

ISSN: (Print) 1828-051X (Online) Journal homepage: https://www.tandfonline.com/loi/tjas20

Preliminary analysis of Stearoyl Co-A Desaturase gene transcripts in River buffalo

A. Pauciullo, G. Cosenza, A. D'Avino, L. Colimoro, C. Iorio, D. Nicodemo, D. Di Berardino & L. Ramunno

To cite this article: A. Pauciullo, G. Cosenza, A. D'Avino, L. Colimoro, C. Iorio, D. Nicodemo, D. Di Berardino & L. Ramunno (2007) Preliminary analysis of Stearoyl Co-A Desaturase gene transcripts in River buffalo, Italian Journal of Animal Science, 6:sup2, 283-286, DOI: <u>10.4081/ijas.2007.s2.283</u>

To link to this article: https://doi.org/10.4081/ijas.2007.s2.283

9

Copyright 2007 Taylor and Francis Group LLC

Published online: 15 Mar 2016.

C	
L	Π.
C	_

Submit your article to this journal oxdot S

Article views: 19

🖸 View related articles 🗹

Preliminary analysis of Stearoyl Co-A Desaturase gene transcripts in River buffalo

A. Pauciullo, G. Cosenza, A. D'Avino, L. Colimoro, C. Iorio, D. Nicodemo, D. Di Berardino, L. Ramunno

Department of Soil, Plant, Environment and Animal Production Sciences; Faculty of Agriculture, University of Naples "Federico II", Portici (Na), Italy

Corresponding author: L. Ramunno. Department of Soil, Plant, Environment and Animal Production Sciences; University of Naples "Federico II"; Via Università 133, 80055 Portici (Na), Italy - Tel. +39/0812539004 - Fax: +39/0817762886 - Email: ramunno@unina.it

ABSTRACT: Stearoyl-CoA desaturase (SCD) is a key enzyme in the biosynthesis of monounsaturated fatty acids (MUFAs). In cattle, SCD gene extends over a DNA segment of ~17.0 Kb, and it is organized in 6 exons and 5 introns. The SCD gene has been indicated as the candidate gene to change the saturated/unsaturated FAs ratio and hence it has been suggested as the gene influencing the fat quality. In cattle, eight SNPs have been identified and one of them, (T \rightarrow C) at 231st nt of 5th exon, is responsible for the Val \rightarrow Ala amino acid change. The C allele has been associated with higher content of MUFAs in carcasses, and it is positively related to a higher index of desaturation (C18:0/C18:1 and C16:0/C16:1) in the milk. In this study, we report on preliminary results of analysis of transcripts of the SCD encoding gene in river buffalo. The electrophoretic analysis of the RT-PCR products and the subsequent sequencing showed at least five different populations of mRNA. The most represented population is correctly assembled (~1300 bp), followed by the one which is deleted of ~750bp, corresponding to the 3rd, 4th and 5th exon and partially to the 2nd and 6th exon.

Key words: River buffalo, Stearoyl Co-A Desaturase, SCD gene, Transcripts.

INTRODUCTION - Stearoyl-CoA desaturase is a key enzyme in the biosynthesis of monounsaturated fatty acids (MUFAs) and it plays a central role in regulation of FA metabolism (Heinemann and Ozols, 2003), catalyzing the insertion of a double bond between carbon atoms 9 and 10 in a spectrum of saturated fatty acids (Palmquist *et al.*, 1993). SCD is responsible for saturated/monounsaturated FAs ratio in the composition of the triacylg-lycerol and in the phospholipids membrane. The alteration of this ratio has been implicated in many diseases, such as diabetes, obesity and cardiovascular diseases (Heinemann and Ozols, 2003). In cattle, the SCD gene extends over a DNA segment of ~17.0 Kb and it is organized in 6 exons and 5 introns. The complete bovine SCD mRNA spans 5.3 Kb and it codes for a protein of 359 amino acids. The SCD gene has been indicated as the candidate gene to change the saturated/unsaturated FAs ratio and therefore, to influence the fat quality (Taniguchi *et al.*, 2004). So far, eight SNPs have been identified in cattle, forming two different haplotypes: A and B. Three SNPs are located on the 5th exon and one of them, (T→C) in position 231st, is responsible for the Val→Ala amino acid change (Taniguchi *et al.*, 2004). The C allele has been associated with higher content of MUFAs in carcasses, and it

is positively related to a higher index of desaturation measured by the ratios (C18:0/C18:1 and C16:0/C16:1) in the milk (Medrano, 2002). In river buffalo very little information on SCD gene is available. Nowadays, only the sequences of the 4^{th} , 5^{th} and 6^{th} exon of the SCD gene are known (DQ088625; DQ646700; DQ646701). In the present study we report on a preliminary characterization of the river buffalo SCD gene transcripts.

MATERIAL AND METHODS - Total RNA was extracted from milk somatic cells of six lactating Mediterranean river buffaloes of comparable age, type of feed, diet, feeding level and lactation stage. Primers for amplification and sequencing were designed by DNA-sis software (Hitachi) using as template the sequence of the bovine *SCD* gene (EMBL: AY241932). The reverse transcription of total RNA was performed using an oligo dT(18). RT mix (20-µl) was performed using Improm-II Reverse Transcriptase (Promega). PCR was carried out using the following primers: *forward* 5'-CAGCGGAAGGTCCCGA-3' and *reverse* 5'-TGGGTTAACGTCATCTTTAGCA-3', corresponding respectively to nt 3-18 of the 1st exon and complementary to nt 290-311 of the 6th exon of the bovine SCD gene. The 100-µl PCR reaction mix comprised: the 20-µl of RT product, 50 mM KCl, 10 mM Tris–HCl (pH 9.0), 0.1% Triton X-100, 2 mM MgCl₂, 10 pmol of each primer, 0.2 mM each dNTPs, 5 U of Taq DNA Polymerase (Promega). Amplification consisted of initial denaturation at 95°C for 4 min followed by 37 cycles carried out at 95°C for 45 sec, 62°C for 45 sec, 72°C for 90 sec, and 10 min of final extension in the last cycle. All the amplicons were analysed by electrophoresis on 1.5 % agarose gel in TBE 1X buffer. Densitometric analysis of RT-PCR products

Figure 1. RT-PCR (1st – 6th exon) of mRNA transcribed from river buffalo SCD gene. M: Marker 1000 bp (Promega); lane 1: RT-PCR product.

was displayed using QuantityOne software (BioRad). PCR products were purified from gel with QIAquick kit (QIAGEN) and sequenced, twice in both directions, according to Sanger *et al.* (1977) method.

RESULTS AND CONCLUSIONS - The electrophoresis analysis of the RT-PCR products of six lactating Mediterranean river buffaloes showed patterns characterized by at least five bands of sizes ~1300 bp, ~1100 bp, ~900 bp, ~700 bp and ~550 bp (Figure 1).

The most represented mRNA population is ~1300 bp long (~52%), followed by the one of about 550 bp (~30%). These two RT-PCR products have been sequenced. The first sequenced transcript is 1250 bp long (EMBL acc. no. AM600640) and it shares a total similarity with the corresponding bovine cDNA of ~97.8%. The subsequent comparison with the bovine SCD gene allowed the subdivision in 6 exons (from the 53^{rd} nt of the exon 1 to the 278th nt of the exon 6), confirming that such transcript is correctly assembled and it Figure 2. Homology between the river buffalo SCD cDNA sequences of the correctly assembled transcript (upper line) and the uncorrectly assembled. Dashes represent missing nucleotides, capital and small letters are translated and untranslated exons respectively, bold letters are amino acids.

	10			2	0	30				40	50				60			70		80	90					
1	tos	gga	acta	gtot	gtotacacto		agtttggact			goccogsact.			ocgeteogea			gtotcageoo			gaa	agtg	ates	gtgt	opt	octagaggoo		
1	1 traggaacta		acta 100	gtot	: agt	agtttggact			coc	gaact 130	ccoctcooca 140			gtotoagooo 150			cgagaaautg 160			stoccagtgt			cctagaggcc		180	
		н	PA	H	LL	0	E	E	x	8	5 5	¥	Ŧ	Ŧ	Ŧ	τ	T	I	Ŧ	AP				v	L	0
91	agA	TGC	COGC	CCAC	TIGCT	CAA	GAG	GAGA	TC	TCT	AGCTC	CTAC	ACAA	CC.	ACCI	ACC2	ACCA	TCA	CAC	CACC	TOCT	τc	CAGG	GTO	CTO	CAGA
91	agA	agATGCCGGC		CCACTTOCTO		CAA	CAAGAGGAGA		TCTCTAGCTC			CTACACAACC		ACCACCACCA		TCACAGCACC			TOCTTCCAGE			GTCCTGCAGA				
			1.40					210						÷.			240	-		2.50			260		-	270
141	ATO	a.o	anan	CAN	TTOCAL	AAC	ACT	cocc	73	TAC	TTOGA	AGAA	CACA	ře.	one	-cw	AAA	COLA	a.	ATUA	CATC	-	TUAC	cea	ACT	TACC
141	ATO	ATOGAGGOGG			CABATTOGAA		AAGACTCCCC		TATACTTOGA			AGAAGACATC		OGCCCTGAAA			CGAGAGATGA			CATCTATGAC			CCAACTTACC			
			280		29	0		300			310		3	20			330			340			350			360
	9	D	K E	Ģ	PK	P	ĸ	L	8	Y	VW	R	N	τ	I	L	м	r	L	LH	L	6	A	L	¥	G
271	AGG	A7A	ACCA	0000	CCAAAA	: cec	AAG	CITC	AG	TAT	GITTG	GACA	AACA	10	ATO	CTC	ATGT	TTC	TUI	TACA	CTTO	900	AGOC	CTA	TAT	JGGA
271	AGG	ATA	ACGA	odoc	CCAAA	000	AA0	CTTG	AG	TAT	GTTTG	GAGA	AACA	rc.	ATC	CTC	ATGT	TTC	TGI	TACA	CTTC	-00				
	÷ .				- 0			390			1	v		10			4.29			+ JU						4.50
361	TCA	CAT	TGAT	cccc	ACCTO	AAG	ATA	TACA	÷	TAT	CTCTG	GOTO	TTAT	te.	TAC	TAT	ADTO	TOO	are	CCCT	0000	AT	CACA	GCI	1000	ecc.
361									-																	
			460		47	5		480			490		5	60			510			520			530			540
	н	R	LW	В	HR	Ŧ	¥	ĸ	A	R	L P	L	8	۷	Ŧ	L	I	I	G	N 7	м	1	F	9	н	D
451	ATO	000	POTO	GAGT	CACOG	ACC	TAC	AAAG	CT	CGG	CTOCC	CCTG	00001	rc	TTO	CTC!	VACY	TCC	GCA	ACAC	CATO	200	GTTC	Chi	AAT	DOAD
651		***	62.0				***	620			6.6.0			40					***	610			620			630
	w.		530		9 D			3.70						-			500			N 6		1	620			630
541	111	TTG	AATG	GTCC	CGAGA	CAC	con	acer.	ac	cac	AAGTT	TTCA	GAAA	ès:	GAT	ŝ	ATC	cee	ACA	ATTC	ceca	100	TOGC		TTC	TOT
541														-												
			640		65	3		660			670		6	80			690			700			710			720
	8	Ħ	v a	w	LL	v	R	ĸ	н	P	A V	I	R	ĸ	G	8	Ŧ	L	ы	LS	D	1	K	A	E	ĸ
631	CTC	AD0	ruge	TTOO	CTGCT	r org	coc	AAAC	AC	CCA	GCTUT	CATA	CAAA	NG.	OUT	PCT/	ACOC	TAA	A71	TATC	COAC	cr	AAAA	acc	GAG	MAGE
637			730		74			750	-		760		7	20			780			290			800			81.0
	L	v	н г	0	RR	Y	Y	ĸ		G	VL	L	L	e l		1	L	P		LV	P		Y	L	W.	G
721	TGG	788	TGTT	CCAG	AGGAG	TAC	TAC	ARAC	CT	GGT	GTCCT	GTTG	TIGTO	30	TTC	ATO	TGC	CCA	CAC	TOGT	acce	ing	GTAT	CTO	TOO	GTG.
721	-	***	****	****	*****					***				÷.									****	-		-
			820	100	83	1		840		22	850	135	. 8	60	1		870	13.5		880	- 894		890			900
		T	F Q	N	S L		F	A	T	L	FR	X	A		G	P	N	I	Ŧ.,	H L	V		8		A	H
771	AAA	CUT	ATCA	AAAC	AGCUT	111		UCCA	- 00		1 TOUG	THI	0000	T	(JUU)	-103	MCA.	TUR	1.1.1	out :	Sun		CE MALL	001	-ucici	UATA .
1.2.2.8.		1.11	910		92	5		930			940	1		50			960	100		970			980		1000	990
	м	Y	G Y	R	PY	D	ĸ	T	I	\$	PR	E		I	L	۷	5	L	G	A V	G	1	G		н	N
901	TGT	ATG	GATA	TCGC	CCTTA	GAC	AAG	ACCA	TC	AGC	ccccg	AGAG	ATAS	TT.	CTG	GIT	CAC	790	GAG	CTGT	GGCT	rcA	GCGC	TTO	CAC	AACT
901					*****									-							****					
	2	2	1000		101			1029	1	÷2	1930	1	10	40		14	105	•		106	0	2	107	9	2 3	1080
0.01	ACC	8 8/1/1	arar		P X		140	PCRC.	-	100	A Y	COCC.	-		ATT			1 1	-			÷.,	D C		TOOL	TODOCA
991									1.1.		onus A			-	ALL				-					10		
0.00			1090		110	2		1110			1120		11	30			114	0		115	0		116	0		1170
	I	G	LA	¥	DR	ĸ	ĸ	v	\$	ĸ	AA	I	L	A	2	×	K	R	T	a	8 I	В	8 Y	5 1	к в	G •
1081	TCO	arc	roge	TTAT	GACCO	AAG	AAA	GTAT	CC	AAO	OCTOC	CATC	TTOO	00	AGG	4AT	GAAAD	A GR	AC.	TOGAG	A 00	A.A.	AGCTA	C A	AGAG	TOSCT
1081										***				1												*****
			1180		119	2		1200			1210		12	20			153	0		1.24	0		325	0		
1121	Ch-		atac	tees	ttaan	+ +				-	cator	0000			***		42.2						test.			
1121			40.44			ttoe	ttt	teca	- 20	auc	catct	4440	4949	st.	tta	at	gtte	0.01		attas	c ta	CE	tata		10	
						.8	r	5	ĸ	ŝ	HL	G	R	a	L			ć	L	L	T	T	E	•	10	

codifies for 359 amino acids of the protein. The translation stop codon TGA is realized between 198-200 nucleotides of exon 6. A comparison of the sequenced cDNA with the partial published sequences of the buffalo SCD gene (DQ088625; DQ646700; DQ646701) showed 3 polymorphic sites, one of which, realized at the 231^{st} nucleotide of exon 5, is responsible for an amino acid change (GCG^{Ala} \rightarrow GTG^{Val}). Similar to what has already been observed in cattle (Taniguchi *et al.*, 2004; Medrano, 2002), such transition could be associated to a different content of MUFAs in buffalo carcasses and milk. The remaining two mutations are conservative transvertions realized in position 220 of exon 5 (TCC^{Ser} \rightarrow TCA) and 107 of exon 6 (GCA^{Ala} \rightarrow GCC), respectively. The second sequenced fragment is 565 bp long and it is a uncorrectly assembled transcript. In fact, the amplicon is deleted of 765 bp, from the 228th nucleotide of exon 2 to the 217th nucleotide of exon 6, probably as a result of an alternative splicing. As a consequence, the corresponding protein is not 359 amino acids long, but probably 104. In fact, as shown in figure 2, the transcript uncorrectly assembled is characterized by the lack of the canonical stop codon (TGA), and the identification of a new stop codon (TAA) realized between the 275-277 nucleotides of the exon 6. Such event would lead to the translation of a part of the 6th exon (last 19 amino acids), normally only transcribed. These findings probably suggest that the skipping of a great part of the SCD exons brings up the accumulation of shortened but stable spliced mRNAs, which enable to encode for a functional protein, but this needs to be further investigated. The preliminary analysis of SCD gene transcripts further increases the interest towards the study of the fatty acid composition in the milk and its elaborated systems of gene regulation.

ACKNOWLEDGMENTS - This work was supported by Cofinanziamento Programmi di Rilevanza Nazionale (MIUR).

REFERENCES - Heinemann, F.S., Ozols, J. 2003. Stearoyl-CoA desaturase, a shortlived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins, Leukotrienes and Essential Fatty Acids. 68:123-133. **Medrano**, J.F. 2002. Modification of the composition of milk fat in dairy cows utilizing genetic selection. California Dairy Research Foundation, Nutrition and Health. **Palmquist**, D.L., Beaulieu, A.D., Barbano, D.M. 1993. Feed and animal factor influencing milk fat composition. Journal of Dairy Science. 76:1753-1771. **Sanger**, F., Nichlen, S., Coulson, AR. 1977. DNA sequencing with chain-terminating inhibitors.1977. Biotechnology. 24:104-8. **Taniguchi**, M., Utsugi, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A., Tsuji, S. 2004. Genotype of Stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian Genome. 14:142-148.