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c DEIS, Università di Bologna, Via Venezia 52, 47521 Cesena, Italy
Received 16 January 2012; accepted 20 February 2012
Available online 3 March 2012
*

E

m

(A

10

El

Pe

do
KEYWORDS

adaboost;

Random subspace;

Editing approaches;

Multiclassifier systems;

Pattern classification
Corresponding author.

-mail addresses: loris.nann

issouristate.edu (S. Bra

. Lumini).

18-3647 ª 2012 King Saud

sevier B.V. All rights reserve

er review under responsibilit

i:10.1016/j.jksus.2012.02.001

Production and h
i@unipd

hnam),

Universit

d.

y of King

osting by E
Abstract In this paper wemake an extensive study of different combinations of ensemble techniques

for improving the performance of adaboost considering the following strategies: reducing the corre-

lation problem among the features, reducing the effect of the outliers in adaboost training, and pro-

posing an efficient way for selecting/weighing the weak learners. First, we show that random subspace

works well coupled with several adaboost techniques. Second, we show that an ensemble based on

training perturbation using editing methods (to reduce the importance of the outliers) further

improves performance. We examine the robustness of the new approach by applying it to a number

of benchmark datasets representing a range of different problems. We find that compared with other

state-of-the-art classifiers our proposed method performs consistently well across all the tested data-

sets. One useful finding is that this approach obtains a performance similar to support vector machine

(SVM), using the well-known LibSVM implementation, even when both kernel selection and various

parameters of SVM are carefully tuned for each dataset. The main drawback of the proposed

approach is the computation time, which is high as a result of combining the different ensemble tech-

niques. We have also tested the fusion between our selected committee of adaboost with SVM (again

using the widely tested LibSVM tool) where the parameters of SVM are tuned for each dataset. We

find that the fusion between SVM and a committee of adaboost (i.e., a heterogeneous ensemble) sta-

tistically outperforms themost used SVM toolwith parameters tuned for each dataset. TheMATLAB

code of our best approach is available at bias.csr.unibo.it/nanni/ADA.rar.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

A generic machine learning system takes raw data from some
input source, preprocesses and transforms the input to reduce

noise and to enhance correlation in the data, and then extracts
relevant features. System parameters are then continuously
fine-tuned until it optimally learns from a training set of data

to assign predefined labels to unknown samples in a testing set.
Most problems, such as face recognition and finger print
identification, use well-known benchmark datasets to test
and compare the merits of novel systems. Until recently, these
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databases contained relatively small and simple sets of data:

photographs of faces and images of finger prints, for instance.
Today, however, data are far more complex, mainly because
data collection and storage have become increasingly cheaper.
Scientists are interested in exploring complex relationships be-

tween multiple sources of information that define more prob-
lems. In medicine, for example, ultrasound images, patient
demographic information, and readings from a variety of lab-

oratory tests may all contain vital information regarding par-
ticular diseases and outcomes. Increasingly, practitioners are
urging researchers to develop computational tools that are

capable of handling the current data-rich environments.
To handle complex aggregates of information there is a

growing need to develop general-purpose classification meth-

ods. Unfortunately, the majority of research in machine intel-
ligence has concentrated on developing methods that work
optimally only on well-defined and very specific problems.
To handle the complexity of modern data, researchers need

to refocus the research agenda to include systems designed to
handle a broad spectrum of problems and data types. Ideally,
these general-purpose systems would require little parameter

tuning and would compete well with less flexible, state-of-
the-art methods that have been designed for specific problems.
Some recent research along this line includes the work of

(Bologna and Appel, 2002; Liu and Huang, 2008; Nanni and
Lumini, 2008b, 2006; Güvenir et al., 1998).

A promising technique for handling complex datasets is to
build multiclassifier systems, or classifier ensembles (Kuncheva

and Whitaker, 2003). The basic idea behind this technique is to
average the hypotheses of a diverse group of classifiers in order
to produce a better approximation to a true hypothesis (Kit-

tler, 1998). A basic method for building an ensemble is (1) to
generate K new training sets starting from the original training
set; (2) to train a different classifier for each of the K new train-

ing sets; and (3) to combine the K classifiers using a decision
rule. As discussed more completely in Section 2, many meth-
ods are available for aggregating the decisions of the classifiers.

In this paper our aim is to investigate several ensemble ap-
proaches for improving adaboost. A well-known problem with
adaboost stems from the fact that it is a sequential forward
search procedure that uses the greedy selection strategy; thus,

redundancy of the weak learners cannot be avoided. To handle
this problem, Dezhen and Kai (2008) have proposed a post
optimization procedure that removes redundant classifiers

using a GA.
Another problem with adaboost is that it overfits very noisy

data (Ratsch et al., 2001; Servedio, 2003). At each iteration in

the training process, adaboost tends to focus on classifying the
misclassified patterns, too often fitting the noise during train-
ing. To avoid overfitting, a technique known as BrownBoost

(Freund, 1999) was developed. It gives smaller weights to mis-
classified patterns that are far from the margin. A ‘‘soft mar-
gin’’ method that does not give preference to hypotheses
extracted from few patterns with large weights due to continu-

ous misclassification is proposed by (Ratsch et al., 2001). An-
other method is to weigh each pattern by considering the initial
probability, as in MadaBoost proposed by (Domingo and

Watanabe, 2000). Two other methods, based on the upper
bound so that no one pattern can have too much weight, are
SmoothBoost (Servedio, 2003) and NadaBoost (Nakamura

et al., 2002). In (Bylander and Tate, 2006) a different approach
is used where half the training set is removed to form the
validation set. adaboost is applied to the validation set creating

a modified set of weights. The training and validation sets are
then switched, and a second pass is performed. The final clas-
sifier votes using both sets of weights. The basic idea here is to
reduce overfitting using a validation set extracted from the

training set. Another interesting approach is boosting at start
(BAS) (Milidiú and Duarte, 2009), it is an adaboost generaliza-
tion method that selects any initial weight distribution for the

patterns. This process is repeated over N iterations, and a sub-
set of the best BAS members are selected to form a committee
for improving the performance. Yet another approach is to use

editing techniques to cut the outliers from the training set. In
(Nanni and Franco, 2011), for example, an ensemble of ada-
boost is proposed where each adaboost classifier is trained

using a different training set extracted by editing techniques.
In this paper we propose a double committee (i.e., an

ensemble of ensembles) for improving the performance of
adaboost-based approaches. Our first set of experiments com-

pares several adaboost approaches and their combinations
using random subspace. We show that random subspace
ensembles are very useful when coupled with several ada-

boost methods, as well as with RotBoost. Moreover, coupling
adaboost with an editing approach ensemble, which reduces
the importance of outliers, results in further performance

improvement.
The remainder of this paper is outlined as follows. In Sec-

tion 2 we present our proposed ensemble method. In Section 3
we apply our ensemble method to a diverse set of benchmark

datasets to examine its flexibility and accuracy. Finally, in Sec-
tion 4, we summarize our results and make suggestions for fur-
ther research.

2. Background on classifier ensembles

There are many methods for creating ensembles of classifiers.
One of the most common methods is to use some form of pat-
tern perturbation. In pattern perturbation, new training sets
are created by changing the patterns in the original training

set, usually via an iterative process. Some common methods
for accomplishing this goal include bagging (Breiman, 1996),
arcing (Bologna and Appel, 2002), class switching (Martı́nez-

Muñoz and Suárez, 2005) and decorate (Melville and Mooney,
2005). In bagging (Breiman, 1996), the new training sets,
S1,. . ., SK, are subsets of the original training set. In arcing

(Bologna and Appel, 2002), each new training set is calculated
based on the misclassified patterns in a previous iteration. In
class switching (Martı́nez-Muñoz and Suárez, 2005), K train-

ing sets are created by randomly changing the labels of a subset
of the training set. In decorate (Melville and Mooney, 2005),
the training sets are obtained by adding patterns that the com-
bined decision of the ensemble misclassifies. In boosting/ada-

boost (Freund and Schapire, 1997), each training pattern is
given a weight that increases for patterns that are more diffi-
cult to classify.

Feature perturbation is another method that generates new
training sets. Some of the more common feature perturbation
techniques include random subspace (Ho, 1998), and input

decimated ensemble (Tumer and Oza, 2003). In random sub-
space (Ho, 1998), K new training sets are generated from sub-
sets of the feature set. In input decimated ensemble (Tumer

and Oza, 2003), the new training set Si is generated via the
principal component analysis (PCA) transform. PCA is
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calculated on the training patterns that belong to class i. How-

ever, a disadvantage in input decimated ensemble is that the
size of the ensemble is bounded by the number of classes. This
limitation can be avoided, as in (Nanni and Lumini, 2008a,b),
where PCA is performed on training patterns that have been

partitioned into clusters. Additional feature perturbation
methods include (Ranawana and Palade, 2005), where neural
networks are trained on different encoding models for identify-

ing Escherichia coli promoter sequences in strings of DNA.
Similarly, in (Guo and Lin, 2006) training sets are built using
various combinations of features specific to the problem.

Classifier perturbation is yet another way to build ensem-
bles. In this case, ensembles are composed either by using dif-
ferent types of classifiers or by using the same type but with

different parameter settings. In both cases, the ensembles are
trained on the same training set and the decisions are com-
bined. Some examples include (Lan et al., 2007), where the
decisions of five different classifiers (logistic regression, linear

discriminant analysis, quadratic discriminant analysis, naive
bayes, and K-nearest neighbors) were combined using a
weighted-vote decision rule to predict which genes responded

to stress, and (Nanni and Lumini, 2007), where three radically
different classifiers (a linear support vector machine, a nonlin-
ear radial-basis support vector machine, and a Karhunen-

Loeve subspace) were combined to solve a variety of problems.
Finally, ensembles can be composed using a combination of

the above methods. Some examples of hybrid methods include
random forest (Breiman, 2001), rotation forest (Rodriguez

et al., 2006), and RotBoost (Zhang and Zhang, 2008). Random
forest (Breiman, 2001) uses a bagging ensemble of decision
trees, where a random selection of features are used to split

a given node. Rotation forest (Rodriguez et al., 2006) is an
ensemble of decision trees, where K new training sets are gen-
erated using PCA projections on subsets of the training pat-

terns. Independent component analysis (ICA) has been used
as a feature transform for building a rotation forest ensemble
in (Nanni and Lumini, 2008a,b; Liu and Huang, 2008). Rot-

Boost (Zhang and Zhang, 2008) ensembles are constructed
from decision trees that combine rotation forest and adaboost.
RotBoost has been shown to outperform bagging, MultiBoost,
rotation forest, and adaboost (Zhang and Zhang, 2008). Rot-

Boost is also one of the first methods that outperformed stand-
alone ensemble methods.

As mentioned in the introduction there are several methods

for aggregating results: majority voting, sum rule, max rule,
min rule, product rule, median rule, and borda count, to name
some of the most common. In (Kittler, 1998), the sum rule, or

averaging, was shown to outperform most decision rules.

3. Proposed ensemble system

After extensive investigation, we found that the best general-
purpose classifier system tested in our experiments is a multi-

classifier system that combines the random subspace approach
with an editing approach ensemble that reduces the impor-
tance of the outliers. Because our intention is to develop a gen-
eral-purpose classifier, all the parameters in our proposed

system had to remain the same, regardless of the dataset. In
other words, no ad hoc dataset tuning was allowed. Below
we provide a short description, along with an algorithmic out-

line, of our best systems.
3.1. Random subspace (RS)

RS (Ho, 1998) reduces dimensionality by randomly sampling
subsets of features. In our experiments, we use 50% of all fea-

tures. RS modifies the training data set by generating K
(K= 50 in our experiments) new training sets and generates
classifiers using these modified training sets. The results are

combined using the sum rule.
Outline of random subspace: The random subspace ensem-

ble method entails three steps as outlined in (Ho, 1998):

1. Given a d-dimensional data set D = {(xj, tj)|1 6 j 6 m},
xjeXRd tjC = {1,...,c} is the label class of xj, n new pro-
jected k-dimensional data sets Di = {(Pi(xj), tj)|1 6 j 6 m

} are generated (1 6 i 6 n), where Pi is a random projection.
2. Each new data set Di is given in input to a fixed learning

algorithm L which outputs the classifiers hi.

3. The final classifier h is obtained by aggregating the base
classifiers through a given decision rule.

3.2. Reduced reward-punishment editing (RRP)

In the reward-punishment editing technique (Nanni & Franco,

2011) both global and local criterion are used to obtain a more
reliable result. In the reduced version (RRP), only local crite-
rion is used for selecting the patterns that are to be removed

from the training set. This is accomplished by assigning two
weights to each pattern, xi, as follows:

1. WR(i): denotes the number of times pattern xi belongs to a
‘‘winner hypersphere’’. That is it counts the number of
times when it contributes to the correct classification of
another pattern.

2. WP(i): denotes the number of times pattern xi belongs to a
‘‘loser hypersphere’’. That is it counts the number of times
when it contributes to the wrong classification of another

pattern.

WR(i) and WP(i) are both linearly normalized between 0

and 1. The final weight of WF(i) is calculated as follows:
WF(i) = a·WR(i) + (1�a)((1�WP(i)). Only the h percentage
(see below) of the patterns with highest weight is retained.

Pseudo-code for the reduced RP-Editing algorithm is given
in Fig. 1. This function has the following input parameters:

� Training set TS.

� Class labels CL of the training patterns.
� Values of the parameters of the RP-Editing algorithm: k, a,
and h.

In the pseudo-code of the reduced RP-Editing algorithm
the following procedures are used:

� K-NN(x, S, k): classifies the pattern x using the k-NN clas-
sifier built using set S;
� Normalize: linearly normalizes the values of WR and WP

between 0 and 1.
� RankAndEdit (TS,WF, h): sorts the patterns in the training
set TS in decreasing order of score (WF). It retains only the

first h percentage patterns in TS.



Figure 1 Pseudo-code of the reduced RP-Editing algorithm (from (Nanni & Franco, 2011)).

1 http://archive.ics.uci.edu/ml/
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In building the multiclassifier system, all the training sub-
sets are obtained using all the combinations of a0, 0.25, 0.5,
0.75, 1, h10%, 22.5%, 35%, 47.5% and k1, 3, 5, 7, 9. Also,

if a given training set has less than two patterns for each class,
it is discarded from the ensemble.

4. Experimental results

For comparing our general-purpose system with other state-
of-the-art methods, we report results obtained on the following
benchmark datasets, most of which are available in the UCI
Repository.1 First, we test the following UCI datasets (a de-
tailed description of these databases is available on the UCI

machine learning website at http://archive.ics.uci.edu/ml/):

1. The breast cancer dataset (BREAST)
2. The heart disease dataset (HEART)

3. The Pima Indians dataset (PIMA)

http://archive.ics.uci.edu/ml
http://www.archive.ics.uci.edu/ml


Table 1 Characteristics of the datasets used in the experi-

mentation: A is the number of attributes, E is the number of

patterns, and C is the number of classes.

Dataset A E C

BREAST 9 699 2

HEART 13 303 2

WDBC 30 569 2

PIMA 8 768 2

VEI 18 946 4

IONO 34 351 2

VOW 10 528 11

CreditG 20 1000 2

WINE 13 178 2

HIV 50 362 2

SONAR 60 208 2

He 56 862 10

LE 56 502 10

LT 56 553 10

CH 56 327 5

RN 56 200 10
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4. The Wisconsin breast dataset (WDBC)

5. The Ionosphere dataset (IONO)
6. The vehicle silhouettes dataset (VEI)
7. The vowel dataset (VOW)

8. The German credit (CreditG)
9. The wine dataset (WINE)

10. The sonar dataset (SONAR)

We also test our approach using the HIV dataset2 (HIV)
and five medical image classification problems3: 1) 2D HeLa
dataset (HE) (Boland and Murphy, 2001); 2) locate endoge-

nous (LE) (Fink et al., 2006); 3) locate transfected (LT) (Fink
et al., 2006); 4) CHO dataset (CH) (Shamir et al., 2008); and 5)
RNAi (RN) (Shamir et al., 2008).

Table 1 summarizes the main characteristics of the datasets
in terms of the number of attributes (A), patterns (E), and clas-
ses (C).

We use a standard evaluation protocol in our experiments.
As is the custom in many classification experiments, the fea-
tures are linearly normalized between 0 and 1. Results for each
dataset are averaged over ten experiments. We randomly

resample the learning and the testing sets (containing respec-
tively half of the patterns) while maintaining the distribution
of the patterns in the classes for each experiment. This resam-

pling is done ten times as well. The results are reported as the
area under the ROC curve (AUC). AUC is a scalar perfor-
mance indicator that can be interpreted as the probability that

the classifier will assign a higher score to a randomly picked
positive pattern rather than to a randomly picked negative pat-
tern. For the multiclass datasets we use the one versus all ap-
proach for calculating the area under the ROC curve.

In the first set of experiments, we compare several ap-
proaches for building adaboost classifiers. Each cell of the ta-
ble contains two values. The first is the performance obtained

using the standard approach, and the second is the perfor-
mance obtained using a random subspace (RS) of 50 adaboost
classifiers (i.e., 50 · 50 weak classifiers, if each adaboost com-

bines 50 weak classifiers).
In Table 2 we report the performance obtained by the fol-

lowing systems (for each adaboost method 50 weak classifiers

are combined):

� RotB (RotationBoosting): the method proposed in (Zhang
and Zhang, 2008).

� Real (RealAdaboost): as implemented in GML adaboost
MATLAB Toolbox, using the decision tree as classifier
(Schapire and Singer, 1999).

� Gentle (GentleAdaboost): as implemented in GML ada-
boost MATLAB Toolbox, using the decision tree as classi-
fier (Friedman et al., 2000).
2 Dataset used in T. Rögnvaldsson and L. You. ‘‘Why neural

networks should not be used for HIV-1 protease cleavage site

prediction’’. Bioinformatics, 20, pp. 1702–1709 (2004) after the

orthonormal encoding the data are projected by principal component

analysis in a 50-dimensional space.
3 Each image is described by rotation invariant uniform bins

extracted by local ternary patterns (Tan and Triggs, 2010), let us

define P as the number of pixels in the neighborhood, R as the radius

and s the threshold used for extracting the ternary coding. The feature

vector that describe an image is obtained concatenating the descriptors

obtained with (P = 8, R= 1) and (P = 16, R = 2), both with

threshold s = 2.
� Modest (ModestAdaboost): as implemented in GML ada-
boost MATLAB Toolbox, using the decision tree as classi-

fier (Vezhnevets and Vezhnevets, 2005).
� A (adaboost.M2): using a neural network as classifier.
� RA-s: the ensemble of modified RealAdaboost proposed in
(Gómez-Verdejo et al., 2010), in this approach a neural net-

work is used as the classifier.

The column AV reported in Table 2 reports the average per-

formance of a given method in the set of tested datasets. The
column DIFF is the improvement of the AUC between the
stand-alone version classifier and its random subspace version.

Analyzing the results reported in Table 2, we can draw the
following conclusions:

� The best performing ensemble method in the UCI datasets

is an RS of A.
� None of the tested classifiers generalizes better than any of
the others, i.e., none outperforms any of the others across

all the datasets (no free lunch theorem).
� RS ensembles prove quite useful except in RA-s.
� RS-RotB obtains the highest AUC in the image datasets; in

these datasets, the most used indicator in the literature is
accuracy (notice that these are multiclass problems). The
average accuracy of RS-RotB in these datasets is 90.24%,

while the average accuracy of RS-A is 92.29%.

We ran the Wilcoxon signed-rank test (Demsar, 2006) to
compare the results of different methods, as this method was

shown in (Demsar, 2006) to be the best approach for compar-
ing classifiers. The null hypothesis is that there is no difference
between the accuracies of couples of classifiers. We reject the

null hypothesis (level of significance 0.10) and accept that both
a random subspace of A and a random subspace of RS-RotB
are the best approaches.

For the next tests, A is selected as the classifier because of
its good performance in all the datasets (considering as well
its accuracy in the image datasets) and because is less compu-
tational power with respect to RotB (see Table 7). In Table 3,

we report the performance obtained by the following systems:



Table 2 Experimental results of methods on different datasets.

HEART SONAR PIMA IONO BREAST VEI VOW WDBC Credit

RotB 0.9140 0.9156 0.8094 0.9812 0.9911 0.9394 0.9947 0.9968 0.7875

0.9206 0.9331 0.8170 0.9847 0.9919 0.9396 0.9951 0.9961 0.7982

Real 0.8734 0.8987 0.7701 0.9747 0.9888 0.9020 0.9877 0.9938 0.7315

0.8910 0.9156 0.8010 0.9804 0.9908 0.9271 0.9909 0.9950 0.7330

Gentle 0.8827 0.9078 0.7707 0.9708 0.9857 0.9165 0.9891 0.9947 0.7449

0.8957 0.9250 0.7920 0.9776 0.9898 0.9246 0.9907 0.9955 0.7598

Modest 0.8741 0.8979 0.7919 0.9687 0.9877 0.7415 0.4358 0.9936 0.6895

0.8971 0.9169 0.8018 0.9758 0.9906 0.8172 0.4447 0.9959 0.7017

A 0.8893 0.9066 0.7848 0.9601 0.9865 0.9303 0.9890 0.9935 0.7167

0.9206 0.9351 0.8189 0.9777 0.9907 0.9369 0.9827 0.9959 0.7832

RA-s 0.9120 0.8857 0.8159 0.9476 0.9908 0.9220 0.9254 0.9989 0.8038

0.9189 0.8794 0.8101 0.9674 0.9914 0.9040 0.9149 0.9963 0.8121

WINE HIV HE LE LT CH RN AV DIFF (%)

RotB 0.9970 0.9515 0.9825 0.9953 0.9930 0.9989 0.9540 0.9501 0.4

0.9992 0.9573 0.9851 0.9957 0.9940 0.9993 0.9707 0.9548

Real 0.9825 0.9363 0.9725 0.7868 0.9840 0.9864 0.6215 0.8994 0.76

0.9950 0.9348 0.9750 0.7879 0.9335 0.9899 0.6671 0.9067

Gentle 0.9885 0.9331 0.9650 0.9826 0.9833 0.9736 0.8366 0.9266 0.98

0.9963 0.9344 0.9780 0.9862 0.9873 0.9845 0.8590 0.9360

Modest 0.9877 0.9337 0.9450 0.6175 0.5442 0.8659 0.3018 0.7860 3.2

0.9955 0.9426 0.9725 0.6818 0.6038 0.9677 0.3643 0.8169

A 0.9810 0.9543 0.9815 0.9921 0.9920 0.9992 0.9245 0.9363 1.47

0.9992 0.9568 0.9840 0.9928 0.9923 0.9995 0.9379 0.9503

RA-s 0.9992 0.9665 0.9801 0.9912 0.9875 0.9992 0.9125 0.9399 �0.04
0.9992 0.9651 0.9800 0.9910 0.9888 0.9992 0.9135 0.9395

The bold values are the highest performance in each dataset (i.e. each column of the tables).

Table 3 Experimental results of ensemble of random subspace of adaboost.

HEART SONAR PIMA IONO BREAST VEI VOW WDBC Credit

Rs-A 0.9206 0.9351 0.8189 0.9777 0.9907 0.9368 0.9825 0.9959 0.7832

Out-A 0.9155 0.9134 0.8160 0.9708 0.9898 0.9350 0.9805 0.9957 0.7992

ED-A 0.9220 0.9244 0.8160 0.9801 0.9901 0.9330 0.9781 0.9971 0.8014

WINE HIV HE LE LT CH RN

Rs-A 0.9992 0.9568 0.9840 0.9928 0.9923 0.9995 0.9379

Out-A 0.9987 0.9588 0.9789 0.9918 0.9918 0.9991 0.9355

ED-A 0.9993 0.9511 0.9769 0.9918 0.9925 0.9984 0.9344

The bold values are the highest performance in each dataset (i.e. each column of the tables).
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� Rs-X: a RS of 50 X.
� OUT-X: the RRP ensemble is combined with an RS of 50
X; in this method the training patterns cut by RRP are used

for training adaboost, but their weights are not changed
inside the adaboost algorithm.
� ED-X: the RRP ensemble is combined with an RS of 50 X;

this is the standard approach based on RRP. The training
patterns cut by RRP are NOT used for training adaboost.

The performance of all the methods reported in Table 3 is

very similar (no statistical differences using the Wilcoxon rank
test). From Table 3 we see that the best choice is to couple RS
with A, because Rs-A compared with the other methods has

the lowest computational demands. Notice that ED-A is an
interesting method since it is based on an editing approach
ensemble that reduces the importance of the outliers.
The next experiment, reported in Table 4, compares some
methods for selecting and weighting the weak learners. The in-
put consists of the scores obtained by each weak learner

weighed by the weight it obtained in that dataset. In this exper-
iment, we test the following methods (coupled with Rs-A):

� Sparse: the classifier selection method proposed in (Zhang

and Zhoum, 2011), we use the well-known Platt’s method
(Platt, 1999) for obtaining the probabilities from the weak
learners scores.

� Sel_AUC: a genetic algorithm for weighing each weak lear-
ner between 0 and 1. The fitness function is the AUC
obtained by the ensemble in the training set.

� Sel_SFFS: sequential forward floating is used for selecting
the weak learner classifiers. The fitness function is 1/
AU+ (1�W’)/W, where AU is AUC obtained by the



Table 4 Experimental results of weak learner selection/weighting.

HEART SONAR PIMA IONO BREAST WDBC VEI VOW Credit

Sparse 0.9210 0.9088 0.8201 0.9823 0.9910 0.9966 0.9350 0.9815 0.8088

Sel_AUC 0.9190 0.8940 0.8165 0.9795 0.9916 0.9958 0.9315 0.9800 0.8080

Sel_SFFS 0.9120 0.8870 0.8125 0.9762 0.9910 0.9950 0.9330 0.9805 0.8055

Rs-A 0.9206 0.9351 0.8189 0.9777 0.9907 0.9959 0.9368 0.9825 0.7832

WINE HIV HE LE LT CH RN

Sparse 0.9996 0.9584 0.9800 0.9940 0.9935 0.9989 0.9380

Sel_AUC 0.9996 0.9548 0.9825 0.9915 0.9950 0.9990 0.9350

Sel_SFFS 0.9996 0.9551 0.9836 0.9925 0.9925 0.9989 0.9365

Rs-A 0.9992 0.9568 0.9840 0.9928 0.9923 0.9995 0.9379

The bold values are the highest performance in each dataset (i.e. each column of the tables).

Table 5 Experimental results of KNORA,ORACLE and fusions with SVM.

HEART SONAR PIMA IONO BREAST VEI VOW WDBC Credit

RS-A 0.9206 0.9351 0.8189 0.9777 0.9907 0.9368 0.9825 0.9959 0.7832

ORACLE 0.9199 0.9345 0.8157 0.9810 0.9904 0.9355 0.9805 0.9963 0.7973

KNORA 0.9214 0.9246 0.8144 0.9796 0.9900 0.9365 0.9830 0.9971 0.8009

OpSVM 0.9146 0.9595 0.8224 0.9799 0.9925 0.9460 0.9929 0.9971 0.8134

E+ R 0.9215 0.9344 0.8152 0.9813 0.9905 0.9361 0.9820 0.9967 0.7834

S + R 0.9195 0.9499 0.8265 0.9836 0.9923 0.9478 0.9934 0.9971 0.8021

S + E+ R 0.9204 0.9490 0.8240 0.9827 0.9921 0.9472 0.9929 0.9972 0.7998

2 · S + R+ E 0.9169 0.9548 0.8276 0.9830 0.9926 0.9486 0.9937 0.9971 0.8031

WINE HIV HE LE LT CH RN RANK AV

RS-A 0.9996 0.9584 0.9840 0.9928 0.9923 0.9995 0.9379 5.6250 0.9503

ORACLE 0.9991 0.9523 0.9815 0.9932 0.9930 0.9988 0.9375 6.2500 0.9504

KNORA 0.9993 0.9516 0.9810 0.9925 0.9945 0.9990 0.9385 5.7500 0.9502

OpSVM 0.9984 0.9647 0.9862 0.9892 0.9930 0.9994 0.9393 4.3750 0.9555

E + R 0.9991 0.9567 0.9843 0.9940 0.9950 0.9993 0.9390 5.5000 0.9505

S + R 0.9994 0.9588 0.9869 0.9931 0.9958 0.9994 0.9447 3.3750 0.9556

S + E+ R 0.9995 0.9607 0.9874 0.9936 0.9959 0.9996 0.9510 2.8125 0.9558

2 · S + R+ E 0.9993 0.9612 0.9873 0.9939 0.9961 0.9996 0.9522 2.3125 0.9567

The bold values are the highest performance in each dataset (i.e. each column of the tables).

Table 6 Comparison when artificial outliers are created.

Dataset LIN RBF POL BEST

HEART 0.8948 0.8803 0.8745 0.9146

SONAR 0.8195 0.9452 0.8931 0.9595

PIMA 0.8182 0.8221 0.8220 0.8224

IONO 0.8557 0.9711 0.8751 0.9799

BREAST 0.9925 0.9877 0.9908 0.9925

VEI 0.9244 0.9110 0.9389 0.9460

VOWEL 0.8181 0.9717 0.9645 0.9929

WDBC 0.9920 0.9962 0.9901 0.9971

CreditG 0.8008 0.7557 0.6778 0.8134

WINE 0.9948 0.9982 0.9946 0.9984

HIV 0.9487 0.9395 0.9542 0.9647

HE 0.9567 0.9862 0.9843 0.9862

LE 0.9819 0.9869 0.9864 0.9892

LT 0.9778 0.9922 0.9930 0.9930

CHO 0.9928 0.9994 0.9974 0.9994

RNA 0.8897 0.9336 0.9351 0.9393

The bold values are the highest performance in each dataset (i.e.

each column of the tables).
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ensemble in the training set, W’ is the number of selected
weak classifiers, and W is the total number of weak

classifiers.

The weak learner selection is performed independently in

each training set obtained by RRP.
Analyzing the results reported inTable 4,we candraw the conclu-

sion that different approaches obtain a very similar performance
(there isnostatisticaldifferenceconsidering theWilcoxon rank test).

Finally, we attempt to improve the performance of our ap-
proach Rs-A by coupling it with the following:

� KNORA, the classifier selection approach proposed in (Ko
et al., 2008).
� Principal direction linear oracle (PDLO), this ensemble

classifier (Peterson and Coleman, 2007) is used to invoke
a linear hyperplane split of training patterns. It is a variant
of random oracle. The data of each of the two subsets

(obtained by splitting the training set using the hyperplane)
are used to train two different classifiers. For each test pat-
tern the hyperplane is used to choose which of the two clas-
sifiers is chosen to classify the given pattern.



Table 7 Comparison computation time.

Method PIMA HE

Training time Test time Training time Test time

RotB 38.36 0.97 355.56 12.50

Real 3.15 0.09 4.94 0.14

Gentle 1.56 0.09 4.93 0.14

Modest 1.55 0.09 4.71 0.15

A 4.48 0.14 26.51 3.15

RA-s 6.52 0.12 9.25 0.45

ED-A 1720 15.25 15200.50 225.25

RS-A 45.50 1.56 930.25 21.50

Table 8 Comparison using accuracy as performance

indicator.

Dataset RS-A OpSVM S+ R 2 · S + R + E

HE 91.05 90.70 91.40 91.63

LE 96.20 95.80 96.60 96.00

LT 95.45 94.55 95.45 94.73

CHO 98.77 99.08 99.38 99.08

RNA 80.00 79.50 82.00 82.00

Average 92.29 91.93 92.97 92.69

The bold values are the highest performance in each dataset (i.e.

each column of the tables).
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In Table 5 we also include for comparison purposes the per-
formance of the SVM (OpSVM), where the best kernel and the
best set of parameters are chosen separately in each dataset.
Moreover, in this table we report some fusions by sum rule/

weighted sum rule between OpSVM and our committee of
adaboost:

� E + R, fusion by sum rule between ED-A and RS-A.
� S + R, fusion by sum rule between OpSVM and RS-A.
� S + R + E, fusion by sum rule among OpSVM, ED-A and

RS-A.
� 2 · S + R+ E, fusion by weighted sum rule among OpS-
VM, ED-A and RS-A. The weight of OpSVM is 2, while

the other weights are 1.

It is interesting to note that Rs-A obtains a performance
similar to that of SVM (using the well know LibSVM imple-

mentation), even when both kernel selection and the various
parameters of the SVM are carefully tuned for each dataset.
We want to stress that the best method is 2 · S + R + E.

Using the Wilcoxon rank test, we reject the null hypothesis (le-
vel of significance 0.10) and accept that 2 · S + R + E outper-
forms the stand-alone SVM. This is the most significant

finding of this paper since it shows that our general-purpose
systems perform better than a finely-tuned SVM. Before the
fusions, the scores of classifiers must be normalized (we nor-

malize to mean 0 and standard deviation 1).
In Table 6 we show how important a careful tuning of the

SVM parameters is for each dataset by examining the
following:

� LIN: performance obtained by liner SVM using the best
average parameters (i.e., the parameters that obtain the

highest AUC average on the set of tested databases).
� RBF: performance obtained by radial-basis function SVM
using the best average parameters.

� POL: performance obtained by polynomial SVM using the
best average parameters.
� BEST: performance obtained by a SVM with the parame-
ters tuned for that dataset.

We have compared BEST with LIN, RBF, POL. In each
comparison we reject the null hypothesis with a very low level

of significance (0.05); it is clear that for SVM it is essential that
parameters be fine-tuned for each dataset4.
4 While for adaboost the parameters tuning is not so important since

several weak learners are combined together.
In Table 7 we report the computation time5 (in seconds) of

several adaboost approaches in two datasets PIMA and HeLa.
Notice that we report the performance for classifying the entire
testing set (154 patterns for PIMA and 172 patterns in HE).

The proposed approaches are thus suited for real application
even in cases demanding more computational time, given the
computation power of most modern PCs.

In Table 8 we compare some approaches in the image data-
sets using accuracy as the performance indicator. Accuracy is
less reliable than AUC, but in the medical literature this indi-
cator is widely used for assessing the performance of systems

using the image medical datasets used in this paper. We used
local ternary patterns (LTP) as the texture descriptor. LTP
the best performing texture descriptors used with in these

problems. Moreover, almost all the state-of-the-art approaches
use LibSVM as classifier. From the results reported in Table 8,
we observe that the fusion by sum rule between OpSVM and

RS-A outperforms OpSVM. This is another very interesting
finding of this paper, making RS-A a very useful system for
practitioners. In our opinion a heterogeneous system based

on an ensemble of unstable classifiers (decision trees or neural
networks) and strong classifiers (such as SVM) is the most fea-
sible way for trying to overcome as best as possible the ‘‘no
free lunch’’ hypothesis that there is no single classifier that

works best on all given problems, i.e., that ‘‘any two algo-
rithms are equivalent when their performance is averaged
across all possible problems’’ (Wolpert and Macready, 2005).

5. Conclusion

In this paper we attempted to discover new methods for build-
ing general-purpose ensembles of classifiers that would require
minimum to no parameter tuning and that would perform well

across a broad spectrum of classification problems. We per-
formed a number of empirical comparisons of several multi-
classifier systems using several benchmark datasets, and our
experimental results demonstrate that our new methods out-

perform other adaboost methods.
Unfortunately, we were not able to discover a single ensem-

ble method that outperformed all others across the tested data-

sets, (supporting the ‘‘no free lunch’’ metaphor). Nonetheless,
a number of significant practical findings are reported. We
show that the best approach (tradeoff between performance

and complexity) is obtained by combining random subspace
5 Core i5 750, 2.66 Ghz with 8G Ram runing MATLAB 2011a 64

bit.
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with an adaboost M2 using a neural network as classifier. In

addition, we developed an approach that does not require
careful tuning of parameters for each dataset, yet outperforms
other high performing methods, such as support vector ma-
chines. Since there is less risk of over-training using our new

method, it is well-suited for practitioners. Another interesting
finding is that random subspace can be coupled with several
adaboost methods for improving the performance.
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