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OBone physiology and stem cells were tightly intertwinedwith one another, both conceptually and experimental-

ly, long before the current explosion of interest in stem cells and so-called regenerativemedicine. Bone is home to
the two best known and best characterized systems of postnatal stem cells, and it is the only organ inwhich two
stemcells and their dependent lineages coordinate the overall adaptive responses of twomajor physiological sys-
tems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have
remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell
biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms
at multiple turning points over time: today, it finds in the biology of the “niche” its popular phrasing. Entirely
new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively
established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight
the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm
shift in science and in its relation to society and policies occurred in the second half of the XXth century, with
major implications thereof for health, industry, drug development, market and society. Current interest in
stem cells in bone as in other fields is intertwined with that shift. New opportunities andalso new challenges
arise. This article is part of a Special Issue entitled “Stem cells and bone”.

© 2014 Published by Elsevier Inc.
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UIntroduction

Bone morphogenetic proteins, hematopoietic “niche,” and “mesen-
chymal” stem cells represent three totemic achievements in bone biol-
ogy during the last century, three of the most research-intensive areas
of the last three decades, and three of the most “translation”-intensive
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s and bone: A historical persp
research areas of the present day. The three fields emerged from an un-
usual concentration in space and time of a handful of seminal experi-
mental observations. In just a few years, we learned that heterotopic
transplantation of transitional epithelium into skeletal muscle induces
heterotopic bone formation [1]; that heterotopic transplants of bone
marrow also do so [2,3], but that the two phenomena are radically
distinct from one another: the former is dependent on the release of a
soluble factor, while the latter is not. Identification of BMPs [4–6,7]
and perisinusoidal reticular cells as the specific factor and cell type
ective, Bone (2014), http://dx.doi.org/10.1016/j.bone.2014.08.011
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Fig. 1. Alexander Friedenstein.
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generating bone in heterotopic transplants of transitional epithelium
and bone marrow, respectively, represents the ending point of two
long and diverging journeys that originated from those seminal experi-
ments. Likewise, the definition of the bone marrow microenvironment
as the host of signals provided by stromal cells and required for hema-
topoiesis, and the pursuit of a “niche” for hematopoietic stemcells prop-
er represent the developments over time of a third seminal observation;
that is, that grafting of bonemarrow in closed systems (diffusion cham-
bers) would generate bone but bar the development of hematopoiesis,
whereas transplantation in open systems would allow for both bone
formation and development of marrow [2].

That all of these fundamental observations, which not only with-
stood the test of time, but also represented the seed for the subsequent
flourishing of major fields of investigation, arose from the practice of
heterotopic transplantation cannot escape notice. Considering the tre-
mendous impact of establishing quail–chick chimeras (a kind of hetero-
topic transplantation in embryos) [8,9]in developmental biology and
how much it contributed to further developments in lineage tracing,
one is tempted by foolishly wondering what magic is inherent in put-
ting tissues and cells where they do not belong (ectopic transplanta-
tion), and why is this practice so instructive. Perhaps all these simply
highlightthe fundamental link between space (and time) and develop-
ment (lineage, commitment, differentiation), a notion we owe, ulti-
mately, to Alan Turing (the father, among many other things, of the
diffusion–reaction model which established the chemical basis of mor-
phogenesis [10]), and before him, to D'Arcy Thompson (a classicist
and a morphologist renowned for his attention to the physical and
mathematical laws underpinning morphogenesis) [11]. Heterotopic
transplantation is instructive because it breaks the spatial and temporal
constraints (the physics, one could naively argue) that drive develop-
ment, and therefore reveals them in the most empirical way possible.

The fallout: post-World War II era

That these fundamental observations clustered in a specific stretch
of time, on the other hand, is also intriguing. In the same, specific time
interval, another major change in scientific trends arose. The idea of a
hematopoietic stem cell, a common multipotent progenitor for all
blood cells, had been formulated long before (reviewed in [12]), but
had remained dormantwithout attracting interest and above all, exper-
imental effort. The idea exited the realm of theoretical postulates in
1961, with the seminal work of Till et al.[13,14], admittedly the first ex-
perimental evidence for a common multipotent progenitor of blood
cells. In essence, the fundamental discoveries of a dual system of stem
cells in bone were not only almost synchronous, but also arose from ef-
forts across the iron curtain that fell at the end of WWII, and are the di-
rect result of the way WWII ended. It was the attempt to develop
strategies for radioprotection that gave a new impetus to the science be-
hindwhat was to become stem cell biology. Not casually, the front page
of the famous New England Journal of Medicine paper by E. Donnall
Thomas reporting in 1957 [15] the first attempt of bone marrow trans-
plantation in humans both recounts the lethal effects of nuclearwarfare,
and acknowledges the support of the Atomic Energy Commission of the
USA. Muchmore in bone science and science at large emanate from the
same cradle: the biology of bonematrix [16,17] and the role of parathy-
roid glands [18], for example, and key techniques such as microradiog-
raphy and autoradiography [16,17,19–21], to name a few.

At about the same time that something “osteogenic” was being
discovered in bone marrow by Tavassoli and Crosby [3], and by
Friedenstein and coworkers [2], it was exactly autoradiography that
made it possible to trace the kinetics of bone cells in vivo, in a series of
seminal studies by Owen and Macpherson [22–25]. This is how we
learned about precursor cells of osteoblasts in the inner layer of theperi-
osteum, about the origin of osteocytes from osteoblasts, and about the
kinetics thereof. Not casually, the two independent lines of thinking
about the origin and precursors of bone cells were to merge soon
Please cite this article as: Bianco P, Stem cells and bone: A historical persp
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thereafter in the work of Owen, just like her background in physics
and attention to biology had merged in her early work as a reflection
of the post-war climate and strategic priorities. Even the work of
Friedenstein and that of Owen united at one point [26], which was cru-
cial to disseminate the significance of Friedenstein's work in the West
(Figs. 1 and 2). That unificationwas also crucial to formulate the concept
not only of a stem cell for bone, but also for different tissues together
comprising the skeleton being connected to one another at the level of
a common ancestor, rather than as separate entities as thought previ-
ously. For thefirst time, chondrocytes, osteoblasts and bonemarrowad-
ipocytes were brought together into a unified system. The “stromal
system” comprising them all was conceived on the blueprint of the
hematopoietic system, marking a major conceptual novelty in skeletal
research [26,27].

The road to stem cells

Earliest experiments provided evidence for an inherent osteogenic
potential of cells in bone marrow, and for its non-humoral nature. Sub-
sequent steps involved the use of cell culture as a way to separate, at a
timewhenno cell sorting toolswere at hand, hematopoietic cells proper
fromnon-hematopoietic (stromal cells), which in contrast to the former
can adhere to a plastic substrate. Transplanting cultured stromal cells to
the effect of generating heterotopic bone proved that it was the stromal
fraction to be endowed with osteogenic potential. Using the same ex-
perimental approach, the same potential was later ascribed to the
clonogenic fraction of stromal cells (i.e., to cells capable of density-
insensitive clonal growth and therefore seen as progenitors), and to a
subset of individual clonogenic cells [28–30]. The coexistence of multi-
ple tissues within heterotopic “ossicles” generated by single clones
proved the existence, first in rodents and much later in humans [31],
of multipotent stromal progenitors, based on which the idea of an oste-
ogenic stem cell was formulated as a working hypothesis [26,27,32].
Proving the existence of a bona fide stem cell also required proving
the ability of the multipotent progenitor to self-renew, but this key
question remained unaddressed for many years. Addressing this ques-
tion required the identification of an anatomical in vivo counterpart of
the multipotent clonogenic progenitor, and proof of its regeneration in
heterotopic transplants. This only came with the demonstration that:
a) the clonogenic fraction of bonemarrow stromal cells in humans coin-
cides with perisinusoidal reticular cells; which b) could be pinpointed
using immunocytochemical markers both in the intact bone marrow
and in the heterotopic graft; and c) could be secondarily isolated from
the grafts, expanded and serially transplanted. First provided in humans
[33], this type of evidence was later provided in the mouse [34].
Completion of this pursuit over 40 years leaves us with the notions
that indeed, clonogenic, multipotent and self-renewing progenitors for
ective, Bone (2014), http://dx.doi.org/10.1016/j.bone.2014.08.011
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t1:1Table 1
t1:2Which cells are which? A mini-glossary.

t1:3Osteoblasts Cells that directly deposit a mineralizing bone matrix
on a nascent bone surface

t1:4Bone marrow stromal cells In situ, cells of non-hematopoietic, non-endothelial
nature that provide the stromal scaffold and the host
of cues and signals supporting hematopoiesis, in the
extravascular space of bone marrow
In vitro, all cultures generated by explanted stromal
cells, including those generated by total cell suspen-
sions, by progenitors selected by plastic adherence at
clonal density, or by phenotype-purified explanted
cells

t1:5Clonogenic stromal cells The subset of stromal cells capable of initiating clonal
density-insensitive growth. A progenitor cell, not
necessarily a stem cell. Some clonogenic stromal cells
are progenitors; some are multipotent progenitors;
some are multipotent and self-renewing stem cells.

t1:6Skeletal stem cell The multipotent and self-renewing stromal progenitor,
which can be shown in vivo to give rise to multiple
skeletal tissues (bone, cartilage, marrow adipocytes);
resides over bone marrow sinusoids; can re-establish,
in vivo, a compartment of clonogenic multipotent
progenitors residing over sinusoids, with identical
phenotype; can be secondarily passaged and/or
serially transplanted.

t1:7Bone marrow stromal,
t1:8osteogenic Q1stem cells

Original denominations by Friedenstein and Owen
for the putative multipotent stem cells underpinning
the property of stromal cell clones to generate
multiple tissues in vivo, such as bone and cartilage,
hematopoiesis-supportive stroma and marrow
adipocytes

t1:9Colony-forming unit-
t1:10fibroblastic, CFU-F

A single clonogenic stromal cell

t1:11Mesenchymal stem cell Originally, the same entity as the putative
“osteogenic” or “stromal” stem cell in the bone
marrow, with additional putative properties such as
those of progenitors of skeletal muscle, tendon, or fat.
Subsequently, cultured cells defined by in vitro
criteria only, and isolated from any source
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skeletal tissues reside at the abluminal surface of bone marrow sinu-
soids as “adventitial reticular cells,” [33] which are the in situ counter-
part of explantable clonogenic stromal cells. These cells play a key role
in establishing the hematopoietic microenvironment, and, possibly,
the “niche” for hematopoietic stem cells.

Which cells are which?

Taken together, the results of this long experimental history provides
much clarity as to the identity not only of the long sought-after skeletal
stem cells, but also of all other “cells” that one handles as natural or
technological objects revolving like planets in the “stromal system.”
“Osteoblasts,” of course, remain the differentiated cells that deposit and
mineralize the bone matrix; “stem cells” are the self-renewing and
multipotent progenitors; “stromal progenitors” are the clonogenic stro-
mal cells; “stromal cells” are all the non-endothelial, non-hematopoietic
cells other than mature osteoblasts or smooth muscle cells that exist in
situ in the intertrabecular space in bone, that one can establish in culture
as adherent cells; “stromal cell cultures” are cultures of all stromal cells,
regardless of whether they are established from total bone marrow cell
suspensions, multiple colonies generated by stromal progenitors, single
clones, or phenotype-purified (“prospectively isolated”) stromal cells
[35] (Table 1).

Stem cells for bone

No doubt, recognizing that bone is a living tissue rather than simply
a hard object, was a major advance in bone science, giving birth to the
fundamental idea that bone has a metabolism and that cell dynamics
make it possible. Recognizing the duality of bone construction and de-
construction, of cells behind each action, and later of their dual develop-
mental origin gave bone a physiological dimension that exceeded a
merely mechanical function. This brought consideration of bone physi-
ology into internal medicine. Bone formation and resorption and the
dynamics thereof became the fundamental tenets of bone research,
focusing the attention on bone remodeling as essentially the sole
cell-based dynamics therein, or the only relevant one. Measurement of
Please cite this article as: Bianco P, Stem cells and bone: A historical persp
those dynamics (histomorphometry) [36] came to center stage in
bone research. For the same reason, contemporary cell biology in bone
arose from efforts to establish osteoblasts [37,38] and osteoclasts in cul-
ture [39], reflecting directly the general focus on differentiated cells and
their functions as the physiological basis of bone remodeling. Bone
mass, viewed as the result of the equilibriumbetween formation and re-
sorption of bone, became the single most important variable in bone
anatomy, while osteoporosis became the single most important bone
disease dominating “bone medicine.” The pharma industry, the size of
a market coinciding in principle with the adult female population, and
political and social interest in a disease largely prevalent in women all
contributed to shape the biological view of bone during the 1980s and
1990s. Even so, the idea that skeletal progenitors matter gained impact
andmomentum, slowly but progressively. For example, cultures of bone
marrow stromal cells gradually replaced cultures of “osteoblasts” in
bone research, even in osteoporosis research, until they became the
dominant tool for cell biology of human bone at least.

Turnover oddity

The concept of postnatal stem cells, at the timewhen a stem cell was
envisioned for the skeleton, was inextricably linked to the self-renewal
of high turnover tissues such as blood and epithelial tissues. The exis-
tence of bone turnover, and the ability of bone to regenerate after a frac-
ture, were both invoked in support of the new concept. However,
compared to blood and epithelial tissues, bone is a slow turnover tissue.
While the epidermis turns over in its entirety once a month, the skele-
ton is completely replaced by a new one (or, an equivalent mass of tis-
sue) 3–5 times in a lifetime (between skeletal maturity and death). One
would argue that a stem cell could be dispensable for coping with this
ective, Bone (2014), http://dx.doi.org/10.1016/j.bone.2014.08.011
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specific physiological need. Stated in a less teleological way, one would
wonder why a system of stem and progenitor cells would be evolution-
arily selected and conserved in the skeleton. Similar considerations,
many years later, apply tomany other systems seen today as dependent
on some kind of stem cell. For example, we consider that a neural stem
cell exists in specific regions of the brain, even if postnatal neurogenesis
is very limited in rodents, and its very existence is still open to question
in humans. Most importantly, we have extended significantly the use of
the term “stem cell” beyond its original definition, which was tailored
on postnatal self-renewing tissues. Attempts to define a set of functions
as defining all kinds of cells we call stem cells have met a limit. Embry-
onic pluripotent stem cells (ES cells) and postnatal stem cells display
majorly different biological properties. No postnatal (stem) cell is plu-
ripotent, unless modified into an Induced Pluripotent Stem Cell. As ap-
plied to cultured ES cells, furthermore, the term self-renewal has a
different meaning compared to the one it has in postnatal stem cells.
Unlike postnatal stem cells, ES cells do not self-renew in vivo for the
lifespan of the organism. Pluripotency can however be maintained in
ES cells as these are cultured as continuous lines in vitro, under specific
conditions. The extended use of the term “stem cell” (and of the termi-
nology describing stem cell properties) for vastly different biological
system calls, in fact, for a more precise appreciation of the physiological
function that is encrypted in each kind of stem cell, and evolutionarily
conserved. For embryonic pluripotency, diapause (the ability of some
species to arrest embryo development and to resume it depending on
environmental and nutritional conditions) can be tentatively conceived
as the function conserved across a number of species, but not in pri-
mates [40]. For other systems, specific conserved functions remain to
be identified, and each is linked to gross properties of the relevant
“stem” cell system (growth kinetics, differentiation potential), and to
the underpinning regulatory circuits. Identifying the properties and cir-
cuits that define the stem cells in bone rests not on the analogy, but on
the divergence of the system from the hematopoietic system. For exam-
ple, while the lineages emanating from the hematopoietic system (such
as erythropoiesis, granulopoiesis) can be seen as existing in parallel, and
being generated constantly at any time point, their “homologous” line-
ages in the stromal system (such as osteogenic, adipogenic) are not at all
generated synchronously; e.g., chondrogenesis is predominantly a pre-
natal event in skeletogenesis, while adipogenesis is entirely postnatal
[41]. Furthermore, a wealth of evidence, albeit circumstantial in large
part, highlights the ability of individual cell types regarded as differenti-
ated to modulate into different phenotypes. For example, chondrocytes
can revert to fibroblasts [42,43] or osteoblast-like cells in vitro and
in vivo [44,45], or even to bone marrow stromal cells in vivo [46];
bone marrow stromal cells can convert into adipocytes in vivo [47].
This “plasticity” of the stromal system (not to be confused with the
once claimed, and now luckily dispelled, “trans-differentiation” ability
of any cell to generate any cell, “turning blood into brain” [48], “brain
into blood” [49], “blood into muscle” [50], “muscle into blood” [51],
and water into wine [52]) remains to be understood mechanistically,
but may be seen as one defining feature of the system and of its unique
nature. Nonetheless, the differentiation potential of skeletal stem cells is
strictly limited to phenotypes that belong to the skeleton: cartilage,
bone, fat, fibroblasts and the bone marrow stroma itself are the only
progenies of the marrow stromal stem cells. Skeletal stem cells, like all
other kinds of postnatal stem cells, are committed and system-
specific, and are not pluripotent. Finally, all cell types in the stromal sys-
tem exist within an extracellular matrix. This is another noted peculiar-
ity of the stromal system compared to other stem cell-dependent
tissues such as blood or epithelial tissues. As the extracellular matrix
embodies differentiation cues, maintenance of an individual phenotype
within the stromal system is partly regulated “in trans”; constant re-
modeling of the extracellularmatrixmakes the “in trans” determination
of phenotype inherently unstable. This instability may have been
conserved as a specific adaptive function, other than constant and fast
cell replacement such as in blood or epithelial tissues. These adaptive
Please cite this article as: Bianco P, Stem cells and bone: A historical persp
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responses include the integrated remodeling of hard tissues with that
of soft and fluid tissues. Following the disruption of soft tissue remodel-
ing by ablation of the pivotal protease for collagen degradation, MT1-
MMP, vicarious remodeling of bone disrupts skeletal integrity [53].
The adaptive co-regulation of skeletal and hematopoietic physiology in-
volves remodeling of the bonemarrow (e.g., timed generation of yellow
(adipose) marrow during postnatal growth and aging, and local vascu-
lar remodeling) [54]. In away, one of the notions that come from the ex-
istence of skeletal stem cells and the stromal system is that remodeling
of bone is part of a much broader adaptive response, which involves the
coordinated remodeling of other connective tissues. Just as much as an
unbalanced remodeling of bone alone results in a disease we call osteo-
porosis, disruption of soft tissue remodeling results in a disease of bone
and joints that we call Winchester's syndrome, for example [55].

Bone and the HSC niche

The notion that bone would include specific, saturatable sites for
homing of hematopoietic stem cells and for their retention in a “stem
cell” state was first proposed by Schofield [56]. The seminal work of
Dexter, Allen and co-workers [57] highlighted the role of bone marrow
stroma in the maintenance of hematopoiesis and hematopoietic stem
cells in a defined in vitro model, further highlighting a specific function
of bone ofmajor physiological significance. Revival of the interest in this
function over the last 10 years came from two seminal studies in 2003
[58,59] showing that genetic manipulation of bone cells in the mouse
can result in an increase of assayable hematopoietic stem cells. While
this effect was initially attributed to osteoblasts proper, effects of the
structural changes induced by transgenesis and of other cell types in
the osteoblastic lineage could not be strictly ruled out. Subsequent
studies showed that establishment of hematopoiesis in heterotopic
transplants of human skeletal progenitors is dependent on the sequen-
tial establishment of bone and a sinusoidal network, and on the self-
renewal of a subset of transplanted cells into perisinusoidal stromal
cells. However, establishment of hematopoiesis is not directly coupled
to establishment of mature osteoblasts and bone per se in the grafts
[33]. In these systems, phenotypic long-term hematopoietic stem cells
of the host colonize the graft in significant numbers, along with a com-
plete array of assayable hematopoietic progenitors and lineages [46].
Similar studies in the mouse also pointed to a specific role of skeletal
(mesenchymal) stem cells as “niche” cells [34], further promoting the
search for a niche cell coinciding with a perivascular stromal progenitor
in themouse, and identifiable by a specific marker (e.g., nestin or leptin
receptor) [60–62]. That bone and hematopoiesis are two interacting
systems rather than just two strange bedfellows can be seen as a classi-
cal notion, perhaps underappreciated. The new data generated in the
last ten years, however, directly point to a dual system of stem cells
interacting with each other, a scenario that finds only rare matches in
Drosophila [63], but otherwise quite unique in vertebrate systems.
However, Schofield's concept of the niche as a fixed saturatable micro-
anatomical site, while still pursued in the form of individual niche
cells, expressing individual genes and proteins, was based on assump-
tions that reflect a specific set of data obtained in a specific experimental
layout, and also the mindset of hematology at large; that is, on data
based on transplantation of hematopoietic progenitors into a “bone” as-
sumed to be afixed entity. In a “bonehead”mindset, bone remodels, and
so does themarrow stroma, alongwith the vascularity common to both
bone and marrow. Furthermore, the transplantation of stroma reverses
the logic of hematopoietic progenitor transplantation; the latter recapit-
ulates hematopoietic ontogeny against a fixed microenvironment; the
former recapitulates the ontogeny of the microenvironment against a
fixed, steady state hematopoiesis. It is blood-borne hematopoietic pro-
genitors that populate heterotopic bone organoids, and they do so
while the organoid develops. Therefore, heterotopic transplants repre-
sent the only model available in which human bonemarrow can be dy-
namically investigated as it develops. The niche might coincide with a
ective, Bone (2014), http://dx.doi.org/10.1016/j.bone.2014.08.011
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developmental process more than with a definable microentity; past
the developmental stage, it would remain as being dispersed across
the skeleton, and subject to constant remodeling and adaptation events
involving multiple cell types within, precisely, the stromal system.
Implications of the niche concept for disease, however, are huge. They
involve hematopoietic and non-hematopoietic cancer, their develop-
ment and local promotion;myeloproliferative andmyelodysplastic syn-
dromes; and of course, the kinetics of homing and engraftment of
hematopoietic progenitors as used in clinical protocols [64].

Stem cells and bone medicine

Understandably, the first applicative use thatwas envisioned as a re-
sult of the notion of stem cells for bone and other skeletal tissues was
their use for engineering bone and other skeletal tissues [65–68]. This
remains a highly viable avenue, rooted into a simple and solid concept
withmore than a reasonable amount of solid biology behind it. The abil-
ity of bone marrow stromal cells to generate histology-proven bone
in vivo by local transplantation has been repeatedly proven by a number
of laboratories around the world (reviewed in [69]), using a number of
variations of the same fundamental approach. Indeed, the idea of using
these grafts orthotopically for reconstructing skeletal segmental defects
[67] represents a direct extension of the very assay used for proof-of-
principle. Issues at hand include systems for efficient scale-up that
allows for retention of the fundamental, desired property (osteogenic
capacity), or the design of the optimal construct combining cells and
biomaterials. Much of the initial delay in the latter area came from the
adoption of paradigms that were borrowed from the previous era of
(cell-free) bone tissue engineering, such as the need to design “porous”
scaffolds to allow for vascular ingrowth. Organization of an efficient vas-
cularitywithin the graft-generated tissues is crucial, butmay be thought
of in a more dynamic way in which space captured by the scaffold may
not be essential. In view of the perivascular location of skeletal progen-
itors in experimental heterotopic grafts [33], it also follows that the de-
velopment of a proper vascularity must include the establishment of a
reservoir of skeletal progenitors in the graft [70]. Recent developments
have generated a variety of approaches for the choice of material and
the design of scaffolds, and a noted promising development rests with
the potential use of constructs in which the scaffold coincides with a
“natural” extracellular matrix made by the same osteoprogenitor cells
[46,71,72], which may recapitulate, to some extent, processes oper-
ating in natural bone development, including the establishment of
a perivascular compartment of functional progenitors.

This first-generation use of stem cells in surgerywas followed by the
attempt to target the skeleton systemically through intravenous
infusion, in order to treat systemic (genetic) skeletal diseases [73]. This
approach was not as biologically grounded as the surgical approach,
given the inability of systemically infused skeletal stem cells to home rou-
tinely and efficiently to the skeleton [74]. Strategies to improve homing of
skeletal stem cells are being pursued [75,76], as covered elsewhere in this
issue. Of note, other hurdleswould still stand in theway, even if the hom-
ing issue were resolved; that is, to reconcile the strategy of cell replace-
ment with the slow turnover time of the skeleton. Regeneration of
blood and epithelial tissues rests directly on their rapid turnover, which
translates into rapid regeneration. In bone, turnover is slow, and regener-
ation would have to recapitulate development and post-natal growth of
skeletal segment, but in a highly accelerated way.

Beyond the use of cells as therapeutic tools or vehicles, skeletal stem
cells provide a novel angle on disease mechanisms, which might be
targeted, in the end, by a pharmacological approach. More in general,
the role that rare diseases have come to play in medicine cannot escape
attention. Since the signing of the Orphan Drug Act signed by President
Reagan in 1983, rare diseases have become a profitable pathway for
pharma industry. In the same way as several drugs developed as
“orphan” later came to represent innovation of much broader impact
and with much broader market, rare diseases encrypt fundamental
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developmental mechanisms, targeting of which has often broad impli-
cations. Advances in understanding bone development have been spec-
tacular over the past 30 years; capitalizing on these developments, and
focusing on the cell biology of stem cells and the stromal system in bone
predicts further advances in all those instances in which disease mech-
anisms rest on disruption of adaptive physiology of bone as an organ.

Bone and “mesenchymal” stem cells

The biological entity defined by the work of Friedenstein and Owen,
and others, i.e. a putative stem cell for skeletal tissues found the bone
marrow stroma, was renamed “Mesenchymal stem cell” in 1991 [77].
At about the same time, the first company was created to develop
“mesenchymal stem cells” as a commercial product. The overlap of the
“mesenchymal stem cells” in bone marrow with the biological object
previously called “osteogenic” or “stromal” stem cell is obvious from
the key papers that introduced “MSCs” [77,78]. It is also crystallized in
the key criteria later issued for defining “MSCs” and widely accepted:
i.e., their ability to generate bone, cartilage and adipocytes [79], the his-
tological components of the bone–bone marrow organ that represent
the progeny of skeletal stem cells as originally conceived. The introduc-
tion of the term “mesenchymal stem cells” coincided however with the
introduction of a different biological concept. In the new concept, the
putative “MSC” would represent a progenitor for both skeletal and
extraskeletal derivatives of mesoderm, all viewed as part of “mesen-
chyme”, all generated through a putative “mesengenic process” in de-
velopment [77,80]. Mesenchymal stem cells would be entirely defined
by in vitro properties and phenotype, gauged through non-stringent
criteria and artificial in vitro assays (prone to artifacts and misinterpre-
tation) [79]. In the mainstream inaugurated by the new views, others
conceived the bone marrow stromal progenitor cells as stem cells for
non-hematopoietic tissues [81] (quite a broad range of tissues of diver-
gent lineage and functions), including derivatives of germ layers other
than mesoderm such as neurons or liver cells, making “MSCs” (or sub-
sets thereof) a postnatal version of pluripotent cells [82,83]. These ini-
tially appealing concepts, unlike the concept of a skeletal stem cell,
have not withstood time and experimental scrutiny and are no longer
widely entertained. Nonetheless, they did have a lasting impact. Before
the introduction of technologies for reprogramming somatic cells into
genuine pluripotency, a number of attempts to regenerate non-
skeletal tissues with “MSCs” were made in preclinical models and clin-
ical trials. The hope to develop “novel therapies” for major diseases
was the leit-motif of such attempts, which were based on an assumed
(and yet never truly proven) ability of MSCs to generate non-skeletal
cell types. Many of these hopes, in turn, failed towithstand serious scru-
tiny (see for example, the recent DAMASCENE metaanalysis on the use
of bone marrow cells for ischemic heart disease [84]). Granting the sta-
tus of “innovation from discovery” to what was merely a seductive but
unproven hypothesis, however, contributed to promotewith the public
the unauthorized use of unproven cell therapies aiming at commercial
exploitation of the severely ill — even very recently, even in affluent
countries [85].

Complementary to the hypothesis that “MSCs” potential would not
be restricted to skeletal tissues was the idea that MSCs could be found
in non-skeletal tissues. This idea became prevalent about a decade ago
as a result of the looking at multiple tissues using non-adequate biolog-
ical criteria for identifying the stem cells being sought [79,86]. Following
the identification of bonemarrow skeletal stem cells (i.e., the archetypal
“MSCs”) as perivascular cells [33], the same experimental approach and
the same conceptual implications were extrapolated to claim that
perivascular cells (“pericytes”) are the in situ counterpart of “MSCs” in
all tissues [87,88]. Perivascular progenitors do exist in multiple tissues,
including fat and muscle, both in humans and in mice. They do not rep-
resent “MSCs” or skeletal stem cells, however, but a diversified system
of tissue-specific progenitors (reviewed in [35,69]). The applicative
implications of either view are obvious: use of stem cells for bone
ective, Bone (2014), http://dx.doi.org/10.1016/j.bone.2014.08.011
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regeneration, for example, is highly dependent on the genuine, inherent
osteogenic capacity of the chosen cell population, which implies choos-
ing the appropriate tissue source (bone marrow or periosteum, but not
fat or muscle or umbilical cord). Downstream of their unwarranted
equationwith “all pericytes”, more recent versions of the “MSC” concept
capitalize on properties that pericytes may exert in physiology, but are
not per se the functions of stemcells. Promotion or quenching of inflam-
mation, wound healing, control of tissue trophism via regulation of
blood flow, for example, can be seen as local functions of pericytes
[89], but not of stem cells. These functions resonate in the “trophic,
anti-inflammatory, immune modulatory” properties that are invoked
to underpin the empirical use of infusions of skeletal (or connective
tissue) cells in a broad range of severe non-skeletal diseases unrelated
to one another[80,90], for which MSCs provide no chances of cure
(reviewed in [35]). Such use of cell infusions outside of a precise para-
digm for tissue regeneration, and in the lack of a rationale, has anteced-
ents noted in the history of medicine [91,92], but no record of positive
outcome or achievement. Some refer to the legacy of those century-
old experiences, still reproduced for commercial purposes today, as
“dark cell therapy”, as opposed to mainstream tissue regeneration
attempts.

Into the new history

It is impossible to grasp the origin and the general significance of
these conspicuous trends in the science of bone stem cells without plac-
ing these trends into their context. Conversely, the evolution of the sci-
ence of stem cells in bone provides perhaps the most effective example
of the impact of societal trends on present-day science. The post-WWII
paradigm of R&D in biomedicine, as outlined in the famous document
by Vannevar Bush, “Science, the Endless Frontier” [93] had a pivotal
role in creating the contemporary biomedical science that flourished
in the West after WWII. This paradigm is currently replaced by the
“translational” paradigm. It is indeed a historical change [94,95]. The
change begins in the 1980s and it is intertwinedwith profound changes
in Western economies, in industrial strategies, in private and public
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1960 1970 1980

End of WWII
Warfare effects of radia�on
Strategic interest in radioprotec�on

Science, the endless fron�er (Vannevar Bush) 
Government-driven biomedical science

Bahy-Do
Orphan D
End of Co
Monetar
R&D out
Start-ups
Biotech

1957 First BMT in humans
1961 Hematopoie�c Stem Cells, first evidence
1961 Heterotopic transplanta�on of bone marrow

Osteogenic poten�al in bone marrow 
Osteoinduc�on by transi�onal epithelium

1963 Osteoprogenitors 
1965 Osteoinduc�on by bone matrix
1968 Hematopoie�c Microenvironment in vivo
1970 BMP concept, postulate
1973 Bone marrow stroma maintains HME in vitro 
1978 Hematopoie�c niche concept  (Schofield)
1970-80’s Osteogenic stromal cells iden�fied as clonogenic    

progenitors; some clonogenic progenitors are mul�poten
represent a new class of stem cells in BM. Heterotopic 
transplanta�on remains the experimental mainstay

1988 BMSCs include puta�ve stromal stem cells – ripe concept
disseminated; self-renewal and iden�ty remain unproven

1945

Fig. 3.Diagram briefly summarizing themain achievements and shifts in paradigm over the las
climate in the West, reflected in scientific policies.
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policies for R&D (Fig. 3). The birth of biotech industry, the outsourcing
of industrial R&D to academia, to publicly funded science, and to small
and medium enterprises are part of the current context and of the
globalization process [94]. Together, these changes result in the push
for rapid development of marketable products. The long-term, public
funding of science deemed as of strategic interest between 1945 and
the 1980s is nowmassively replaced by a “short-termist” view of invest-
ment [96]. As stem cells come to center stage as likely tools for novel ap-
proaches tomedicine, governments and theprivate sector alike demand
short-term return of their investment in R&D in the guise of marketable
products. In a financial rather than industrial business model, the ap-
proach itself, or the hope itself (rather than a tangible object such as
an effective therapy) become the marketed commodity [97]. The mar-
keting of immature approaches to therapies [98,85] then generates so-
cietal, medical and scientific issues. The societal issues are exemplified
by the frequent use of “MSCs” in the despicable “stem cell tourism”

around the world [99], and by the push to legalize their marketing
ahead of any proof of efficacy [100]; medical issues, by the resurgence,
particularly among some academic physicians, of a prescientific empirical
approach to medicine, which had taken centuries to overcome [101]. At
this time, almost 400 underpowered clinical trials around the World,
mostly in the East and the Caribbean, use intravenous MSCs in patients
with severe diseases that are not only without a cure, but also without a
chance of being cured by intravenous infusions of MSCs. Scientific issues,
lastly, are exemplified by the diffusion of scientifically feeble andmedical-
ly ungrounded notions, which permeate a vast scientific literature and do
not spare even the most prestigious venues for publication. Bone stem
cells (“MSCs”) cannot cure autism or stroke as claimed. History records
major examples of how ideology (religious or political) can disseminate
non-scientific misbeliefs and hold them in the face of, or against, sci-
entific evidence. The power of rising commercial interests to do the
same is a novelty of this stretch of history. At a glance, it seems to
contradict the historical alliance of economic development and rigorous
science as a source of technology, medical technology included. In eco-
nomics, however, it is a known fact (Gresham's law) that “bad money
drives the good one out”.
1990 2000 2010

Transla�onal Medicine
Stem Cell companies 
The Regenera�ve Medicine Industry
Unproven MSC therapies, tourism

le Act
rug Act
ld War

ism rises
sourcing

t; may 

, 

1991 BMSCs renamed “MSCs,” claimed to 
generate skeletal, non-skeletal �ssues

1992 Company to commercialize MSCs
1998 Human Pluripotent Stem Cells (ES cells)
1990-00 Bone �ssue engineering, bone diseases
1999 “MSCs” as “adult stem cells” in hBM
2000-06 Pluripotency of MSCs claimed
2006 iPS Cells developed; criteria for “MSCs” 

changed, nonspecific; “MSCs” claimed to 
exist in all �ssues

2007 Self-renewal (stemness) of BMSCs. 
“MSCs” are perivascular BM stromal cells
Human perivascular stromal stem cells 
make HME/niche

2008 “MSCs” claimed to coincide with pericytes 
in all �ssues, 

2011 MSCs as“drugstores,” commercial en�ty
2010- Perivsacular “MSCs” func�on as “niche”

cells also in mice 

t 70 years in the science of stem cells and bone, and in the general political and economical
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The history of stem cells in bone is deeply intertwined with the his-
tory of theworld over the last 70 years. Between 1945 and 1980s, it pro-
vides the most impressive example of how the paradigm of the time,
sculpting a strategic role of science and of its public funding, worked
productively: bone marrow transplantation, hematopoietic stem cells,
and skeletal stem cells are all the legacy of those decades, and of the
post-War view of science and medicine in society. Between the 1980s
and present day, a “historical” look at stem cells in bone gives a glimpse
on the effects on science and science policies of changing commercial
interests, which tend to replace and displace a strategic (beyond the
military sense) role for science in society in peacetime. Still, the history
of stem cells in bone is replenished, throughout the 70 years, with
major intellectual, scientific and medical advances. As articles in this
issue show, more advances in biology, medicine and technology in a
number of areas from cancer to genetic diseases are in sight, making sci-
ence itselfmore viable and creative than the frame of policies inwhich it
has lived in the last two decades.
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