik

2
2 þ lkbik

2
2: ð14Þ

where l > 0 is the regularization parameter. If X̂i and X̂j are the RLS
estimates of Xi and Xj, one can evaluate the residual vectors
ri ¼ X̂i � Xi and rj ¼ X̂j � Xj. This allows to evaluate the partial cor-
relation coefficient q̂ijjp�2 between the ith and jth variable being
fixed all other (p � 2) variables as the Pearson correlation rrirj

be-
tween the residuals, i.e.

q̂ijjðp�2Þ ¼ rrirj
¼ covðri; rjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðriÞvarðrjÞ
p : ð15Þ

Finally, the l parameter was chosen by minimizing the Leave-
One-Out cross validation errors [30].

2.2. Non-parametric test for conditional independence

The conditional independence structure among variables and
then the estimated graph Â was inferred calculating a 95% confi-
dence interval for each entry qij, by using Efron’s bootstrap method
[22]. The graph selection procedure is as follows:
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(I) Build B = 100 bootstrap replications by drawing randomly
with replacement n rows from X.

(II) Evaluate q̂b for each b = 1, . . . , B.
(III) Rank the bootstrap replications q̂ð1Þij 6 q̂ð2Þij 6 . . . 6 q̂ðBÞij .
(IV) Compute the 95% confidence interval ðqL

ij;qU
ij Þ where

qL
ij ¼ q̂ðkÞij ;q

U
ij ¼ q̂ðBþ1�kÞ

ij ; k ¼ B a
2 and a = 0.05.

(V) âij = 1 if 0 R ðqL
ij;qU

ij Þ; âij ¼ 0 otherwise.

2.3. Simulation study

We conducted an extensive simulation study for analyzing the
performances of the three methods in terms of their ability to infer
conditional dependency structures among variables in the case of
n	 p. In a nutshell, the simulation study was composed of three
main steps: (a) building a graph with a well defined and biologi-
cally inspired structure and the corresponding precision matrix;
(b) generating observations of the p random variables according
to the dependency structure defined by the graph; and (c) compar-
ing the inferred graph with the one used for generating the data in
terms of estimated partial correlations and predicted edges.

2.3.1. Graph building
We built gold standard graphs GGoS by defining adjacency

matrices AGoS according to three different kinds of patterns
[18,36]:

Random: AGoS is randomly generated by inserting approxi-
mately p nonzero entries;

Hubs: the rows/columns of AGoS are partitioned into K disjoint
groups of q variables. Each group consists of five hubs
with high degree, and the other q � 5 nodes with lower
degrees. This setting is designed to simulate scale-free-
like gene regulatory networks, which tipically contain a
few hub genes plus many other nodes with only a few
connections.

Clique: the rows/columns of AGoS are partitioned into K disjoint
groups of q variables fully connected, i. e. each group is a
clique.

The density d of AGoS is defined as:

d ¼ E
pðp� 1Þ=2

ð16Þ

where E is the number of edges of the graph and p(p � 1)/2 is the
size of a complete graph with p nodes.

2.3.2. Data set generation
Given a gold standard graph defined by an adjacency matrix

AGoS, there exists a family of precision matrices HGoS, or equiva-
lently of partial correlation matrices qGoS, associated to the graph
constituted by all the real positive definite p � p symmetric matri-
ces having zeros in the same positions as AGoS [8]. In order to sim-
plify the simulation study, we decided to build partial correlation
matrices having constant non-zero entries. In other words, the par-
tial correlation between any pair of conditionally dependent vari-
ables was constant all over the graph. To this end, for a given
adjacency matrix AGoS, the associated concentration matrix HGoS

was built as:

HGoS ¼
1

mþ �AGoS þ Ip ð17Þ

where m ¼maxi
P

jaij; � > 0 and Ip is the p order identity matrix.
Since AGoS is a symmetric matrix having diag (AGoS) = 0 by defini-
tion, then diag (HGoS) = Ip. As a consequence, qGoS = �HGoS (see
Eq. 2). Moreover, the precision matrix defined in Eq. (17) is strictly
diagonally dominant and then is positive definite. Finally, the data
set X was generated by sampling n times a p-variate normal distri-
bution N ð0;RGoSÞ, with zero mean and covariance matrix RGoS,
where RGoS ¼ H�1

GoS.

2.3.3. Performance measures
The performances of the three methods were assessed by using

different criteria. The first one aimed to quantify the accuracy of a
method in estimating the partial correlation values. To this end, we
evaluated the mean square error (MSE) between the estimated q̂
and gold standard qGoS partial correlation matrices:

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
pðp� 1Þ

X
i

X
j>i

ðq̂ij � qGoS
ij Þ

2

s
: ð18Þ

The second criterion aimed to assess a method in terms of pre-
diction accuracy of the entries of AGoS by using the estimated par-
tial correlation values q̂ as predictor variable. In particular, we
wanted to quantify the prediction error of a binary classifier which
predicts the entries of the gold standard adjacency matrix AGoS as
edge (aGoS

ij ¼ 1) or non edge (aGoS
ij ¼ 0) based upon q̂ij. To this end,

we evaluated the Area Under the ROC Curve (AUC) which assesses
the performances of a binary classifier as its discrimination thresh-
old is varied. AUC is equal to the probability that a classifier will
rank randomly a chosen positive instance higher than a randomly
chosen negative one [15]. We chose AUC as measure of perfor-
mance because it is not influenced by the prevalence of a class
and it is independent from the selection rule used to infer the
graph. The AUCs evaluated for the three methods were compared
with the AUC measured for a random algorithm which assigns ran-
domly and with the same probability 0 or 1 independently of the
estimated partial correlation values [4]. The third criterion aimed
to evaluate a method by comparing the estimated graph Â, inferred
by using q̂, with the gold standard graph given by AGoS. Positive
Predicted Values (PPV) and sensitivity (SE) were evaluated for
comparing Â and AGoS. The last criteria consisted in measuring
the computational time required for estimating the q̂ matrix.

3. Results

3.1. Results on simulated data

The performances of the three methods were analyzed keeping
constant the number of variables to p = 400, while varying the
number of samples n in the range [30] with step 30. For each value
of n, the results were averaged over 20 repetitions. Moreover, for
each value of n and for each generated graph structure (random,
hubs, clique), all the methods were applied on the same simulated
data sets.

3.1.1. MSE analysis
The methods exhibited very different accuracies in the esti-

mate of the true partial correlation values. The comparison was
carried out keeping constant the graph density to d = 0.01 and
evaluating MSE both globally on the whole partial correlation ma-
trix qGoS, and evaluating MSE limitedly to the non null entries of
qGoS corresponding to the true edges of the gold standard graph
(see Fig. 1). We denote these two errors as MSE and edge-MSE.
This choice was due to the fact that the true partial correlation
matrices used in our simulations were generally sparse having
only a few non-null entries. For small values of n, RCM method
exhibited poor accuracy, showing the highest MSE and edge-
MSE errors. The behavior of the two errors was comparable indi-
cating that the method behaves uniformly on the whole graph.
Although insufficient in accuracy, the method had performances
invariant with respect to the graph topology and its accuracy in-
creased with n.



Fig. 1. Comparison of the methods by varying the graph topology and n, with a graph density of d = 0.01. The left panel (pictures (a)–(c)) shows the mean square error (MSE)
evaluated on the whole qGoS matrix; the right panel (pictures (d)–(f)) shows the mean square error evaluated limitedly to the non null entries of qGoS (edge-MSE).
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A better accuracy was reached by PINV and ‘2C methods,
specially for small values of n. The performances of PINV method
were not influenced by the graph topology and the MSE and
edge-MSE errors remained comparable in all the
simulations. Nevertheless, we observed a ‘‘resonance effect’’
associated to this method for n 
 p, confirming a behavior well
known in literature [37,39]. Increasing the number of observa-
tions n up to p the performance of the method got worse. For
values of n larger than p, the error associated to PINV decreased
by increasing n.

Contrarily to RCM and PINV, the accuracy of the ‘2C method was
found different when evaluated on the whole graph or limitedly to
the edges only (see Fig. 1). In particular, we measured MSE 
 0.01
and edge-MSE 
 0.04 for both random and hubs graphs, indepen-
dently to n. A larger difference was found in clique graph topology.
This discrepancy in accuracy is due to the regularization term
introduced in the penalized loss function (see Eq. (7)). Indeed, ‘2C

method selects precision matrices with small Frobenius norm
and as a consequence, underestimates the partial correlation val-
ues. The important aspect of this method is that its accuracy is
poorly influenced by the number of available observations and
by the graph intrinsic topology.
3.1.2. AUC analysis
The analysis of the performances in terms of AUC highlighted

other interesting properties of the methods. While the MSE analy-
sis evaluated the methods by comparing the true and the estimated
partial correlation values, the AUC analysis assessed the methods
by comparing the accuracy in the prediction of the gold standard
graph by using the partial correlation estimates produced by the
methods. The important aspect to underline is that AUC analysis
is independent of the prediction rule and highlights properties of
the variable used as predictor. The Fig. 2 depicts the behaviors of
AUC evaluated for the three methods by varying n, for p = 400
and d = 0.01. All the three methods provided satisfactory results
also for very small values of n because they outperformed signifi-
cantly the performances of a random algorithm (see Supplemental
Information). For example, in the case of random graph topology,
‘2C and RCM exhibited AUC = 0.64 with 95% CI [0.59,0.67] for
n = 30 observations; PINV showed AUC = 0.61 with 95% CI
[0.56,0.65] for n = 60 observations. In general, our simulations
showed that ‘2C and RCM provided partial correlation estimates
with a prediction accuracy higher than PINV. Moreover, for these
two methods, it was sufficient to exploit a number of observations
greater than the 15% of the number of the variables for having an



Fig. 2. Comparison of the methods in terms of AUC for (a) random, (b) hubs, (c) clique graph topologies by varying n, with a density of d = 0.01. The ‘-x-’ line style depicts the
AUC of a random classifier. (d) Comparison of the methods in terms of the computational time required for estimating the q̂ matrix. The timings are in seconds.
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AUC value greater than 0.7. The accuracy of the partial correlation
values estimated by ‘2C and RCM methods improved by increasing
the number of observations. On the contrary, the estimates pro-
duced by PINV method suffered for n 
 p of the same instability
found in MSE analysis.

Another interesting property highlighted by the AUC analysis
was the dependency of the accuracy on graph topology. In fact,
as Fig. 2(a)–(c) show, the best accuracies were obtained for clique
graphs and the worse for hub graphs. The reason of these different
performances, obtained keeping constant the density d in all the
simulations, resides in the degree distribution of the graph. With
the degree term we mean the number of nodes connected to a gi-
ven node, or equivalently, the number of variables conditionally
dependent on a given variable. In fact, in the case of clique topol-
ogy, the graph was composed of K = 80 disjoint cliques, each com-
posed of q = 5 variables. In this case, the number of variables
conditionally dependent on a given variable had a constant value
of q � 1 and this number was also the maximum number of vari-
ables conditionally dependent. In the case of random graphs, the
number of edges connected to a given node had a binomial distri-
bution B(p � 1,d). So, with a density of d = 0.01 and p = 400, we had
a mean degree of pd = 4, with a range of [0,11]. This is equivalent to
saying that 11 was the maximum number of variables condition-
ally dependent on a given variable. Finally, in the case of hub topol-
ogy, the graph was composed of K = 10 disjoint groups each
composed of q = 40 variables, giving a mean degree equal to 4 with
a range of [0,19].

The dependency of the AUC on density and graph topology was
confirmed by two different simulations (Fig. 3). In the first one,
limitedly to the random graph topology, each method was ana-
lyzed by varying the density of the graph. In the second one, keep-
ing the density fixed to d = 0.01, each method was analyzed by
varying the graph topology. As the Fig. 3(a), (c) and (e) show, the
lower the density, the more accurate the estimates for all the
methods. Moreover, as the Fig. 3(b), (d) and (f) show, the accuracy
of the estimates decreased going from clique to hub graphs for all
the methods consistently.
3.1.3. PPV and sensitivity analysis
The estimate of the partial correlation values is only the first

step of any graph inference procedure and the accuracy of the esti-
mates provided by the three methods was assessed in the two pre-
vious sections. With the sensitivity analysis addressed in this
section, we assessed the whole graph inference procedure de-
scribed in the Methods section, which exploited the estimates pro-
vided by the methods for inferring a graph. As performance
measure we used PPV and sensitivity evaluated comparing the
gold standard graph with the one inferred by the procedure. For
each value of n, the values were averaged over 20 repetitions and
evaluated for hub graph topology. Fig. 4 depicts the behaviors of
PPV and sensitivity as a function of n. PINV was the only method
that, for small values of n, had PPV and sensitivity values smaller
than those provided by the random algorithm. RCM and ‘2C, on
the contrary, showed PPV and sensitivity values greater than the
random algorithm, even for a small number of observations. In par-
ticular, ‘2C method exhibited the best performances in terms of
sensitivity, consistently for all the values of n, indicating that this
method was able to infer true conditional dependences between
variables also when a few number of observations is available.
Note that the PPV and sensitivity values shown in Fig. 4 have not
to be considered as absolute indicators of the performances of a
method. On the contrary, they have to be considered as indicative
of the relative performances of a method with respect to another
one, because assessed for a specific experimental condition, equal
for all the methods. More importantly, these values have to be sig-
nificantly different from those obtained by random algorithms.
Moreover, the values of PPV and sensitivity of a method heavily de-
pend on the strength of the partial correlation existing among the
variables. The partial correlation values used in our simulations



Fig. 3. Performances of a method in terms of AUC. Left panel: constant graph topology and variable d. Right panel: constant d and variable graph topology.

Fig. 4. PPV and Sensitivity of the methods as a function of n.
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were close to zero (see Eq. 17), so generating critical experimental
conditions for the methods.

In the light of the simulation results described so far, and con-
sidering the computational time required by the three methods
(see Fig. 2(d)), we choose ‘2C as the method to apply for inferring
biological networks. This choice was motivated by the AUC behav-
ior which outperformed the other two methods in all the consid-
ered graph topologies and, mainly, by the sensitivity of the
method.
3.2. Application to gene expression data

We applied ‘2C method for the inference of gene regulatory net-
works from DNA microarray data in two different contexts. The
first concerned the cross-talk between the two isoprenoid path-
ways of the model system A. thaliana. In this case we applied the
method to a well studied benchmark data set for the inference of
gene networks [48,19] and compared our findings with the ones
reported in literature. The second concerned the investigation of
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the genes interacting with the oncogene HRAS. In this case we ap-
plied the method to a gene expression data set with strong a priori
biological knowledge [6]. In fact these data were used for inferring
a signature of HRAS through its in vitro overexpression.
3.2.1. Isoprenoid pathways in A. thaliana
The isoprenoids are a large class of organic compounds derived

from isoprene. They play various important roles in plants as: qui-
nones in electron transport chains, structural components of mem-
branes, photosynthetic pigments, hormones, defense compounds,
attractants for pollinators and in subcellular targeting and regula-
tion [21]. Isoprenoids are synthesized through condensation of the
five-carbon intermediates isopentenyl diphosphate (IPP) and
dimethylallyl diphosphate (DMAPP) [24]. In higher plants IPP and
DMAPP are synthesized through two different routes that take
place in two distinct cellular compartments. The cytosolic path-
way, also called MVA pathway, starts from acetyl-CoA and moves
through the intermediate mevalonate (MVA), providing the pre-
cursors for sterols, ubiquinone and sesquiterpenes [12]. An alterna-
tive pathway, called non-mevalonate pathway or MEP/DOXP
pathway, is located in the chloroplast. It implicates the condensa-
tion of pyruvate and glyceraldehyde-3-phosphate via 1-deoxy-D-
xylulose 5-phosphate (DOXP) and 2-C-methyl-D-erythritol 4-
phosphate (MEP) and is used for the synthesis of isoprene, carote-
noids, abscisic acid, and the side chains of chlorophylls and plasto-
quinone [29]. Although this subcellular compartmentation allows
both pathways to work independently, there are several evidences
that they can interact in some conditions [25,38,5]. Inhibition of
the cytosolic MVA pathway in A. thaliana leds to an increase of lev-
els of carotenoids and chlorophylls, demonstrating that the de-
creased working of MVA pathway can be in part compensated for
by the MEP pathway. Inversely, inhibition of the MEP pathway in
seedlings causes the reduction of carotenoids and chlorophylls lev-
els, indicating a predominantly unidirectional transport of isopren-
oid intermediates from the chloroplast to the cytosol. In order to
investigate whether the transcriptional regulation is at the basis
of the crosstalk between the cytosolic and the plastidial pathways,
Laule et al. [25] studied this interaction by identifying the genes
Fig. 5. Biological network of the isoprenoid pathways inferred by using ‘2C. Upper part: G
mithochondrial genes; HMGS and HDS represent the candidate hubs of the two module
with expression levels changed as a response to the inhibition.
They have shown that the inhibitor mediated changes in metabo-
lite levels are not reflected in changes in gene expression levels,
suggesting that alterations in the flux through the cytosolic and
plastidial pathways of isoprenoid metabolism are not transcrip-
tionally regulated. In order to clarify the interaction between the
two pathways at the transcriptional level, Wille and Buhlmann
[48] have explored the structural relationship between genes on
the basis of their expression levels under different experimental
conditions. This study aimed to infer the regulatory network of
the genes in the isoprenoid pathways by incorporating the expres-
sion levels of 795 genes from other 56 metabolic pathways. Mov-
ing beyond the one-gene approach, the authors have found
various connections between genes in the two different pathways,
suggesting the existence of a crosstalk at the transcriptional level.

We applied the ‘2C method to the publicly available data set
from [48]. The data consisted of expression measurements for 39
genes in the isoprenoid pathways and 795 in other 56 pathways
assayed on 118 Affymetrix GeneChip microarrays. Among the 39
genes in the isoprenoid pathways, 15 are assigned to the cytosolic
pathway, 19 to the plastidal pathway and 5 encode mitochondrial
proteins involved in isoprenoid synthesis. We were interested in
the construction of a gene network related to the two isoprenoid
pathways considering also the effects of genes in the other path-
ways. To this end, we built 1000 bootstrap replications of the data
set and used 95% confidence interval for inferring the network. The
Fig. 5 depicts the inferred network with 44 edges. For each path-
way we found a module with strongly interconnected and posi-
tively correlated genes. This enlightens the reliability of our
method since genes within the same pathway are potentially
jointly regulated [42]. Furthermore, we identified two strong can-
didate genes for the cross-talk between both pathways: HMGS and
HDS. HMGS represents the hub of the cytosolic module since it is
positively correlated to five genes of the same pathway: DPPS1,
MDPC1, AACT2, HMGR2 and MK. It encodes a protein with hydrox-
ymethylglutaryl-CoA synthase activity that catalyses the second
step of the MVA pathway. HDS represents the hub of the plastidial
module since it is positively correlated to five genes of the same
enes of MVA pathway. Lower part: Genes of MEP/DOXP pathway. Grey boxes refer to
s.
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pathway: DXPS1, MECPS, GGPPS12, IPPI1 and PPDS2. It encodes a
chloroplast-localized hydroxy-2-methyl-2-(E)-butenyl 4-diphos-
phate synthase and catalyses the penultimate step of the biosyn-
thesis of IPP and DMAPP via the MEP/DOXP pathway. The
negative correlation between HMGS and HDS suggests that they
respond differently to the tested experimental conditions. This, to-
gether with the high connectivity of the two hubs, provides an evi-
dence of cross-talk between proteins in the plastidial and the
cytosolic pathways. Other negative correlations between the two
pathways are represented by the edges HMGR2jMECPS,
MPDC2jPPDS2 and MPDC2jDXPS2. Interestingly, the plastidial gene
IPPI1 is found to be positively correlated to the module of con-
nected genes in the MVA pathway (IPPI1jMK, IPP1jIPPI2). This evi-
dence confirms the results of [19] where they guessed that the
enzyme IPPI1 controls the steady-state levels of IPP and DMAPP
in the chloroplast, when a high level of transfer of intermediates
between the two cell compartments takes place. Moreover, our
study showed three candidate mitochondrial genes for the cross-
talk (DPPS2, GGPPS5 and UPPS1) which are in the plastidial mod-
ule. Finally, it is interesting to note that the method used in [48]
and in [19] included more cross-links between the two pathways
with respect to the ‘2C method. Although it is known the existence
of cross-links between the two pathways, we believe that these
interactions should not be so numerous, as genes of the two path-
ways belong to two different cell compartments. A possible expla-
nation of such a difference is that [48,19] constructed a network
based on first-order conditional dependencies that are not able
to capture all multi-gene effects on a given pair of genes.
Fig. 6. Biological network of the 34 genes interacting with HRAS inferred using ‘2C meth
site.
3.2.2. Interacting genes in HRAS signature
Ras genes represent a GTPase superfamily composed by more

than 150 distinct cellular members, among which the most repre-
sentatives are HRAS, NRAS and KRAS. Up to 30% of all screened hu-
man tumors are found to carry some mutations in any of these
genes. Ras signal transduction proceeds through activation of some
signal transduction cascades, such that of Mitogen-Activated Pro-
tein Kinases (MAPKs), and culminates in the modulation of tran-
scription of specific genes involved in many physiological
processes including cell cycle progression, growth, migration, cyto-
skeletal changes, apoptosis, and senescence. The cross-talk among
this plethora of actors creates a molecular network whose balance
is crucial to determine normal cellular responses. Indeed, altera-
tions of Ras signaling could break this balance and induce the onset
of cancer and for this reason the inference and the analysis of Ras
network is of fundamental importance [16].

In this context, we applied the ‘2C method for inferring genes di-
rectly interacting with HRAS. To this end, we used a data set with a
controlled genetic perturbation of HRAS used to generate its onco-
genic signature [6]. Such a signature was identified by infection of
human primary mammary epithelial cell cultures (HMECs) with
adenoviruses expressing activated HRAS. The signature was com-
posed of those 276 genes for which the expression levels were
mostly correlated with the classification of HMEC samples into
HRAS-activated versus wild-type. The resulting data set used in
our experiment was composed of 276 genes assayed in 10 samples
relative to HRAS-activated and 10 samples relative to wild-type
HRAS. Indeed, we considered that the RAS signature retrieved by
od. The gray shaded boxes indicate the genes sharing the RREB1 consensus binding
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Bild includes direct and indirect connections of the H-RAS gene
with the others and, consequently, we applied L2C method in order
to select only the direct interactions. Moreover, the conditional
dependences were evaluated conditioning over only the genes in
the signature because the study of Bild suggests that the interac-
tions between the signature and the other genes on chip can be
neglected.

The selection of the graph was performed by building 1000
bootstrap replications of the data and computing the 99,5% confi-
dence interval of the statistics. The resulting network was com-
posed of 2875 edges (see Additional file 4), where HRAS had 34
direct connections (Fig. 6).

We analyzed the 34 HRAS interacting genes with the TRANSFAC
component of GATHER [9] to assess the significance of the pres-
ence of common potential transcription factor binding sites within
their promoters. A very interesting finding was that the list of these
34 genes was enriched of the RREB1 (Ras responsive element bind-
ing protein 1) module with a p-value < 0.0005. In fact, 9 of them
(see Fig. 6) presented the RREB1 consensus binding site. On the
contrary, the complete Ras signature did not exhibit enrichment
for this module. RREB1 is a zinc finger transcription factor ubiqui-
tously expressed in human tissues that binds to RAS-responsive
elements (RREs) of gene promoters. Thiagalingam et al. [44] have
demonstrated that RREB1 plays a role in Ras and Raf signal trans-
duction in medullary thyroid cancer. In particular, they have
shown that the binding of RREB1 to RRE of the calcitonin gene pro-
moter during Ras- or Raf-induced differentiation increases expres-
sion of calcitonin in TT human medullary thyroid cancer cells. Our
hypothesis is that the 9 genes directly connected to HRAS are in-
volved in the downstream signaling of Ras through RREB1. One
of them, EDG4, has been already found to be correlated to Ras sig-
naling. EDG4 is the receptor for lysophosphatidic acid (LPA), a lipid
growth factor and intracellular signaling molecule. It was demon-
strated that the expression of a mutated form of Ras GTPase
blocked LPA-induced cell migration [35]. This preliminary result
suggests that our method is able to enlighten putative regulatory
interactions that should be biochemically validated.
4. Conclusions

In the last few years many studies have highlighted the impor-
tance of analyzing direct as well as indirect interactions among
genes and proteins for unveiling their roles in the onset and pro-
gression of complex and multifactorial diseases like tumors. This
type of approach is alternative to the classical studies which ad-
dress the problem of analyzing the association between genes
and pathways with the phenotype [1,43]. To this end, many meth-
ods have been recently developed to infer gene regulatory net-
works by using gene expression data [4] in order to reveal
putative dependencies among genes and their products. In this pa-
per, we present a comparative study of three different methods to
infer networks of conditional dependencies by estimating partial
correlation coefficients in the typical situation when the number
of observations n is small respect to the number p of variables.
The methods and the procedures exploited for their comparison
have been developed in the general frameworks of statistical learn-
ing theory and regularization theory [46], which constitute state-
of-the-art approaches for the analysis and interpretation of data
sets composed of a huge number of variables when only a few
number of observations is available.

Methods which exploit partial correlation estimates for infer-
ring gene regulatory networks from expression data offer a number
of advantages with respect to methods based on mutual informa-
tion (see for example [33]. In particular, although these methods
provide a natural generalization of correlation since they take into
account also non-linear dependences between variables, they are
not able to assess conditional dependences between two variables
in the case the number of conditioning variables is huge as in the
context of gene regulatory networks [41].

In our simulation study, we limited our attention to methods
which embody an L2 regularization term in their analytical formu-
lation. Such methods, in general, offer more stable solutions with
respect to Lasso methods which incorporate L1 regularization
terms [27]. The main disadvantage of the adopted techniques for
inferring conditional dependency graphs is that they provide
non-sparse solutions. To circumvent this problem we have adopted
a bootstrap technique which is able to reveal the conditional
dependency between two variables with a given statistical
significance.

The three analyzed methods were compared through an exten-
sive and biologically inspired simulation study. This choice was
adopted because the lack of a validated ground truth relative to
biological networks prevents to compare methods by using real
gene expression data. In particular, the need of simulated data
arises from imperfect knowledge of real networks in cells, from
the lack of suitable gene expression datasets, and of control of
noise levels. In silico data enable one to check the performance
of algorithm against a perfectly known ground truth [4].

Different measures were adopted for assessing the perfor-
mances of the analyzed methods. Although we did not find a meth-
od which consistently outperformed the others in all the carried
out simulations, we found that the ‘2C method provided the most
predictive partial correlation estimates, as highlighted by the
AUC analysis. More importantly, this method had the highest val-
ues of sensitivity showing its ability to infer true conditional
dependencies between variables also when a few number of obser-
vations is available. Our study has shown that the ‘2C method is
well suited for revealing conditional dependencies when the num-
ber of really conditioning variables is small if compared to p as in
the case of genomic data.

The application of this method to real biological contexts al-
lowed to infer gene networks with some known regulatory signals.
In particular, it revealed a negative significant correlation between
the expressions of HMGS and HDS, that we found to be the two
hubs in the two isoprenoid pathways in A. thaliana.

This means that they respond differently to the several tested
experimental conditions and, together with the high connectivity
of the two hubs, provides an evidence of cross-talk between genes
in the plastidial and the cytosolic pathways. This evidence did not
result from studies at level of single gene. Moreover, studies that
infer this network by using only low-order partial correlation coef-
ficients find more interactions between the two pathways with re-
spect to the ‘2C method. A reduced number of edges between the
two pathways is plausible considering the different cell compart-
mentalization of the two isoprenoid biosynthesis pathways.

Moreover, the application of this method to a signature of HRAS
oncogene permitted to reveal the presence of nine genes connected
to HRAS, sharing the same Ras-responsive binding site for the tran-
scription factor RREB1. This result suggests that the transcriptional
activation of these genes is mediated by a common transcription
factor downstream of Ras signaling.

In conclusion, our study has shown that the ‘2C method is able
to infer GRNs with relevant putative interactions and to provide
interesting biological hypotheses that should be biochemically
validated.
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