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Introduction
If modern artificial intelligence (AI) comes often misunderstood, this is mainly due to the 
fact that, historically, it is solely tied to the way human brains work and think. New machine 
learning (ML) algorithms, instead, learn now by processing massive piles of data. This pro-
cess enables machines to adapt to real-world situations, as well as to propose suggestions 
on how to classify and interpret a variety of different real phenomena. Simply speaking, the 
deployment of modern ML systems into critical applications is directly influenced by the 
way training data are organized and modeled [1–3]. Hence, while those modern algorithms 
rapidly sift through huge datasets, loaded with millions of information, a thoughtfully 
designed AI, beyond its ML-based core, should never disregard the fact that algorithms that 
learn are, for now, just another form of machine instruction, still guided and influenced by 
the potential and the limitations that training data carry with them. In other words, even 
when we train algorithms to learn basic associations that can then be used to approximate, 
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or infer, some aspects of a given process, crucial remains the process of harnessing those 
piles of data into realistic findings. No matter how much sophisticated is the algorithm that 
will analyze a dataset, equally critical is the statistical validity, the sense, the references, the 
subtle implications, in one simple word: the semantics, being inherent in those data [4–6].

This exactly was the case of our controversial experience with a huge real-world dataset, 
fed with over 15 million water meter readings, supplied by a company that distributes water 
over a large area in Northern Italy. In this context, we were asked to design an ML-based 
intelligent classifier, able to predict if a water meter fails/needs disassembly, based on a his-
tory of water consumption measurements, thus minimizing the number of technical inter-
ventions performed by human operators for maintenance and repair.

Indeed, our initial attempts to train a recurrent neural network, without a specific atten-
tion to the quality, and to the limitations, of those data used for training, led to unexpected 
and negative prediction outcomes. Along this line of applied research, this paper reports on 
the combination of actions we had to take, in terms of statistical tests and data semantics 
to be enforced, to extrapolate from that large initial database just those training data that 
could make a sense, as well as that could safely represent the complex statistical phenom-
enon under observation, with the final target of training a machine able to predict a failure 
of a water meter, not only in a dataset but also in a real practical case.

As a result of these data modeling and re-organization activities, and upon completion 
of the training process on a safe subset of the initial dataset, our classifier upheld its per-
formance level, from approx. 60% to about 80–90%, in terms of prediction accuracy. None-
theless, this performance outcome came with the paradox of a statistical transformation of 
the initial dataset, thus confirming one of our research conjecture in this field: the need for 
millions of training data can become a non-issue, as compared to a paltrier training set that 
makes, instead, a learning algorithm much more realistically applicable.

Paper organization

The remainder of this paper is structured as follows. In the section devoted to “Related 
work”, we present the research background on which our study relies on. In “Methodology” 
section, we discuss the methods through which the initial dataset was remodeled, to make 
it adequate to be used for training several learning algorithms. In the section devoted to 
describing “Results”, instead, we first illustrate the accuracy of the results we have obtained 
after training an intelligent classifier able to predict water meter failures, and then we com-
pare them with the performances that can be achieved with alternative algorithms. At the 
end of “Results” section, we put a focus on a statistical paradox it has emerged after our 
data transformation activities. The section devoted to “Discussion” supplies a reconciliation 
of that paradox, along with a practical guide on how to put to good use our classifier. The 
final section provides “Conclusions” of the paper.

Related work
This section is split over two different parts. The first one discusses other studies that 
have already done in the specific domain of automatic methods for detecting faulty 
water meters. The second one, instead, illustrates the negative effects we can incur due 
to a lack of attention in data preparation while instructing machine learning algorithms.



Page 3 of 23Roccetti et al. J Big Data            (2019) 6:70 

Detecting water meter failures

While we are plenty of papers in the literature that employ complex statistical methods, 
or machine learning algorithms, for individuating anomalies like a leakage or a failure, 
in water distribution pipelines [7, 8], there is a not surprising scarcity of papers that dis-
cuss methods for detecting anomalies in water meters. Pour cause: so far, in fact, smart 
metering has come into the scene for utilities different from water, like energy and gas, 
since these latter resources are considered more expensive, in general.

This motivates the fact why there are a lot of mechanical water meters around, whose 
main characteristic, different from electrical meters, is that of providing fewer and less 
frequent readings over time. Hence, even if the number of mechanical meters installed 
is still high, representing a cheap and well-tested solution, they pose a problem to all the 
initiatives that are based on machine learning [9]. Indeed, their readings are rare (2/3/4 
times per year) and are to be read by a human operator, thus resulting in many impreci-
sions. Due to this fact, some of the most relevant papers that illustrate methods that face 
the problem of detecting faulty water meters, on the basis of an analysis of the amount 
of consumed water, still resort to traditional approaches, disregarding machine learning.

For example, Roberts and Monk developed a simple algorithm that individuates pos-
sible anomalies [10], occurring at a given water meter, when a decreasing trend in water 
consumption is observed along a series of readings which is updated just quarterly.

Monedero et al. [11], instead, propose an approach to detect tampering activities in 
mechanical water meters that employs a very basic statistical analysis for identifying:

• either a low rate in water consumption,
• or a sudden stoppage of that consumption,
• or simply a decreasing consumption trend.

What is relevant, here again, is the fact that the use of data (readings), that can be, 
large in quantity yet rare in frequency, does not allow for the use of modern machine 
learning-based methods.

For sure, the advent of electrical water meters, along with telemetry that can provide 
water consumption readings on a per hour basis, could significantly alter this picture.

In this unfortunate scenario, our challenge has been precisely that of trying to use 
learning algorithms, even if trained with data coming from readings of traditional 
mechanical meters, believing that the large amount of data available, spanning over 
multiple years and involving more than 1 million meters, could balance the negative 
effects of the low frequency in reading.

Inadequacy of the datasets

In this subsection, instead, we are concerned with the problem that, while machine 
learning techniques analyze datasets that are very large and expensive, it is often the 
case when results come up that are inaccurate, or even wrong. Oversimplifying a 
complex scenario, there are an exaggerated anxiety and worry of developing specific 
learning algorithms that search through a vast amount of data until they recognize a 
pattern that finally exists only in (a portion of ) that dataset, and not in the reality [12].
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As a consequence of these considerations, if we want to discover results that stand the 
test of time, adequate attention is to be devoted to all the data preparation, cleaning and 
transformation activities that must follow their initial acquisition. Disregarding, or sim-
ply underestimating, these factors means crystallize data inconsistencies and impurities 
into a shapeless structure that will be inadequate for supporting correct evidence-based 
decisions.

Drawing upon scientific literature, among all the possible cases we could cite in sup-
port of our ideas, we report here just three different examples, where a lack of atten-
tion on data used to instruct intelligent machines resulted into negative consequences, 
as well as into effects diametrically opposed to what we would expect.

The first example is the paradigmatic case discussed by Buolamwini and Gebru in [13]. 
After a careful assessment, a gender classification system, based on a facial analysis data-
set, came up not to be balanced with respect to gender and skin type. It was found out 
in fact that the most misclassified group was that of the darker-skinned females, with 
misclassification rates ranging from 20.8 to 34.7%, while, instead, the error rate for the 
lighter-skinned males group stabilized on around 0.8%. Such result was the direct conse-
quence of the dataset that was used for training that system. An ex-post accurate analy-
sis of the dataset simply revealed that it was biased, as overwhelmingly comprised of 
lighter-skinned subjects.

Another similar example is reported by Bolukbasi and coauthors in [14] that treats 
word representations. Specifically, with the term word embedding is intended a represen-
tation of words under the form of vectors, commonly used for natural language process-
ing. The popularity of this kind of word representation comes from its ability to capture 
semantic relationships among words, measurable as linear distances between vectors 
[15]. An experiment was conducted that tried to train a ML-based implementation of 
a word embedding representation, only using articles taken from the Google News ser-
vice. To simplify this complex matter, we only say that the main result of this specific 
implementation of a word embedding representation was to let emerge a dramatic case 
of sex stereotype. For example, the role played by a surgeon was always associated with a 
masculine subject, while at the opposite the functions of a nurse were always perceived 
as carried out by a feminine subject. The motivation for the emergence of this gender 
stereotype was rooted in that specific dataset, as an expensive assessment activity dem-
onstrated. Further, an additional specific procedure was developed that de-biased that 
representation to the point it finally became gender-neutral.

A final example is drawn from a medical context where a case is reported discuss-
ing on a machine trained to learn a prognostic model used to predict adequate medi-
cal treatments for patients affected by pneumonia [16]. Surprisingly, upon completion of 
the training phase, the machine had learnt that patients suffering from both pneumonia 
and asthma were to be considered at a lower risk of death, if compared with those who 
were afflicted by just pneumonia. The motivation why asthma was (erroneously) consid-
ered by the machine (almost) as a protective factor against the negative effects of pneu-
monia was pretty clear after an ex-post analysis of the dataset on which the machine 
was instructed. The reason goes as follows. Patients diagnosed with pneumonia, and 
with a history of asthma, are typically admitted to more intensive care, leading on aver-
age to more rapid healing, with respect to patients diagnosed with just pneumonia. 
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Unfortunately, the training dataset was constructed disregarding that relevant fact, with 
the final paradox of a machine that misinterpreted asthma as a protective variable in that 
specific domain.

After all these preliminary examples and consequent discussions, it is now the time to 
start our controversial journey with a real case study in the field of water distribution ad 
relative measurement procedures. We will travel through machine learning techniques, 
statistical procedures and data re-organization activities, towards achieving final results 
we consider important especially because how uncertain, they can be, is measured with 
precision and discussed at length.

Methodology
An important water supply company that distributes water over a large area in Northern 
Italy asked us to deploy an AI model in the field of water metering; the final target being 
that of training a machine able to predict when a water meter fails/needs disassembly, 
based on a set of meter readings taken over the past. An important additional require-
ment was that of minimizing the number of consecutive readings to be used for such 
prediction.

This section presents details on the methodology we have adopted to approach the 
very complex dataset we were provided with, at the initial stage of our study. Precisely, it 
has gone through several different phases, that are summarized in Fig. 1.

We here anticipate the meaning of those phases, each of which will be discussed at 
length in the next subsections.

After an initial description of the dataset (phase 1), preprocessing activities (phases 2) 
take place. Here a special notice is in order. In our particular case, preprocessing activi-
ties are split over two different subphases. The first preprocessing subphase amounts to 
standard procedure (phase 2a), like encoding and standardization, while the second sub-
phase aims at individuating a semantics of validity for our data (phase 2b), with the hope 
of filtering out all the impurities that those data carry. (We will come back to this impor-
tant issue regarding data semantics later on.) After those phases, features are selected 
(phase 3) to train an intelligent classifier (with the aim of predicting when a water meter 
fails/needs disassembly). Upon completion of the training activity (phase 4), a valida-
tion/testing phase is conducted to assess the performance of the classifier (phase 5). 
Different from other similar schemes, our methodology incorporates a final verification 
(phase 6) of the accuracy got so far. We have resorted here to what the literature indi-
cates [17]. A classifier can be: (i) excellent, (ii) good, (iii) fair, (iv) poor, depending on the 
level of the accuracy it can get, while making predictions. In particular, excellent gets a 
90–99% of accuracy, good gets 80–89%, fair gets 70–79%, poor 50–69%.

A classifier of reasonable quality cannot, hence, fall down below the threshold of 75%, 
according to [17]. Based on this consideration, we have taken the results coming from 
the validation/testing phase and contrasted them against the threshold of 75%. If this 
control succeeds, we are done. In the negative case, instead, we go back to phase 7.

In the unfortunate case we are sent to phase 7, a new semantics needs to be identi-
fied to make the training data suitable for machine learning activities. It is clear that in 
such a case, more restrictive rules are to be applied to select a subset of data with safe 
characteristics.
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After this introduction, it is now time to describe each of these phases in isolation.

Dataset description

We were, initially, provided with a huge dataset comprised of almost 15 million water 
meter readings, plus other contextual information. This large dataset spanned a period 
in time, from the beginning of 2014 to the end of 2018. All those measurements involved 
more than 1 million water meters, including those affected by faults, and hence sub-
jected to disassembly and subsequent replacement activities.

Our dataset had 14 attributes for each water meter reading, as described in Table 1. 
Instead, water meters were characterized by 17 attributes, reported in Table 2. It is obvi-
ous that negative examples should be faulty meters (with their corresponding readings) 
and positive examples non-faulty meters (with their corresponding readings). Such 
information is reported in the attribute Operation (Faulty/Non Faulty) of the water 
meter dataset, which essentially indicates if the water meter has been either disassem-
bled or not.

Fig. 1 Methodology: flow chart
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Dataset preprocessing and semantics of validity

This typical phase of preparation of data for machine learning algorithms could 
almost go without any specific explanation. It simply amounts to the transforma-
tion of all the categorical data into numerical ones. We have carried out this phase 
with the so-called One Hot Encoding method, and then we have standardized all the 
numerical values by subtracting the mean and dividing for the standard deviation, 
according to the well-known formula: z = x−µ

σ
.

More interesting, instead, is here the identification of a semantics of validity for the 
provided readings. In fact, many of the readings that compose the datasets came with 
numerous inconsistencies and impurities, whose causes trace down to the point where 
different business processes had organizational conflicts that are too complex to be 
explained in detail.

In order to define a semantics of data validity, we took advantage of domain experts. 
A first step towards a semantics of data validity was taken considering the reading 
attribute #10 (Reading Validity). This corresponds to the case when a human opera-
tor reads a value on a water meter and validates it as correct. In the absence of such 
a positive validation, that reading is to be considered as non-valid, and should not be 
taken into consideration. Table 3 reports the number of non-valid measurements with 
respect to the total amount of circa 15 million readings.

Not only the attribute #10 contributes to the validity of the data, but also attributes 
#11 (Certification on the ERP) and #12 (Final Billing) play an important role. In fact, if 

Table 1 Reading dataset attributes

No Attribute name No Attribute name

1 Water Meter ID 8 Reader ID

2 Reading ID 9 Type of Contract

3 Reading Value 10 Reading Validity

4 Reading Date 11 Certification on the ERP

5 Previous Reading Value 12 Final Billing

6 Previous Reading Date 13 Reason for Reading

7 Reading Frequency 14 Accessibility

Table 2 Water meter dataset attributes

No Attribute name No Attribute name

1 Water meter ID 10 Installation Date

2 Serial Number of the Producer 11 Plant

3 Producer Description 12 Type of Contract

4 Material ID 13 Geographical Zone

5 Material Description 14 Accessibility

6 Max/min Reading Value 15 Use Category

7 Meter Type ID 16 Address

8 Meter Type Description 17 Operation (Faulty/Non faulty)

9 Year of Construction
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we join attributes #10, #11, and #12, we yield the following semantics, as suggested by 
company experts. Consequently, a reading becomes valid if it:

1. has been (correctly) read/collected on site by a human operator,
2. has been (correctly) recorded onto the company ERP system,
3. has been (correctly) billed to the final client.

There would be a total of 45 different combinations that attributes #10, #11, and #12 
can take. However, just 7 of those combinations cover almost 99% of the total amount 
of readings in the dataset, as shown in the first seven lines in Table 4. What is important 
to know now is that the company assigns to each of these combinations of attributes a 
given degree of reliability, in terms of data validity. The company, precisely, considers as 
fully valid only the one within the top position in Table 4 (codes: #10 = 1, #11 = #12 = 2). 
From now on, for the sake of simplicity, we will refer to those readings as those enjoying 
the 1-2-2 Factor.

At this point, we are interested in understanding how many examples can be assem-
bled to instruct a learning machine. To this aim, we have preliminarily counted how 
many meters are comprised in the initial dataset, that have a reading history with respec-
tively: at least 1, at least 2, at least 3, at least 4, at least 5 readings, all with the 1-2-2 Fac-
tor. The result is shown in Table 5 below, where we have counted both: faulty (line 2) and 
non-faulty meters (lines 3–7), with their corresponding amounts of readings. The table 
also reports the total number of water meters (first line).

Unfortunately, of the total amount of readings considered valid by the company 
(i.e., those enjoying the 1-2-2 Factor) many of them are not real measurements taken 
on the field by reading a water meter. Indeed, they are mathematical re-adjustments 

Table 3 Readings: valid/non-valid (attribute #10)

Attribute #10 # of readings

Initial 15,129,379

Non-valid 1,898,128

Valid 13,231,251

Table 4 Readings: main categories (with relative amount of readings)

Attributes # of readings

#10 #11 #12

1 2 2 11,856,582

1 3 2 407,592

1 2 4 282,527

1 2 6 132,409

1 2 5 110,363

1 2 3 106,742

1 3 5 105,957

Other 229,079

Total 13,231,251
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of estimated values of presumed water consumption values (computed for billing pur-
poses). The balance between real measurements vs these re-adjustments is shown 
in Table  6. Obviously, such re-adjustments bring much noise and are to be removed 
consequently.

Feature selection

Now is the time to choose features to be used in the training phase. This is a key task, 
since irrelevant or redundant features can impact the training activities [18, 19]. In our 
case, nonetheless, this thing goes smooth as reading values (current and previous), and 
relative dates, compose the minimal set of information from which learning algorithms 
can extract interesting relationships (attributes #3, #4, #5, #6 of the readings dataset). 
Further, on the basis of precise suggestions provided by the company, we also included 
the following additional features from the meter datasets: producer (attribute #2), mate-
rial (attribute #4), meter type (attribute #7), year of construction (attribute #9), and use 
category (attribute #15). Summarizing, Table 7 reports all the aforementioned selected 
features.

Training, validation, and testing

A deep neural network was used for training. Given the nature of the data, where also 
the passage of time has a value (some few consecutive readings are used to make a deci-
sion), we developed a recurrent neural model suitable for managing time, using the 
Keras framework. In particular, our neural network is comprised of two parallel subnets.

Take the first one. It is intended to learn series of consecutive readings. It presents 
a Gated Recurrent Unit (GRU) for each reading in the series. The output of each GRU 
is passed to a Dense layer of 32 fully connected neurons. The overfitting phenomenon 

Table 5 Meters (with the 1-2-2 Factor)

1-2-2 Factor # of meters

Total 1,239,977

Faulty (≥ 1) 23,752

1-2-2 (≥ 1) 1,154,054

1-2-2 (≥ 2) 1,091,334

1-2-2 (≥ 3) 1,038,337

1-2-2 (≥ 4) 981,420

1-2-2 (≥ 5) 915,441

Table 6 Proportion of real measurements vs adjustments (with the 1-2-2 Factor)

Factor # of readings

#10 = 1 #11 = 2 #12 = 2

Real 8,185,163 (69%)

Adjustments 3,671,419 (31%)

Total 11,856,582
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is avoided by using an in-between Dropout layer, with a keep probability of 0.9, that 
separates GRUs from the Dense layer.

Consider now the second subnet. It takes as input the one-hot encoded categorical 
features we have selected and lets them pass through two Dense layers of fully inter-
connected neurons. The first layer has 128 neurons, while the second one has just 32 
neurons. Again, an in-between Dropout layer, with a keep probability of 0.9, separates 
the two layers of neurons to avoid the overfitting phenomenon.

At this stage, the two parallel outputs of the two subnets are concatenated to form 
a 64-dimensional vector that passes through a further Dense layer comprised of 64 
neurons. The output of this step is a two-dimensional vector (faulty/non faulty) which 
is finally delivered to a Softmax activation function that yields the final probability of 
being faulty or not.

It is worth to notice also that each mentioned layer uses a REctified Linear Unit 
(RELU) as activation function, while we employed a Binary Cross-Entropy function to 
manage losses, based on the consideration that we had to construct a binary classifier. 
To conclude the description of our network, we add that it was trained using the well-
known Gradient Descendent Algorithm, for 20 epochs, to yield the final optimization.

At this point, we made a first attempt to train our deep neural network with nega-
tive/positive examples that were assembled by randomly sampling faulty and non-
faulty meters with their corresponding readings enjoying the 1-2-2 Factor. We 
conducted this training activity with series of readings of different lengths, containing 
either two or three consecutive readings, taken in the period beginning 2014–mid 
2018. We used the well-known tenfold cross-validation technique, where a portion of 
the data is used for training and the remaining one for validation.

As these two classes, faulty and non-faulty, in our case, are highly imbalanced (see 
Table 5 before), we are in the presence of a typical unbalanced training problem, with 
risk of a bis in favor of the majority class. To fix this problem, we employed the well-
known SMOTE-NC technique [20, 21] that oversamples the quantity of faulty water 
meters, until the cardinality of the two classes in the training set becomes equal.

To conclude, we come to the evaluation metric we have adopted to measure the 
accuracy of our classifier. We have chosen the classic area under the curve of the 
receiver operating characteristic (AUC-ROC) [22].

Table 7 Features used

No Features

1 Reading Value

2 Previous Reading Value

3 Reading Date

4 Previous Reading Date

5 Serial Number of the Producer

6 Material ID

7 Meter Type ID

8 Year of Construction

9 Use Category
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As mentioned at the beginning of “Methodology” section, it is worth reminding that 
we get a good classifier only if it achieves an AUC ROC value greater than 0.75. Now, 
the problem with the process we have conducted so far is that if we validate our neural 
model, trained with data enjoying the 1-2-2 Factor, we never surpass AUC ROC accu-
racy values of 0.61. Such negative result denotes a problem in the semantics of data 
validity that needs to be fixed, as discussed to the next subsection.

Semantics enforcement

What the negative accuracy result mentioned in the previous subsection has empha-
sized is that the 1-2-2 Factor data semantics, suggested by the company, is not sufficient 
to guarantee a safe training activity for the learning algorithms.

Our intuition is that that semantics disregards the role played by time. In essence, of 
great importance is the time interval between two consecutive valid readings, taken on a 
given meter. In fact, to use those data to train a neural network, crucial is the regularity 
of the frequency with which a reading, with the 1-2-2 Factor, is read over time.

Figure 2 provides insightful information with this regard. On the x-axis of Fig. 2, plot-
ted are the differences of the two values (i.e., in terms of cubic meters of consumed 
water) recorded at two different subsequent readings enjoying the 1-2-2 Factor, while 
on the y-axis we can see the time intervals (measured in days) between two subsequent 
readings with the 1-2-2 Factor.

This Fig. 2 summarizes some millions of reading values taken over a lot of time, and it 
has to be interpreted as follows. Points, that lies on the y-axis and are very far from zero, 
correspond to measurements that are not taken without any regularity (while, instead, 
Italian laws prescribe two/three real readings per year). Points, that lies on the x-axis 
and are very far from zero, account instead for phenomena where the consumption of 
water is exaggeratedly high.

Fig. 2 Time intervals vs differential water consumption (two consecutive readings)
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At the end, all this seriously questions the validity of using water meter readings enjoy-
ing the 1-2-2 Factor for training an intelligent classifier, even though they are those read-
ings considered as the most reliable ones by the company.

Summing up, looking at this problem from all the possible perspectives, the data that 
were made available to us in their initial forms cannot be considered a good starting 
point to train a machine, as they can hardly provide unambiguous examples to be learnt 
by a learning algorithm.

To make the complex piles of information described above genuinely valid for car-
rying out learning activities, we then have to move towards an alternative approach, 
at the basis of which lies a procedure developed to clean the data, while reducing their 
dimension.

In essence, a new semantics of validity has to be defined for our readings that can 
be summarized as follows. A reading is to be considered valid only if all the following 
requirements are satisfied:

1. a human operator has read a certain reading value at the reading site;
2. that reading value has been correctly recorded onto the company ERP and billed to 

the client; and most important,
3. the instants in time when that reading was subjected to previous actions 1 and 2 are 

temporally valid values, and as such certified by a specific business process.

Said simpler, this new semantics confirms the 1-2-2 Factor which valid readings must 
possess, plus a certification on the validity of the temporal dates when a given reading is 
read and then collected by a human operator. Indeed, the rationale behind the enforce-
ment of this third requirement was to admit as valid only those reading values that are 
not too far each from other, from a temporal viewpoint.

For the sake of simplicity, we will call this enhanced semantics, from now on, as the 
X-Factor. Before closing this subsection, of paramount importance is to notice that 
the enforcement of the X-Factor to our initial dataset makes the number of valid read-
ings falling down to less than two million. On this reduced number of readings, we will 
instruct our machines, as described in the following section.

Results
This section goes through three different phases. First, we present the accuracy results 
of the prediction we have obtained using training data enjoying the X-Factor. Second, we 
provided a comparative analysis of the results we have obtained with our neural network 
contrasted against those that can be obtained with alternative, more traditional meth-
ods. Finally, in the third part, we discuss on a statistical paradox that the transformation 
of the initial dataset has brought with it. These three facts are discussed in the remainder 
of this section, in isolation.

Testing results

We carried out our machine training activities with meters (faulty and non-faulty) whose 
readings enjoyed the X-Factor, always taken in the period beginning 2014–mid 2018. We 
assembled a set of positive examples comprised of some 45,000 non-faulty meters with 
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all readings enjoying the X-Factor, along with a set of negative examples comprised of 
some 15,000 faulty meters (with correspondent readings enjoying the X-Factor). Using 
SMOTE-NC, we oversampled the faulty water meters, until reaching the amount of 
45,000. We used again the deep neural network, whose description is reported in the 
subsection termed “Training, validation, and testing”. We experimented with series of 
readings of different lengths, to take advantage of the memory of the network.

The results of the cross-validation are reported in Fig. 3. Of particular interest are 
the average validation results (gray bars) that provide accuracy values always over the 
threshold of 80%, precisely in the range [82–88]%.

These preliminary results obtained during the validation phase of our neural net-
work training process were well promising, yet we wanted to have a final confirma-
tion of the efficacy of the combination of a deep neural network plus the X-Factor. To 
this aim, we developed an additional, and final, testing experiment of our deep neural 
network, using only that portion of meters (precisely 29,286), with readings enjoying 
the X-Factor, that our machine never looked at during the training phase. Actually, all 
those readings with the X-Factor recorded in the period mid 2018–end 2018.

Just series of either two or three readings were tested, for the sake of simplicity. 
Figure  4 portrays those results. A confirmation of the efficacy of our combo (neu-
ral network + X-Factor) comes under the form of an accuracy in the range [86–89]%, 
depending on the number of consecutive readings exploited to make the decision.

Comparative analysis

We have conducted a comparative analysis to compare the performance of our deep 
neural network with some of the most common machine learning algorithms that, 
different from our recurrent deep network, do not use memory.

In this case, we employed approx. 15,000 faulty meters, with their correspondent 
valid readings (approx. 80,000) and a set of almost 100,000 non-faulty meters (with 

Fig. 3 Training with deep neural network: validation results
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their correspondent valid readings). We experimented with all the following tradi-
tional learning algorithms:

• Linear Regression (LR),
• Lasso (LA),
• Elastic Net (EN),
• Classification and Regression Tree (CART),
• Support Vector Regression (SVR),
• K-nearest neighbors (KNN),
• Adaptive Boosting (AB),
• Gradient Boosting (GB),
• Random Forest (RF),
• Multi-Layer Perceptron (MLP with only one hidden layer with 100 neurons).

In Fig. 5, a plot with the accuracy results obtained during validation with each afore-
mentioned algorithm is reported, contrasted against the result achieved with our deep 
neural network (DNN) with three readings.

The figure shows that acceptable average AUC ROC values can be achieved in some 
specific case; for example, with the GB and MLP algorithms, that yield almost an 80% 
value of accuracy. Nonetheless, DNN performs significantly better as it reaches an aver-
age accuracy value of 85% with just three readings.

A statistical paradox

At this point, satisfied with the precision on the level of prediction accuracy reached 
upon enforcing the so-called X-Factor to our training data, we began to reflect on the 
statistical meaning and validity of the operations we had carried out so far.

We simply asked ourselves: Did the X-Factor semantics just re-adjusted our data by 
cleaning them from the initial impurities, or it actually transformed them from some (sta-
tistical) viewpoint?

To answer this question, we conducted various different statistical tests.

Fig. 4 Final testing with deep neural network: AUC results
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We start this analysis with Table 8 where reported are, respectively, the total number 
of readings: (1) with the 1-2-2 Factor, (2) with the X-Factor, and (3) belonging to the 
subset that was used for training of our neural network, with a series of three consecu-
tive readings enjoying the X-Factor. Table 8 also reports the average (µ) and the stand-
ard deviation (σ) values of the consumed water per reading (cubic meters of consumed 
water).

We were surprised by a fact in that table. The average consumption of water per read-
ing falls down to approx. 3.000 m3 when the X-Factor is applied. Consequently, we devel-
oped some statistical tests aimed at better understanding this fact.

We first started by assuming a normal distribution (with known values for both aver-
age and standard deviation) and proceeded with a Z Test, whose results are reported in 
Table 9. We tested our null hypotheses with two different significance α values. As seen 
from Table 9, (not) surprisingly the null hypothesis that the average values of consumed 
water per reading in the initial dataset and in the subset of readings subjected to the 
X-Factor are equal is to be rejected (first line). Instead, as expected, fortunately, it can-
not be rejected the null hypothesis that the whole subset of readings with the X-Factor 
has an average value of consumed water per reading equal to the specific subset of those 
readings specifically used for training.

To have a further confirmation, we repeated the same kind of test, yet with a differ-
ent statistic. Simply, we tried to use a Student’s T test (assuming not to know the stand-
ard deviation values). This has to be intended just as an additional attempt to verify the 
previous results and, in fact, not surprisingly, we got very similar outcomes, as Table 10 
demonstrates.

Nonetheless, if we look at this issue from a different perspective, we can observe 
some aspects that bring us into a more comfortable zone. Take into consideration, for 

Fig. 5 Comparative results: DNN against all others

Table 8 Statistics

Id Dataset # of readings µ σ

1 Total with 1-2-2 Factor 11,856,582 5307 86,450

2 Total with X-Factor 1,973,493 3674 17,796

3 Sampled for training 135,018 3647 11,852
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example, the plots of Figs. 6 and 7. They both aim to measure the number of readings (y 
axis) whose average value equals a given value, say X (on the x axis). In Fig. 6 we have the 
case of the dataset with the 1-2-2 Factor, while in Fig. 7 we have the X-Factor case.

As seen from a visual comparison of the two plots, we have a clear impression that the 
shapes of the two curves are not that different, even if the quantity of readings with an 
amount of consumed water equal to any given value X in the first dataset is larger than 
the correspondent quantity of readings with the X-Factor, in this sense confirming the 
results of the statistical tests of Tables 9 and 10.

To finally understand, we developed some additional statistical tests more focused on 
the shapes of the distributions of the average value of consumed water for respectively: 
the dataset with the 1-2-2 Factor (1), all the readings with the X-Factor (2) and just that 
subset of readings with the X-Factor used for training our neural network (3). Being our 

Table 9 Z test—results

Test p-value α = 0.05 α = 0.01

µ1 = µ2 < 10−5 Reject Reject

µ2 = µ3 0.75 Fail to reject Fail to reject

µ1 = µ3 < 10−5 Reject Reject

Table 10 T test—results

Test p-value α = 0.05 α = 0.01

µ1 = µ2 < 10−5 Reject Reject

µ2 = µ3 0.62 Fail to reject Fail to reject

µ1 = µ3 < 10−5 Reject Reject

Fig. 6 1-2-2 Factor: water consumption values
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variables numerical, we first used a Kolmogorov–Smirnov Test, with two different signifi-
cance α values. Table 11 portrays the results that confirm what was already clear from 
Tables 9 and 10. Even the general distributions are different if we consider readings with 
the 1-2-2 Factor and those with just the X-Factor.

This story does not change even if we try with a different statistical test. We discretized 
our data, clustered the results into bins and then went for a Chi-squared Test. Results are 
shown in Table 12. The results do not change.

Before going, with the next section, towards a direction where this paradox can be 
reconciled, a consideration is in order to conclude this present section: As we aimed to 
improve our machine learning performance results in terms of accuracy of prediction, 
enabling the transformation of data through re-organization, we simultaneously changed 
the replicated forms of those data. At least, statistically.

Fig. 7 X-Factor: water consumption values

Table 11 Kolmogorov–Smirnov Test—results

Test p-value α = 0.05 α = 0.01

KS (1,2) < 10−5 Reject Reject

KS (2,3) 0.24 Fail to reject Fail to reject

KS (1,3) < 10−5 Reject Reject

Table 12 Chi-squared test—results

Test p-value alpha = 0.05 alpha = 0.01

Χ2 (1,2) < 10−5 Reject Reject

Χ2 (2,3) 0.125 Fail to reject Fail to reject

Χ2 (1,3) < 10−5 Reject Reject
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Discussion
If we take into serious consideration both the statistical paradox we have illustrated in 
the previous section, and the positive prediction outcomes obtained with the classifier 
we have trained with just those data enjoying the X-Factor, a logical consequence fol-
lows: Bigger is no longer better, when big also implies confuse, inconsistent and biased 
information. Nonetheless, and not simplistically, all our effort towards the definition 
and the enforcement of the X-Factor semantics has taught us two fundamental facts:

• Not all the collected information that serves the interests of some specific busi-
ness process can be considered adequate to instruct an intelligent machine that is 
intended to implement a new service, if this process is conducted without a deep 
reflection on the validity, sense and subtle implications of the training data;

• Nonetheless, that kind of information has not to be deleted or radically trans-
formed, until it serves profitably the interests of those organizational processes, 
on which the company has traditionally based its business. In our case, setting a 
goal of transformation of all the relevant business processes only to obtain those 
readings values with the X-Factor that are adequate for training an intelligent 
machine is both unrealistic and nonsensical.

Thus, a final question is in order: All this considered, how the company described in 
our study could take advantage of our intelligent classifier, that works well only in the 
case it examines water meter reading values with the X-Factor?

To help with this question, comes the narration of the procedure that the company 
currently exploits to detect faulty meters.

It is based, first, on a software procedure that considers a meter as a candidate to be 
faulty if two consecutive readings (with the 1-2-2 Factor) are read with almost a null 
increment in water consumption. These are only candidates, though. Then an expen-
sive, human-based process starts to individuate, among the candidates, those meters 
that actually need a replacement. To understand how much complex and expensive 
is such a final process, consider that in many cases verification/repair interventions 
are scheduled and performed by human operators, who have to reach the place where 
the meter is installed. In other cases, controls are performed to make a report of sus-
pected failure, by screening additional databases containing relevant information that 
could validate or not that suspect. For example, it could be the case when both water 
and gas are supplied by the same company. In this case, to confirm a suspect of a fail-
ure occurring at a given water meter, the gas meter serving the same client should be 
recording a non-null gas consumption. Finally, note also that not all those meters that 
are greatly suspected as faulty are finally changed, due to both operational and busi-
ness motivations, whose discussion is out of the scope of this paper.

It is important, at this point, to talk about a little of statistics regarding the company 
of interest. On average, per year: some 10,000 m are considered as faulty candidates, 
based on the estimates the company makes. Always on average, almost 5500 are those 
meters that are greatly suspected as faulty after the execution of the complex proce-
dures mentioned above, while some 1.500 m are finally replaced in a year. The reader 
should put attention to this latter value of 1500 replaced meters per year, as this is 
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currently the maximum amount of faulty meters that the company can replace, based 
on its replacement policy.

If we take into consideration these statistics, all our previous results resurface now 
under a new guise.

Take for example the results we got with the testing phase conducted with almost 
30,000 m, with readings enjoying the X-Factor, in the period mid 2018–end 2018 (as 
described in the previous “Results” section). Out of those 30,000 m, 6652 m were sus-
pected as faulty, while 22,634 were the non-faulty ones, as stated by the company. Just 
to remind it, our classifier was able to make predictions in that context with an accu-
racy of 86%, in terms of the AUC-ROC metric (in the case two X-Factor readings 
were used).

We then could initially try to use our classifier, set with a decision threshold of 0.46, 
the one that minimizes the number of both the false negative (faulty meters predicted 
as non-faulty) and the false positive (non-faulty meters predicted as faulty), as per 
Fig. 8. With that threshold, we would obtain a classification of faulty/non-faulty, like 
that represented in the confusion matrix of Fig. 9.

At this stage, we could propose two alternative operational approaches to replace 
faulty meters, that combine the results of our classifier with the traditional procedures 
already in use.

With the first one, we could suggest to the company not to scrutinize all the meters 
that our classifier has predicted as non-faulty (precisely 20,513 m, computed as the sum 
of the top and the bottom quantities on the left side of Fig. 9), and to concentrate their 
attention, as well as to deploy their traditional verification procedures, only to those 
meters that were predicted as faulty (i.e., greatly suspected; precisely 8773 m, obtained by 
summing all the quantities on the right side of Fig. 9). Unfortunately, this approach does 
not work well in this case, due to the fact that the company should use its traditional 
and expensive verification procedures on a number of meters (8773, for a 6-months-long 

Fig. 8 False positives vs false negatives
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period) that almost doubles the average quantity of meters that are considered as faulty 
with the methods already in use (5500, over a period of a year).

Not only, with this approach we know for sure that some 1937 faulty meters will never 
be detected (left bottom sector in Fig. 9).

To solve this latter problem, we could then move the decision threshold towards the 
direction of minimizing the number of false negatives [23]; for example, setting the deci-
sion threshold at the value of 0.3, as per the confusion matrix of Fig. 10. This would have 
the effect of decreasing the number of faulty meters that are never detected down to 
443 (left bottom sector in Fig. 10). Unfortunately, this way, we have further exacerbated 
the problem of scrutinizing a huge number of meters that are suspected of being faulty, 
yielding almost 18,509 water meters to be verified with expensive procedures (computed 
as the sum of the quantities on the right side of Fig. 10).

Well promising, instead, is the second approach we propose.
The idea is that of minimizing the number of false positives, for example moving the 

decision threshold to a value of 0.65, as per Fig. 11. With this approach, our suggestion 
to the company is to adopt a brand, new procedure to replace faulty meters, which is 
as follows: Put the focus only on the meters that our classifier has predicted as faulty 
(1680 m on the right side of Fig. 11), and proceed directly with the replacement of all 
those meters.

Following this approach, the company will have to replace a number of faulty meters 
which is comparable to the maximum number of those it can replace based on its cur-
rent replacement policy (1680 vs circa 1500), yet without the need to resort to complex 
and expensive procedures to individuate them.

Further, in this situation minimized is also the amount of those meters that go replaced 
even if they did not need any replacement. Indeed, only 21. In other words, in this case, 
meters have been predicted as faulty and then replaced with a precision of 98.75%. As a 

Fig. 9 Confusion matrix (0.46)
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final consideration, this discussion demonstrates how a savvy use of our intelligent clas-
sifier can help the company to detect faulty meters to be replaced without any interfer-
ence on the business process currently in use [24].

Anyway, to conclude this discussion it is important to underline the very general con-
sideration that, even though our classifier has been trained only with readings enjoying 
the so-called X-Factor, it can be used to predict failures for each and any meter run by 
the company, subject to the (simple) condition that that meter provides at least two or 
three valid readings per year (i.e., with the X-Factor).

Fig. 10 Confusion matrix (0.3)

Fig. 11 Confusion matrix with (0.65)
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Conclusions
We have extrapolated from a database of almost fifteen million water meter readings 
just those data that could safely represent a complex phenomenon of water consumption 
leading to some meter failures. We have re-modeled the initial dataset of water meter 
readings, based on a new data semantics (termed the X-Factor). On one side, this has 
allowed us to design a ML-based classifier able to predict if a meter has failed/needs a 
replacement, based on a history of water consumption measurements, that yields accu-
racy values over the threshold of 80%. On the other side, we have become aware that 
the data on which we have trained our machine have some statistical discrepancies with 
respect to those comprised in the initial dataset, thus reaching a kind of apparent para-
dox. We have reconciled this paradox, showing how an adequate use of our classifier can 
help the company that provided the initial data to detect the meters to be replaced, at a 
lower cost than that previously paid when different and more expensive procedures were 
in use. This completes our controversial journey that began almost a year ago and of 
which some very preliminary studies can be also found in [25, 26].
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