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Abstract. The values of thermal conductivity λ at different temperatures for organic and inorganic 
compounds in the liquid phase is essential in the study of numerous processes, but experimental 
data are frequently not available with acceptable reliability or not available at all, since rigorous 
theoretical or semi-theoretical models of the liquid state are usually of poor practical use for 
engineering purposes. The Artificial Neural Network (ANN) approach is a very powerful tool and 
it can be a good indicator of the lowest limit achievable with a selected database and with a 
selected set of inputs. This study investigates the applicability of the ANN as an efficient tool for 
the prediction of pure organic compounds’ thermal conductivity of three important families such 
as alkanes, ketones and silanes, for a wide range of temperatures. The families of n-alkanes, 
ketones and silanes were chosen to verify the general reliability of the proposed method when used 
in large temperature ranges for very different organic families, above all the silanes (compounds 
containing silicon), whose liquid thermal conductivity is experimentally investigated in very few 
cases. This method appears to be successful: in all reduced temperature range, along or near the 
saturation line, the average absolute deviations between calculated and experimental thermal 
conductivity data are 0.19% and the maximum absolute ones 2.44%  

 

1. Introduction 
Recently our research group focused its attention on the study of some important thermo-physical 
properties [1–17]. One of the most important of them is thermal conductivity. The values of the thermal 
conductivity of liquids are required in several phenomena, but its experimental values at different 
temperatures are often not available with acceptable reliability or sometimes not available at all; 
theoretical or semi-theoretical models of the liquid state (“gas-like” or “solid-like” models) are useless or 
of poor practical use for engineering purposes, either for the errors they finally lead to, or for the 
excessive mathematical difficulties. 
On a microscopic scale the liquids are obviously characterized by a potential function determining the 
energy transfer mechanisms, but the different models appeared in the scientific literature generally do not 
allow to find reliable values for thermal conductivity, and empirical or semi-empirical correlations are 
usually necessary for many practical or engineering purposes. In using these correlations, a reasonable 
equilibrium has to be reached between the simplicity of the method and the accuracy of the values of the 
estimated thermal conductivity. 
The thermal conductivity of liquids usually decreases with the increase of temperature, with the exception 
of some compounds, for example water and some aqueous solutions. In the range from the normal 
melting point to the normal boiling point and over, the thermal conductivity dependence on the 
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temperature is usually almost linear, but this behavior near the critical point dramatically ceases and the 
critical point represents a singularity.  
From a theoretical point of view [18, 19], the thermal conductivity of liquids depends upon temperature 
and density as sum of three contributions: the “dilute gas contribution”, the “excess contribution” and the 
“critical enhancement contribution”; the density dependence is usually substituted by pressure 
dependence because the pressure variations are negligible up to 3-4 MPa, and in this range it is acceptable 
to express thermal conductivity as a function of temperature only. In this work a suitable equation for the 
liquid phase is proposed linking liquid thermal conductivity directly with temperature. In a recent past 
[4], among the different organic families, n-alkanes, ketones and silanes were chosen as a test of the 
proposed estimation method. In this paper, the method is extended to three very different families: n-
alkanes, ketones and silanes. The results are compared with nine of the best empirical or semi-empirical 
equations proposed in the scientific and technical literature.  
In order to develop an acceptable comparison between estimated and experimental thermal conductivity 
data, the thermal conductivity values (experimental, smoothed and predicted) available from DIPPR801 
[20] database for the n-alkanes, ketones and silanes are analyzed. During the data collection, a fluid by 
fluid analysis was performed and only experimental or experimental&predicted data with claimed 
accuracy less than 10% were taken into account for the check of the proposed method and for the 
comparison with the other investigated methods. 
 
2. The database used for the test of Artificial Neural Network 
Since reliable experimental thermal conductivity data of liquids available in literature are due to different 
authors who use different apparatuses at different temperatures (and, obviously, with different 
accuracies), a valid check would be developed by disposing of a unique collection of experimental 
thermal conductivity data. A reliable and updated source of thermal conductivity values can be found in 
the DIPPR801 database [20], where experimental, predicted and smoothed data are reported. The DIPPR 
801 database collects data from a wide range of sources and considers them critically, giving quality 
codes for all data points. The DIPPR801 database was chosen as the source of the thermal conductivity 
data because the database satisfies the following requirements: the thermal conductivity data are clearly 
indicated as experimental, predicted or experimental&predicted; the accuracy of the thermal conductivity 
data is clearly indicated; if experimental thermal conductivity data are not available, the used estimation 
method is clearly indicated with the claimed accuracy. 
The data are collected for the three selected families of n-alkanes, ketones and silanes.  
 
The choices of the authors, as extensively exposed in a previous work [4] concerning the families 
considered, were as follows: 

• only experimental or experimental&predicted data for each fluid with claimed accuracy 
better than 10% were used in the check of the model, thus the predicted thermal 
conductivity data presented in DIPPR801 were not taken into account; 

• the results obtained through the Artificial Neural Network (ANN) were compared with 
the results of other ten estimation methods: seven methods are proposed in DIPPR801 
[21–29], while three methods were taken from the recent literature. [3, 5, 30] 

The compounds taken into account were the following ones: 
• n-alkanes: 23 investigated compounds; 
• ketones: 14 investigated compounds; 
• silanes: 18 investigated compound. 

 
The check was developed exploring the reduced temperature range 0.30 to 0.80. 
 
3. An artificial Neural Network 
For the modelling of thermal conductivity of n-alkanes, ketones and silanes, the Wolfram Mathematica 
artificial neural network toolbox was employed. A neural network is a structure involving weighted 
interconnections among neurons, or units, which are most often nonlinear scalar transformations, but they 
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can also be linear. A neuron is structured to process multiple inputs, including the unity bias, in a 
nonlinear way, producing a single output. Specifically, all inputs to a neuron are first augmented by 
multiplicative weights. These weighted inputs are summed and then transformed via an activation 
function (also called neuron function). 
The training goal is to find values of the parameters so that, for any input x, the network output 𝑦  is a 
good approximation of the desired output y. Training is carried out via suitable algorithms that tune the 
parameters so that input training data map well the corresponding desired outputs. These algorithms are 
iterative in nature, starting at some initial value for the parameter vector 𝜃, and incrementally updating it 
to improve the performance of the network.  
The network is generally divided into layers. The input layer consists of just the inputs to the network. 
Then follows a hidden layer, which consists of any number of neurons, or hidden units, placed in parallel. 
The network output is formed by another weighted summation of the outputs of the neurons in the hidden 
layer. This summation on the output is called the output layer.  
The required number of training data points and hidden layer neurons are the main goals of ANN 
modelling. They can be determined by the constructive approach [31]. A network that has only one 
hidden layer is able to approximate almost any type of nonlinear mapping [32]. 
Each neuron performs a weighted summation of the inputs, which then passes through a nonlinear 
activation function s. Mathematically, the functionality of a hidden neuron is described by: 
𝑠 𝑎 = 𝑠 𝑤!𝑥! + 𝑏!

!!!         (1) 
where a is the overall weighted input of the neuron and the weights wj, b are symbolized with the arrows 
feeding into the neuron itself. For this feedforward network, a sigmoid function was employed as the 
activation function: 
𝑠 𝑎 = !

!!!!!
         (2) 

The number of output neurons equals the number of outputs of the approximation problem. The output of 
this network is given by: 
𝑦 = 𝑔 𝜃, 𝑥 = 𝑔 𝑤!𝑠 𝑤!,!𝑥! + 𝑏!!

!!!  + 𝑏out!!
!!!      (3) 

where n is the number of inputs to the ith neuron, nh is the number of neurons in the hidden layer, and bout 
is the output bias. In this work, the output activation function g was chosen to be linear as this is a 
convenient and sufficient choice for interpolation problems. 
The parameters of the network model are represented collectively by the parameter vector 𝜃. In general, 
the neural network model will be represented by the compact notation 𝑔(𝜃, 𝑥). The size of the input and 
output layers are defined by the number of inputs and outputs of the network and, therefore, only the 
number of hidden neurons has to be specified when the network is defined. 
Keeping the number of hidden layers fixed, it is possible to modulate the network by changing the 
number of hidden neurons in each layer. In this way, we tested each time the network with a different 
number of neurons trying to limit the error produced by the model. Too few neurons in the hidden layer 
prevent the network from better fitting the experimental values and approximate points maintaining a low 
deviation. On the other hand, too many neurons lead to a network that has a very good response when it is 
tested with the training points, but the structure of this network is too rigid with the provided values. 
Often it is more convenient to use the RMSE when evaluating the quality of a model during and after 
training, because it can be compared with the output signal directly. Different neural networks were 
compared adopting the Levenberg-Marquardt algorithm [33] using their Root Mean Square Errors 
(RMSEs), defined as follows: 

𝑅𝑀𝑆𝐸 = !
!

𝑦! − 𝑔 𝜃, 𝑥!
! !

!!!        (4) 

where N is the number of data points. 
When the network is trained with new data there is the risk of committing unacceptably large errors. 
These problems, occurring during the neural network training, are referred to as overfitting. To avoid and 
overcome this overfitting problem, it is possible to divide the data points into training, validation and test 
data.  
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Therefore, before the trained network is accepted, it should be validated. Roughly, this means running a 
number of tests to determine whether the network model meets certain requirements. In this case, it was 
decided to split the database into three parts: one that comprises 70% of the data, which were used for the 
“training”, a second which employs 20% of the data, which were used to perform the “validation” test, 
and a third which employs 10% of the data which were used for the ‘‘test’’ carried out to investigate the 
prediction capability and validity of the obtained model. In all cases, data were randomly chosen within 
the database. 
Figure 1 illustrates a diagram of a one-hidden-layer feedforward network adopting the following inputs: 
experimental reduced temperature, Tr, the molecular weight M, and the acentric factor, 𝜔. In particular, 
the acentric factor is an important characterization of substances that was introduced by Pitzer in 1955 
[34]. Pitzer came up with this factor by analyzing the vapor pressure curves of various pure substances 
[35]. Table 1 contains the molecular weight and the acentric factor for all the fluids taken into account.  
The output is thermal conductivity, 𝜆. Each arrow in the figure symbolises a parameter in the network. In 
summary, the selected ANN architecture includes three input parameters (Tr, M, ω), one hidden layers 
with 37 neurons, and a output neuron giving the thermal conductivity value for each fluid and each 
temperature. The values for the weights and bias for each neuron are given in Table 2 and 3.  
 

 
Figure1. Schematic diagram of the ANN model. Inputs: Tr, reduced temperature, M molecular weight, 𝜔 
acentric factor. Output: 𝜆 thermal conductivity 
 
In order to compare the equations, deviations were calculated as follows:  

𝐴𝐴𝐷 =
!!"#!!!"#!

!!"#
⋅ 100         (5) 

Figure 2 illustrates the AAD for the training, validation and test, and the overall set of data obtained for 
various neural network configurations with one hidden layer, achieved after 1000 iterations during the 
modeling of the thermal conductivity of n-alkanes, ketones and silanes. From the figure it is evident that, 
as expected, AAD decreases with the increase of the number of neurons and that a good configuration is 
reached when the number of neurons in the hidden layer is 37. This configuration was selected as the best 
network architecture.  

Tr

M

Input Layer

Hidden Layer

.

.
.
.

λ

ω
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Figure2. Absolute average percent deviation between data collected and ANN results vs number of 
neurons in hidden layer 
The AADs for the proposed ANN are reported in Table 1. 
 
4. Comparison between the results obtained through the proposed method (9) and the results 
obtained through different equations appeared in literature 
 
Together with the methods from the literature and those proposed in DIPPR810 [5,8,9,17-24], two 
additional methods are taken into account [25,26]. All the methods, even if already appeared in [37], are 
shortly illustrated below for a convenient comparison. 
Tables 1 shows the results of the comparison between the ANN model proposed by the authors and the 
correlations proposed in the literature by the authors indicated in the same Table for the n-alkanes, 
ketones and silanes, respectively. 
The blank spaces indicate that the estimation method is not acceptable for the corresponding compound. 
 

Fig. 3 shows the calculated thermal conductivity values versus the ones in the database. As can be seen, there 
are not significant disagreements in the data considered.  
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Figure 3. Calculated thermal conductivity values versus all the values in the datasets when the selected 
ANN architecture is used.  

In order to clearly show the improvement obtained with the use of the ANN with respect to the best 
corresponding-states model, Fig. 4 shows the calculated and dataset values for the proposed ANN and for 
the Latini et al. model [3]. As can be seen, the corresponding-state model cannot adequately reproduce a 
significant number of data. Some excessive over-predictions and under-predictions are clearly obtained.  

 

Figure 4. Calculated thermal conductivity values versus values in the datasets when the selected ANN 
model and the Latini et al. [3] corresponding-state model are used  

Fig. 5 shows the deviations values versus temperature. As can be seen, only a very few number of data 
give deviations values higher than 2%, in fact except very few points, residuals are well within ±2.0 
W⋅(m⋅K)−1. 

 

Figure 5. Deviations values for each dataset obtained by using the selected ANN architecture  
5. Conlcusions 
In this paper a multilayer perceptron neural network are proposed to thermal conductivity of three 
important chemical families: ketones, alkanes and silanes. After checking different architectures and 
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different input variables, the ANN model giving the better results includes three input properties for each 
fluid (Tr, M, ω), one hidden layers with 37 neurons, and a output neuron.  
The model was validated, trained and tested for a wide set of data, showing that the accuracy of the neural 
network model is higher than the accuracy of the methods proposed in the literature. This selected model 
can reproduce the data with an overall AAD value of 0.19%, and a maximum AAD value of 2.44%  
For the sake of comparison, we have shown that the presently available corresponding-states models 
cannot reproduce these data with AAD below 1%. The proposed ANN model can be considered then as a 
very accurate tool to reproduce the currently available thermal conductivity data for the considered 
families and even for prediction purposes. Needed input properties, bias, and weights values are given in 
Table 2 and 3. 
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Table1. Dataset of the fluids considered in the present work and absolute relative deviations (AAD) for 
each fluids for the ANN and the comparison with literature models taken into account.  

Fluid 
Molecular 

Weight 
[kg/kmol] 

Acentri
c 

Factor 

Present 
work 

Latini et 
al.  
[3] 

Sastri-
Rao 
[20] 

Missen
ard 
[21] 

Sato-
Riedel 
[25] 

Latini et 
al 

[24] 

Nagvekar
-Daubert 

[26] 

Robbins-
Kingrea 

[27] 

Pachaiya
ppan et al 

[28] 

Gharaghe
izi et al 

[29] 

Di 
Nicola 
et al 
[5] 

methane 16.04 0.01 0.11 2.3 28.5 26.3 48.8 55.8 - 2.6 58.3 13.5 7.6 

ethane 30.07 0.1 0.04 2.8 11.1 56.5 17.9 42.1 29.8 18.2 36.9 11.8 12.8 

propane 44.1 0.15 0.05 3.8 34 14.6 25.3 23.8 9.2 17.6 17.2 13.4 5.9 

n-butane 58.12 0.2 0.07 3.2 46.1 5.5 19.4 15.9 3.8 9.4 9.8 10.4 5.1 

n-pentane 72.15 0.25 0.18 0.7 56.2 4.5 16 8.8 2.3 11.6 11.9 9.2 5 

n-hexane 86.18 0.3 0.17 1.9 61.5 3.1 11.4 5.1 3.7 9.1 13.7 6.2 3.1 

n-heptane 100.2 0.35 0.31 1.2 63.2 1.5 6.4 3.2 4.6 10.1 16.1 4.8 1.4 

n-octane 114.23 0.4 0.87 0.5 69.5 1.9 3.6 1.7 5.4 5.8 22.9 4.3 1.7 

n-nonane 128.26 0.44 0.46 1.1 72.4 1 0.9 1.1 5.4 7 25.9 4 0.9 

n-decane 142.28 0.49 0.64 1.2 77.4 1.2 1.8 2.7 5.9 4.5 30.5 3.4 1.7 

n-undecane 156.31 0.53 0.23 1.2 79.7 0.9 4.4 3.4 5.7 5.1 32.7 3.7 1.3 

n-dodecane 170.33 0.57 0.26 1 83.2 1 6.2 4.3 5.7 3.3 35.9 3.6 1.8 

n-tridecane 184.36 0.62 0.13 1.1 85.3 0.6 8.2 4.5 5.2 6.5 37 3.9 1.8 

n-tetradecane 198.39 0.66 0.06 1.1 87.9 0.6 9.9 5.2 5.3 6.8 39.8 3.7 1.6 

n-pentadecane 212.41 0.7 0.08 1.9 87.9 1.4 12.4 4.3 3.9 6.8 39.8 4.8 1.1 

n-hexadecane 226.44 0.73 0.11 1.5 91.3 1.2 13.2 5.2 4.5 8.6 42.7 4.1 2 

n-heptadecane 240.47 0.77 0.31 1.4 94.9 1.4 13.7 6.2 5.1 9.7 45.3 3.1 4.5 

n-octadecane 254.49 0.8 0.17 1.1 95.2 2.2 15.6 5 4.1 12.1 45.3 4 4.3 

n-nonadecane 268.52 0.84 0.12 0.8 97.8 3.7 16.3 5.3 4.4 12.7 47.3 3.5 5.8 

n-eicosane 282.55 0.91 0.05 2.5 95.7 7.6 18.8 3.3 3.7 15 44.4 5.3 5.5 

n-heneicosane 296.57 0.94 0.11 4 95.2 7.7 20.3 2.6 3.6 15.7 44.1 5.9 5.1 

n-docosane 310.6 0.97 0.04 4.1 94.1 8.7 22.2 2 3.8 16.9 43 7.1 4 

n-tricosane 324.63 1.03 0.13 2.7 94.6 9.5 23.3 1.8 4.1 19.2 43 7.4 5.6 

n-tetracosane 338.65 1.07 0.06 0.7 93.7 10.7 24.9 2.5 4.8 21.5 41.8 8.4 5.8 

acetone 58.08 0.31 0.05 1.8 31.5 5.2 2.3 9.7 7.2 12.1 4.9 8.8 13.8 

methylethylketon
e 72.11 0.32 0.02 1.5 46.4 7.2 4.1 2.4 13.4 26.4 13.5 3.3 4.6 

2-pentanone 86.13 0.34 0.17 2.6 59.9 3.4 1.6 3.9 17.8 19.9 15.7 5 4.6 

3-pentanone 86.13 0.34 0.13 0.9 58.4 6.1 1.6 2 21.7 15.9 16.1 6 6.2 

2-hexanone 100.16 0.38 0.32 0.4 69.5 4.2 0.9 7.8 22.5 14.9 19 8.8 5.6 

2-heptanone 114.19 0.42 0.36 1 78.8 5.4 1.4 11.5 27 12.2 22.4 3 1.1 

3-heptanone 86.13 0.34 0.15 0.5 79.4 5.6 3.1 9.3 32.1 11 25.7 3.2 6.7 

4-heptanone 114.19 0.41 0.89 3.2 75.6 4.6 5.5 5.8 29.1 10.5 22.8 5.7 4.7 

2-octanone 128.21 0.46 0.31 2.7 86.4 4.9 4.1 12.9 29.5 6.7 25.8 3.2 1.1 

2-nonanone 142.24 0.49 0.96 3.1 93.1 6.7 5.2 15.3 32.3 8.4 28 1.8 2.3 

5-nonanone 142.24 0.51 0.52 0.6 92.3 5.4 5.6 12.5 36.6 7.9 28.1 3.4 2.2 

cyclopentanone 84.12 0.29 0.11 3.9 57.2 8.5 3.4 - 19.8 18.6 30.9 1.7 6.9 

cyclohexanone 98.14 0.4 0.18 1.7 70.9 3.9 3.8 - 28.5 40.3 38.2 3.8 4.9 

acetophenone 120.15 0.4 0.1 1.8 76.7 5.4 9.4 2.2 57.2 21 28.7 1.3 6.9 
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Methyl 
trichlorosilane 149.48 0.24 0.11 3.1 - 26.6 29.9 - - - - 35.8 29.8 

Dichlorodiethylsi
lane 157.11 0.32 0.11 0.8 - 19.6 19 - 5.6 - - 19.5 17.9 

Vinyltrichlorosil
ane 161.49 0.28 0.14 14.1 - 23.4 22.7 - 78.9 - - 26.4 23.2 

Phenyltrichlorosi
lane 211.55 0.4 0.26 4.9 - 16.6 16.9 - 2.7 - 97.9 7.8 9.2 

Diphenyldichloro
silane 253.2 0.43 0.11 5 - 5.7 7.7 - 141.8 - 107.5- 14.6 4.4 

Hexamethyl-
cyclotrisiloxane 222.46 0.5 0.06 4.7 - 2.6 15.1 - - - - 16.3 10.1 

Octamethyl-
cyclotetrasiloxan

e 
296.62 0.55 0.12 0.2 - 2.7 19.5 - - - - 15.3 10.7 

Decamethyl-
cyclopentasiloxa

ne 
370.77 0.64 0.21 1.4 - 14.1 31.1 - - - - 22 21.7 

Dodecamethyl-
cyclohexasiloxan

e 
444.92 0.71 0.08 5.3 - 24.1 37.1 - - - - 24.6 26 

Hexadecamethyl- 
cyclooctasiloxan

e 
593.23 0.88 0.04 1.4 - 31 43.1 - - - - 25.6 27.7 

Hexamethyldi-
siloxane 162.38 0.41 0.17 2.5 - 9.8 8.5 - - - - 6.8 9.6 

Octamethyltri-
siloxane 236.53 0.54 0.3 1.4 - 6.7 7.8 - - - - 8.2 9.1 

Decamethyltetra-
siloxane 310.69 0.66 0.06 3.2 - 7.1 15 - - - - 8.9 8.2 

Dodecamethylpe
nta-siloxane 384.84 0.68 0.07 2.1 - 16.3 23.1 - - - - 12 9.6 

Tetradecamethyl
hexa-siloxane 458.99 0.8 0.08 6.4 - 38.3 45.9 - - - - 15.6 12.2 

Hexadecamethyl
hepta-siloxane 533.15 0.89 0.07 0.6 - 29.8 35.2 - - - - 17.7 15 

Methyl silicate 152.22 0.44 0.05 0.8 - 28.4 29.9 - 85.5 - - 33 26 

Tetraethoxysilan
e 208.33 0.63 0.12 2.9 - 14.2 20.8   65.6 - - 20.6 7.7 

 
Table 2. Hidden layer weights 
 
Hidden 
neurons 
Neurons 

bias Tr Mass Acentric 
factor 

1 0.32 -4.41 5.65 -4.41 
2 -8.61 -0.02 34.52 21.49 
3 19.66 -0.76 -20.12 -26.47 
4 -12.56 0.17 22.76 43.27 
5 15.31 1.05 -14.75 -0.98 
6 -5.66 0.19 43.06 3.62 
7 10.11 -0.07 -52.58 -2.51 
8 4.09 -0.27 42.95 -43.39 
9 4.16 -0.64 37.79 -37.19 

10 18.87 0.33 -19.43 -1.74 
11 16.64 0.08 6.91 -43.33 
12 8.55 -0.24 49.42 -59.57 
13 26.90 -0.21 -26.36 -7.64 
14 3.17 -0.01 -41.58 9.08 
15 -19.83 1.04 11.51 38.43 
16 -5.25 -0.14 -52.33 38.98 
17 14.87 -21.78 -1.62 8.33 
18 14.12 -0.31 -25.21 -2.69 
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19 8.69 0.30 -29.17 -18.43 
20 -7.62 0.49 20.56 -4.63 
21 4.27 0.10 1.27 -6.27 
22 -6.87 -0.62 14.96 34.81 
23 4.27 1.92 -8.64 -1.12 
24 -11.40 -0.22 11.12 22.57 
25 -8.30 -0.36 3.80 24.48 
26 -3.76 -0.60 4.71 1.86 
27 -9.59 0.36 35.03 13.27 
28 -11.50 0.32 -45.52 63.01 
29 -15.39 -0.98 13.96 39.93 
30 2.64 -6.43 -1.66 -6.79 
31 14.41 -0.32 -16.43 -8.09 
32 2.22 0.07 43.18 -28.50 
33 9.21 -0.18 -12.57 -1.08 
34 0.10 0.39 -5.91 -20.84 
35 19.03 -0.53 51.78 -86.00 
36 18.59 -22.21 -0.81 7.41 
37 0.10 0.02 58.92 -33.71 

 
Table 3. Output layer weights 
Output of Neurons  

1 -31.12 
2 -0.22 
3 -0.56 
4 -0.44 
5 -0.42 
6 -0.26 
7 -27.46 
8 -0.89 

bias 29.77 
 


