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We present a review on recent approximation results in the space of functions of bounded variation for some classes of integral
operators in the multidimensional setting. In particular, we present estimates and convergence in variation results for both
convolution andMellin integral operators with respect to the Tonelli variation. Results with respect to a multidimensional concept
of 𝜑-variation in the sense of Tonelli are also presented.

1. Introduction

The aim of the present paper is to give a review on recent
results about convergence of integral operators of convolu-
tion type with respect to some concepts of multidimensional
variation. We will consider the case of classical convolution
integral operators of the form

(𝑇
𝑤
𝑓) (s) = ∫

R𝑁
𝐾
𝑤
(t) 𝑓 (s − t) 𝑑t,

s ∈ R
𝑁

, 𝑤 > 0,

(I)

where 𝑓 ∈ 𝐿
1

(R𝑁) and {𝐾
𝑤
}
𝑤>0

is a family of approximate
identities, as well as the case of Mellin integral operators of
the form

(𝑀
𝑤
𝑓) (s) = ∫

R𝑁
+

𝐾
𝑤
(t) 𝑓 (st) ⟨t⟩

−1

𝑑t,

s ∈ R
𝑁

+
, 𝑤 > 0,

(II)

where st fl (𝑠
1
𝑡
1
, . . . , 𝑠

𝑁
𝑡
𝑁
), s, t ∈ R𝑁

+
, and ⟨t⟩ fl

∏
𝑁

𝑖=1
𝑡
𝑖
. The above operators (II) are of convolution type

with respect to the homothetic operator and the measure
𝜇(𝐴) = ∫

𝐴

(𝑑x/⟨x⟩), where 𝐴 is a Borel subset of R𝑁
+
(which

is an invariant measure with respect to the multiplicative
operation).

An important tool in order to frame the results of the
paper is the setting of the functional spaces we deal with.The
BV-spaces, apart from the well-known importance from the
mathematical point of view, also play an important role in
problems of Image Reconstruction where some of the various
approaches make use of integral operators of convolution
type (see, e.g., sampling-type operators).

The working space will be the space of functions of
bounded multidimensional variation in the sense of Tonelli
(defined in Section 2) and, as further extension, in order to
deal with a larger class of functions, we will consider the
space BV𝜑, where 𝜑 is a 𝜑-function (see Section 2). We point
out that, due to the necessary assumptions on the 𝜑-function
𝜑 (Assumption ii), the case of BV cannot be obtained as
particular case of BV𝜑.This is the reason why the two settings
have to be treated independently.

For the above classes of operators we will provide esti-
mates, convergence results, and also a characterization of
the absolutely (𝜑-absolutely) continuous functions in terms
of the respective convergence in variation. Moreover, the
rate of approximation has been considered and examples of
kernel functions to which the results can be applied are also
furnished. Finally, also the nonlinear case for both the con-
volution and the Mellin-type operators has been considered.

Apart from the well-known importance of the classical
convolution integral operators, the Mellin operators are very
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interesting and widely studied in approximation theory (for
the basic theory see [1, 2] while, for results about similar
homothetic-type operators, see, e.g., [3–16]), also because of
their important applications in several fields. Among them,
for example, we recall thatMellin analysis is deeply connected
with some problems of Signal Processing, in particular with
the so-called Exponential Sampling, which have applications
in various problems of engineering and optical physics (see,
e.g., [17–20]).

Concerning now the multidimensional concept of 𝜑-
variation introduced in [21], we point out that, due to the
lack of an integral representation of the 𝜑-variation for 𝜑-
absolutely continuous functions as happens for the classical
variation, the major results about convergence require a
different approach and suitable techniques. In particular, this
holds for the convergence of the 𝜑-modulus of continuity.
Again, a similar problem occurs in case of Mellin integral
operators on BV(R𝑁

+
), where the Tonelli integrals are defined

via the log-measure. Moreover, in the latter case, in order
to prove that the operators are absolutely continuous, in
case of regular kernels (this is a crucial point to obtain
the characterization of absolute continuity), one has to pass
through an equivalent notion of absolute continuity (for the
log-absolute continuity, see Section 4) compatible with the
setting of R𝑁

+
equipped with the log-measure.

We finally remark that, of course, all the results of the
paper contain, in particular, the one-dimensional case (see
[22–27]).

2. Preliminaries and Some
Concepts of Variation

Wewill now recall the multidimensional concept of variation
in the sense of Tonelli. Such definition was introduced by
Tonelli [28] for functions of two variables and then extended
to dimension𝑁 > 2 by Radó [29] and Vinti [30].

Let us introduce some notations. If we are interested in
the 𝑗th coordinate of a vector x = (𝑥

1
, . . . , 𝑥

𝑁
) ∈ R𝑁, we will

write

x
󸀠

𝑗
= (𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
𝑗+1

, . . . , 𝑥
𝑁
) ∈ R𝑁−1,

x = (x
󸀠

𝑗
, 𝑥
𝑗
) ,

(1)

so that, for a function 𝑓 : R𝑁 → R, there holds

𝑓 (x) = 𝑓 (x
󸀠

𝑗
, 𝑥
𝑗
) . (2)

Given an 𝑁-dimensional interval 𝐼 = ∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
], by 𝐼

󸀠

𝑗
=

[a󸀠
𝑗
, b󸀠
𝑗
] we will denote the (𝑁 − 1)-dimensional interval

obtained by deleting the 𝑗th coordinate from 𝐼; namely,

𝐼 = [a
󸀠

𝑗
, b
󸀠

𝑗
] × [𝑎

𝑗
, 𝑏
𝑗
] , 𝑗 = 1, . . . , 𝑁. (3)

Definition 1. A function𝑓 : R𝑁 → R is said to be of bounded
variation if the sections of 𝑓 are a.e. of bounded variation on
R and their variation is summable; that is, 𝑉R[𝑓(x󸀠

𝑗
, ⋅)] (the

usual Jordan one-dimensional variation of the 𝑗th section of

𝑓) is finite a.e. x󸀠
𝑗
∈ R𝑁−1 and ∫

R𝑁−1
𝑉R[𝑓(x󸀠

𝑗
, ⋅)]𝑑x󸀠

𝑗
< +∞,

for every 𝑗 = 1, . . . , 𝑁.

In order to compute the variation of 𝑓 on an interval 𝐼,
the first step is to define the (𝑁 − 1)-dimensional integrals
(the so-called Tonelli integrals)

Φ
𝑗
(𝑓, 𝐼) fl ∫

b󸀠
𝑗

a󸀠
𝑗

𝑉
[𝑎𝑗 ,𝑏𝑗]

[𝑓 (x
󸀠

𝑗
,⋅)] 𝑑x

󸀠

𝑗
, 𝑗 = 1, . . . , 𝑁. (4)

Let now Φ(𝑓, 𝐼) be the Euclidean norm of the vector
(Φ
1
(𝑓, 𝐼), . . . , Φ

𝑁
(𝑓, 𝐼)); that is,

Φ(𝑓, 𝐼) fl
{

{

{

𝑁

∑

𝑗=1

Φ
2

𝑗
(𝑓, 𝐼)

}

}

}

1/2

, (5)

where we put Φ(𝑓, 𝐼) = ∞ if Φ
𝑗
(𝑓, 𝐼) = ∞ for some 𝑗 =

1, . . . , 𝑁.
The variation of 𝑓 on an interval 𝐼 ⊂ R𝑁 is defined as

𝑉
𝐼
[𝑓] fl sup

𝑚

∑

𝑘=1

Φ(𝑓, 𝐽
𝑘
) , (6)

where the supremum is taken over all the families of 𝑁-
dimensional intervals {𝐽

1
, . . . , 𝐽

𝑚
} which form partitions of 𝐼.

Finally, the variation of 𝑓 over the wholeR𝑁 is defined as

𝑉R𝑁 [𝑓] fl sup
𝐼⊂R𝑁

𝑉
𝐼
[𝑓] , (7)

where the supremum is taken over all the intervals 𝐼 ⊂ R𝑁.
By

BV (R
𝑁

) fl {𝑓 ∈ 𝐿
1

(R
𝑁

) : 𝑉R𝑁 [𝑓] < +∞} (8)

we will denote the space of functions of bounded variation on
R𝑁.

We recall that it can be proved that if 𝑓 ∈ BV(R𝑁) then
∇𝑓 exists a.e. in R𝑁 and ∇𝑓 ∈ 𝐿

1

(R𝑁) (see, e.g., [29, 30]).
We point out that, in the multidimensional setting, it is

natural to consider functions of bounded variation within
the Lebesgue space 𝐿

1

(R𝑁): indeed this is analogous to the
distributional concept of variation given byCesari [31] and, in
equivalent forms, by Krickeberg [32], De Giorgi [33], Giusti
[34], and Serrin [35].Wenotice that the definition of variation
in the sense of Tonelli is equivalent to the distributional one
in the class of functions which satisfy some approximate
continuity properties (see, e.g., [30]).

We will now recall the concept of absolute continuity in
sense of Tonelli.

Definition 2. A function 𝑓 : R𝑁 → R is locally absolutely
continuous (𝑓 ∈ ACloc(R

𝑁

)) if, for every interval 𝐼 =

∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] and for every 𝑗 = 1, 2, . . . , 𝑁, the 𝑗th section

𝑓(x󸀠
𝑗
, ⋅) : [𝑎

𝑗
, 𝑏
𝑗
] → R is (uniformly) absolutely continuous

for almost every x󸀠
𝑗
∈ [a󸀠
𝑗
, b󸀠
𝑗
].
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Similarly to the one-dimensional case, it is possible to
prove that if 𝑓 ∈ BV(R𝑁) ∩ ACloc(R

𝑁

), then

𝑉R𝑁 [𝑓] = ∫
R𝑁

󵄨󵄨󵄨󵄨∇𝑓 (x)
󵄨󵄨󵄨󵄨 𝑑x (9)

(see, e.g., [29, 30]).
We will denote by AC(R𝑁) the space of all the functions

𝑓 ∈ BV(R𝑁) ∩ ACloc(R
𝑁

).
In the following we will present also results about con-

vergence for a family of Mellin integral operators. In order
to study such kind of operators the most natural way is to
considerR𝑁

+
fl ]0, +∞)

𝑁 (the domain of the functionswhere
Mellin operators act), as a group with themultiplicative oper-
ation (instead of the additive operation onR𝑁) and equipped
with the logarithmic Haar-measure 𝜇(𝐴) = ∫

𝐴

(𝑑x/⟨x⟩) (𝐴 is
a Borel subset of R𝑁

+
and ⟨x⟩ fl ∏

𝑁

𝑖=1
𝑥
𝑖
, x = (𝑥

1
, . . . , 𝑥

𝑁
) ∈

R𝑁
+
), instead of the usual Lebesgue measure. For this reason,

in order to obtain results in BV-spaces for such kind of
operators, it seems natural to adapt the definition of the
Tonelli variation to this frame: we therefore introduced in
[36] a new concept of multidimensional variation in which,
in the Tonelli integrals, the Lebesgue measure is replaced by
the logarithmic measure 𝜇.

Definition 3. One will say that 𝑓 ∈ 𝐿̃
1

(R𝑁
+
) is of bounded

variation on R𝑁
+

if the sections 𝑓(x󸀠
𝑗
, ⋅) are of bounded

variation onR
+
a.e. x󸀠
𝑗
∈ R𝑁−1
+

and𝑉R+
[𝑓(x󸀠
𝑗
, ⋅)] ∈ 𝐿̃

1

(R𝑁−1
+

),
where 𝐿̃1(R𝑁

+
) denotes the space of the functions𝑓 : R𝑁

+
→ R

such that ∫
R𝑁
+

|𝑓(t)|⟨t⟩−1 𝑑t < +∞.

In order to define the multidimensional variation onR𝑁
+
,

for a fixed interval 𝐼 fl ∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R𝑁

+
we consider the

(𝑁 − 1)-dimensional integrals

Φ
𝑗
(𝑓, 𝐼) fl ∫

b󸀠
𝑗

a󸀠
𝑗

𝑉
[𝑎𝑗 ,𝑏𝑗]

[𝑓 (x
󸀠

𝑗
, ⋅)]

𝑑x󸀠
𝑗

⟨x󸀠
𝑗
⟩
, (10)

where ⟨x󸀠
𝑗
⟩ denotes the product ∏

𝑁

𝑖=1,𝑖 ̸=𝑗
𝑥
𝑖
. The remaining

steps for the definition of the variation follow as before.
For the sake of simplicity, we will use the same notations

for the variation in both the cases of R𝑁 and R𝑁
+
: as it

is natural, when one works on R𝑁
+
, it is intended that the

measure used is the logarithmic one.
The classical definition of Jordan variation [37] was

extended in the literature in several directions: one of the
first generalizations was the quadratic variation introduced
by Wiener [38], extended to the 𝑝-variation, 𝑝 ≥ 1 [39, 40],
and later to the concept of 𝜑-variation. The 𝜑-variation was
first introduced by Young [41] and then extensively studied by
Musielak and Orlicz and their school (see, e.g., [22, 42–49]).

From now on we will assume that 𝜑 : R+
0

→ R+
0
is as

follows.

Assumption i. 𝜑 is a convex 𝜑-function, where a 𝜑-function
is a continuous, nondecreasing function on R+

0
, such that

𝜑(0) = 0, 𝜑(𝑢) > 0 for 𝑢 > 0, and lim
𝑢→+∞

𝜑(𝑢) = +∞.

Assumption ii. 𝑢
−1

𝜑(𝑢) → 0 as 𝑢 → 0
+

.

We recall that (see [22]) the 𝜑-variation of 𝑓 : R → R on
[𝑎, 𝑏] ⊂ R is defined as

𝑉
𝜑

[𝑎,𝑏]
[𝑓] fl sup

𝐷

𝑛

∑

𝑖=1

𝜑 (
󵄨󵄨󵄨󵄨𝑓 (𝑠
𝑖
) − 𝑓 (𝑠

𝑖−1
)
󵄨󵄨󵄨󵄨) , (11)

where the supremum is taken over all the partitions𝐷 = {𝑠
0
=

𝑎, 𝑠
1
, . . . , 𝑠

𝑛
= 𝑏} of the interval [𝑎, 𝑏], and

𝑉
𝜑

R [𝑓] fl sup
[𝑎,𝑏]⊂R

𝑉
𝜑

[𝑎,𝑏]
[𝑓] . (12)

Definition 4. A function 𝑓 : R → R is said to be of bounded
𝜑-variation (𝑓 ∈ BV𝜑(R)) if 𝑉𝜑R[𝜆𝑓] < +∞, for some 𝜆 > 0.

The Musielak-Orlicz 𝜑-variation was generalized to the
multidimensional frame in [50] following the approach of
Vitali. However, in order to study approximation problems,
the approach of the Tonelli variation seems to be the most
natural in this context. For such reason in [21] we introduced
a concept of multidimensional 𝜑-variation inspired by the
Tonelli and C. Vinti approach.

Again, the crucial point is to define, for 𝑗 = 1, . . . , 𝑁, the
Tonelli integrals: in this case we put

Φ
𝜑

𝑗
(𝑓, 𝐼) fl ∫

b󸀠
𝑗

a󸀠
𝑗

𝑉
𝜑

[𝑎𝑗 ,𝑏𝑗]
[𝑓 (x
󸀠

𝑗
, ⋅)] 𝑑x

󸀠

𝑗
, (13)

where 𝑉
𝜑

[𝑎𝑗 ,𝑏𝑗]
[𝑓(x󸀠
𝑗
, ⋅)] is the (one-dimensional) Musielak-

Orlicz 𝜑-variation of the jth section of 𝑓.
Putting now

Φ
𝜑

(𝑓, 𝐼) fl
{

{

{

𝑁

∑

𝑗=1

[Φ
𝜑

𝑗
(𝑓, 𝐼)]

2}

}

}

1/2

, (14)

the multidimensional 𝜑-variation of 𝑓 : R𝑁 → R on an
interval 𝐼 ⊂ R𝑁 is defined as

𝑉
𝜑

𝐼
[𝑓] fl sup

𝑚

∑

𝑘=1

Φ
𝜑

(𝑓, 𝐽
𝑘
) , (15)

(the supremum is taken over all the partitions {𝐽
1
, . . . , 𝐽

𝑚
} of

𝐼) and, finally,

𝑉
𝜑

R𝑁
[𝑓] fl sup

𝐼⊂R𝑁
𝑉
𝜑

𝐼
[𝑓] . (16)

By

BV𝜑 (R𝑁)

= {𝑓 ∈ 𝐿
1

(R
𝑁

) : ∃𝜆 > 0 s.t. 𝑉𝜑 [𝜆𝑓] < +∞}

(17)

we will denote the space of functions of bounded 𝜑-variation
over R𝑁.

Similarly to the classical variation, it is natural to intro-
duce a concept of multidimensional 𝜑-absolute continuity.
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Definition 5. One says that 𝑓 : R𝑁 → R is locally 𝜑-
absolutely continuous (AC𝜑loc(R

𝑁

)) if it is 𝜑-absolutely con-
tinuous in the sense of Tonelli; that is, for every 𝐼 =

∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R𝑁 and 𝑗 = 1, 2, . . . , 𝑁, the section 𝑓(x󸀠

𝑗
, ⋅) :

[𝑎
𝑗
, 𝑏
𝑗
] → R is (uniformly) 𝜑-absolutely continuous for

almost every x󸀠
𝑗
∈ [a󸀠
𝑗
, b󸀠
𝑗
].

Here (see [22]) a function 𝑔 : [𝑎, 𝑏] ⊂ R → R is 𝜑-
absolutely continuous if there exists 𝜆 > 0 such that the
following property holds:

for every 𝜀 > 0, there exists 𝛿 > 0 for which

𝑛

∑

]=1
𝜑 (𝜆

󵄨󵄨󵄨󵄨𝑔 (𝛽
]
) − 𝑔 (𝛼

]
)
󵄨󵄨󵄨󵄨) < 𝜀, (18)

for all the finite collections of nonoverlapping inter-
vals [𝛼

]
, 𝛽

]
] ⊂ [𝑎, 𝑏], ] = 1, . . . , 𝑛, such that

𝑛

∑

]=1
𝜑 (𝛽

]
− 𝛼

]
) < 𝛿. (19)

By AC𝜑(R𝑁) we will denote the space of all the functions
𝑓 ∈ BV𝜑(R𝑁) ∩ AC𝜑loc(R

𝑁

).
As before, in order to obtain results for Mellin integral

operators in BV𝜑-spaces in the multidimensional frame, we
adapted the previous definition of 𝜑-variation in the sense of
Tonelli to the case of functions defined onR𝑁

+
equipped with

the logarithmic measure 𝜇. In such concept of multidimen-
sional 𝜑-variation, introduced in [51], the Tonelli integrals
(13) are replaced by

Φ
𝜑

𝑗
(𝑓, 𝐼) fl ∫

b󸀠
𝑗

a󸀠
𝑗

𝑉
𝜑

[𝑎𝑗 ,𝑏𝑗]
[𝑓 (x
󸀠

𝑗
, ⋅)]

𝑑x󸀠
𝑗

⟨x󸀠
𝑗
⟩
. (20)

Again, we will use the same notations, as in the case of the
variation, for functions defined on both R𝑁 and R𝑁

+
.

3. Approximation Results for Convolution
Integral Operators

In this section we will present results about approximation
in variation by means of the convolution integral operators,
namely, (I), for 𝑓 ∈ 𝐿

1

(R𝑁). Here {𝐾
𝑤
}
𝑤>0

is a family of
approximate identities (see, e.g., [52]); that is,

(𝐾
𝑤
.1) 𝐾
𝑤

: R𝑁 → R is a measurable essentially
bounded function such that 𝐾

𝑤
∈ 𝐿
1

(R𝑁), ‖𝐾
𝑤
‖
1
≤

𝐴 for an absolute constant 𝐴 > 0 and ∫
R𝑁

𝐾
𝑤
(t)𝑑t =

1, for every 𝑤 > 0;

(𝐾
𝑤
.2) for any fixed 𝛿 > 0, ∫

|t|>𝛿
|𝐾
𝑤
(t)|𝑑t → 0, as

𝑤 → +∞.

In the following we will say that {𝐾
𝑤
}
𝑤>0

⊂ K
𝑤
if (𝐾
𝑤
.1)

and (𝐾
𝑤
.2) are satisfied.

Of course the operators (I) are well-defined for every 𝑓 ∈

𝐿
1

(R𝑁) and therefore in particular for every function 𝑓 ∈

BV(R𝑁), since

󵄨󵄨󵄨󵄨(𝑇𝑤𝑓) (x)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝐾𝑤
󵄩󵄩󵄩󵄩∞ , ∀x ∈ R

𝑁

. (21)

We first recall that the family of operators (I) map
BV(R𝑁) into itself. Indeed, the following estimate holds.

Proposition6 (see [25]). Let𝑓 ∈ BV(R𝑁). If {𝐾
𝑤
}
𝑤>0

satisfies
(𝐾
𝑤
.1), then

𝑉R𝑁 [𝑇𝑤𝑓] ≤ 𝐴𝑉R𝑁 [𝑓] , (22)

𝑤 > 0, where 𝐴 is the constant of Assumption (𝐾
𝑤
.1).

Remark 7. In the case of nonnegative kernels {𝐾
𝑤
}
𝑤>0

, Propo-
sition 6 gives the “variation diminishing property” for the
operators 𝑇

𝑤
𝑓: indeed in this case 𝐴 = ‖𝐾

𝑤
‖
1
= 1, 𝑤 > 0.

In order to obtain the main result about convergence in
variation, the following estimate of the error of approxima-
tion is essential.

Proposition 8 (see [25]). If 𝑓 ∈ BV(R𝑁) then, for every 𝑤 >

0,

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓]

≤ ∫
R𝑁

𝑉R𝑁 [𝑓 (⋅ − t) − 𝑓 (⋅)]
󵄨󵄨󵄨󵄨𝐾𝑤 (t)

󵄨󵄨󵄨󵄨 𝑑t.
(23)

Another important tool is a characterization of the
convergence for themodulus of smoothness of 𝑓, defined as

𝜔 (𝑓, 𝛿) fl sup
|t|≤𝛿

𝑉R𝑁 [𝜏t𝑓 − 𝑓] , (24)

where (𝜏t𝑓)(s) fl 𝑓(s − t), for every s, t ∈ R𝑁, is the
translation operator (see, e.g., [6, 53]).

Theorem 9 (see [25]). Let 𝑓 ∈ BV(R𝑁). Then 𝑓 ∈ 𝐴𝐶(R𝑁) if
and only if

lim
𝛿→0

𝜔 (𝑓, 𝛿) = 0. (25)

The proof of the sufficient part of this result is a con-
sequence of integral representation (9) of the variation for
absolutely continuous functions and of the continuity in 𝐿

1

of the translation operator. For the necessary part, in [25]
it is proved that if the kernel functions 𝐾

𝑤
are absolutely

continuous (as it happens in the most common cases), then
also the integral operators 𝑇

𝑤
𝑓 belong to AC(R𝑁). Then,

since AC(R𝑁) is a closed subspace of BV(R𝑁) with respect
to the convergence in variation [25] and by estimate (23), in
case of regular kernels, the convergence of the modulus of
smoothness implies that 𝑓 ∈ AC(R𝑁).

By means of Proposition 8 and Theorem 9 it is possible
to obtain the main result about convergence for absolutely
continuous functions.
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Theorem 10 (see [25]). If 𝑓 ∈ 𝐴𝐶(R𝑁) and {𝐾
𝑤
}
𝑤>0

⊂ K
𝑤
,

then

lim
𝑤→+∞

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 0. (26)

Remark 11. We point out that the assumption of absolute
continuity of the function is crucial to obtain the main
convergence theorem and such result does not hold, in
general, if, for example, 𝑓 ∈ BV(R𝑁) \AC(R𝑁). For example,
in the case𝑁 = 1, let us consider 𝑓 : R → R defined by

𝑓 (𝑥) =
{

{

{

1, |𝑥| ≤ 1,

0, |𝑥| > 1.

(27)

First of all we point out that 𝑉[𝜏
𝑡
𝑓 − 𝑓] 󴀀󴀂󴀠 0 as 𝑡 → 0. Let us

now consider the Poisson-Cauchy kernel defined as

𝐾
𝑤
(𝑡) = √

2

𝜋

𝑤

1 + 𝑤2𝑡2
, 𝑤 > 0, 𝑡 ∈ R. (28)

Then

(𝑇
𝑤
𝑓) (𝑠)

= √
2

𝜋
[arctan (𝑤 (𝑠 + 1)) − arctan (𝑤 (𝑠 − 1))] ,

𝑠 ∈ R,

(29)

and therefore

𝑉R [𝑇
𝑤
𝑓 − 𝑓] ≥ 𝑉

(−∞,−1]
[𝑇
𝑤
𝑓 − 𝑓]

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑇
𝑤
𝑓) (−1) − lim

𝑠→−∞

(𝑇
𝑤
𝑓) (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= −√
2

𝜋
arctan (−2𝑤) .

(30)

This implies that

lim inf
𝑤→+∞

𝑉R [𝑇
𝑤
𝑓 − 𝑓] ≥ √

𝜋

2
, (31)

and hence 𝑉R[𝑇𝑤𝑓 − 𝑓] 󴀀󴀂󴀠 0 as 𝑤 → +∞.

In case of regular kernels, by the closure of AC(R𝑁) in
BV(R𝑁), the converse of Theorem 10 is also true. Hence
we obtain the following characterization of the space of the
absolutely continuous functions, similarly to what happens
in the one-dimensional case for the Jordan variation.

Theorem 12 (see [25]). Assume that 𝑓 ∈ BV(R𝑁) and
{𝐾
𝑤
}
𝑤>0

⊂ K
𝑤

∩ 𝐴𝐶(R𝑁). Then 𝑓 ∈ 𝐴𝐶(R𝑁) if and only
if

lim
𝑤→+∞

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 0. (32)

The previous results were generalized to the case of the
multidimensional 𝜑-variation in [21]. In particular, besides a
kind of variation diminishing property, in [21] the following
estimate for the error of approximation is obtained.

Proposition 13 (see [21]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁) and let {𝐾
𝑤
}
𝑤>0

be such that (𝐾
𝑤
.1) is satisfied.Then, for every 𝜆, 𝛿 > 0 and for

every 𝑤 > 0,

𝑉
𝜑

R𝑁
[𝜆 (𝑇
𝑤
𝑓 − 𝑓)]

≤ 𝐴
−1

{𝜔
𝜑

(𝜆𝐴𝑓, 𝛿) ∫
|t|≤𝛿

󵄨󵄨󵄨󵄨𝐾𝑤 (t)
󵄨󵄨󵄨󵄨 𝑑t

+ 𝑉
𝜑

R𝑁
[2𝜆𝐴𝑓]∫

|t|>𝛿

󵄨󵄨󵄨󵄨𝐾𝑤 (t)
󵄨󵄨󵄨󵄨 𝑑t} ,

(33)

where 𝜔
𝜑

(𝑓, 𝛿) fl sup
|t|≤𝛿𝑉

𝜑

R𝑁
[𝜏t𝑓 − 𝑓] is the 𝜑-modulus of

smoothness of 𝑓.

Using the previous estimate, the main convergence result
follows by the singularity assumption on the kernel functions
(𝐾
𝑤
.2) and by the convergence for the 𝜑-modulus of smooth-

ness.

Theorem 14 (see [54]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁). Then there exists
𝜆 > 0 such that

lim
𝛿→0
+

𝜔
𝜑

(𝜆𝑓, 𝛿) = 0, (34)

if and only if 𝑓 ∈ 𝐴𝐶
𝜑

loc(R
𝑁

).

The convergence for the modulus of smoothness, in case
of the Tonelli variation, is a direct consequence of the integral
representation of the variation for absolutely continuous
functions (9). On the contrary, for the 𝜑-variation there are
no results of this kind and, in order to get the convergence in
𝜑-variation of the 𝜑-modulus of smoothness, it is necessary
to use a different technique. In particular (see [54]), the
crucial point is to construct a kind of “step” functions that
approximate the function 𝑓 and for which a convergence
result can be proved.

UsingTheorem 14, it is possible to obtain the main result
of convergence in 𝜑-variation for the convolution integral
operators (I).

Theorem 15 (see [21]). If 𝑓 ∈ 𝐴𝐶
𝜑

(R𝑁) and {𝐾
𝑤
}
𝑤>0

⊂ K
𝑤
,

then there exists 𝜆 > 0 such that
lim
𝑤→+∞

𝑉
𝜑

R𝑁
[𝜆 (𝑇
𝑤
𝑓 − 𝑓)] = 0. (35)

To give a sketch of the proof, the starting point is the
estimate of Proposition 13 for the error of approximation
𝑉
𝜑

R𝑁
[𝜆(𝑇
𝑤
𝑓−𝑓)]. ByTheorem 14, we have that𝜔𝜑(𝜆𝑓, 𝛿) tends

to 0, for sufficiently small 𝛿 > 0, while, by Assumption (𝐾
𝑤
.2)

on the kernel functions, in correspondence with such small
𝛿, ∫
|t|>𝛿

|𝐾
𝑤
(t)|𝑑t converges to 0 for 𝑤 large enough; hence

the result follows, taking into account (𝐾
𝑤
.1) and the fact that

𝑓 ∈ BV𝜑(R𝑁).
As before, in case of regular kernels the converse of

Theorem 15 is also true.

Theorem 16 (see [21]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁) and let {𝐾
𝑤
}
𝑤>0

⊂

K
𝑤
∩𝐴𝐶
𝜑

(R𝑁). Then 𝑓 ∈ 𝐴𝐶
𝜑

(R𝑁) if and only if there exists
𝜆 > 0 such that

lim
𝑤→+∞

𝑉
𝜑

R𝑁
[𝜆 (𝑇
𝑤
𝑓 − 𝑓)] = 0. (36)
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Remark 17. We point out that it is easy to find examples of
kernel functions to which the previous results can be applied.
Among them, for example, the Gauss-Weierstrass kernel is
defined as

𝐺
𝑤
(t) =

𝑤
𝑁

𝜋𝑁/2
𝑒
−𝑤
2
|t|2

, t ∈ R
𝑁

, 𝑤 > 0, (37)

or the Picard kernel

𝑃
𝑤
(t) =

𝑤
𝑁

Γ (𝑁/2)

2𝜋𝑁/2Γ (𝑁)
𝑒
−𝑤|t|

, t ∈ R
𝑁

, 𝑤 > 0, (38)

where Γ is the Gamma Euler function (see Figure 1).

4. Approximation Results for Mellin
Integral Operators

We now turn our attention to Mellin integral operators,
defined as (II), where st fl (𝑠

1
𝑡
1
, . . . , 𝑠

𝑁
𝑡
𝑁
), s, t ∈ R𝑁

+
. On

the kernel functions {𝐾
𝑤
}
𝑤>0

we assume that

(𝐾̃
𝑤
.1) 𝐾
𝑤

: R𝑁
+

→ R is a measurable essen-
tially bounded function such that 𝐾

𝑤
∈ 𝐿̃
1

(R𝑁
+
),

‖𝐾
𝑤
‖
𝐿̃

1 ≤ 𝐴 for an absolute constant 𝐴 > 0 and
∫
R𝑁
+

𝐾
𝑤
(t)⟨t⟩−1𝑑t = 1, for every 𝑤 > 0;

(𝐾̃
𝑤
.2) for every fixed 0 < 𝛿 < 1,

∫
|1−t|>𝛿 |𝐾𝑤(t)|⟨t⟩

−1

𝑑t → 0, as 𝑤 → +∞,

that is, the assumptions of approximate identities, adapted
to the present setting of R𝑁

+
. If {𝐾

𝑤
}
𝑤>0

satisfy (𝐾̃
𝑤
.1) and

(𝐾̃
𝑤
.2), we will write {𝐾

𝑤
}
𝑤>0

⊂ K̃
𝑤
.

For Mellin integral operators it is possible to develop an
“approximation theory” similar to the case of the convolution
integral operators; however, one of themain differences is the
homothetic structure of R𝑁

+
which leads to the choice of the

logarithmicmeasure 𝜇 and also to the necessity to adapt some
definitions. For example, the modulus of smoothness of 𝑓 ∈

BV(R𝑁
+
) has to be now defined as

𝜔 (𝑓, 𝛿) fl sup
|1−t|≤𝛿

𝑉R𝑁
+

[𝜎t𝑓 − 𝑓] , (39)

0 < 𝛿 < 1, where (𝜎t𝑓)(s) fl 𝑓(st), for every s, t ∈ R𝑁
+
,

is the homothetic operator and 1 = (1, . . . , 1) is the unit
vector of R𝑁

+
. Such notion of modulus of smoothness is the

natural generalization, in the present frame of BV(R𝑁
+
), of the

classical modulus of continuity (see, e.g., [6, 21, 25]).
Of course, due to the presence of the logarithmicmeasure,

we cannot use the integral representation of the Tonelli
variation; nevertheless, it is possible to directly prove a result
of convergence in variation for themodulus of smoothness in
case of AC-functions, using a kind of “separated” variations
(𝑉𝑗[𝑓], 𝑗 = 1, . . . , 𝑁) which take into account just a single
direction instead of all the𝑁 directions.

Theorem 18 (see [36]). If 𝑓 ∈ 𝐴𝐶(R𝑁
+
), then

lim
𝛿→0
+

𝜔 (𝑓, 𝛿) = 0. (40)

By means of the previous result and an estimate for the
error of approximation (𝑀

𝑤
𝑓 − 𝑓) analogous to Proposi-

tion 13, it is possible to prove the following convergence result.

Theorem 19. Let 𝑓 ∈ 𝐴𝐶(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂ K̃
𝑤
. Then

lim
𝑤→+∞

𝑉R𝑁
+

[𝑀
𝑤
𝑓 − 𝑓] = 0. (41)

A natural question now is whether, at least in case of AC-
kernels, the converse of the previous result holds, as in the
case of convolution operators. Actually, due to the form of the
operators𝑀

𝑤
𝑓, such question is nowmuchmore delicate and

direct approach cannot be used. In order to solve the problem,
it is necessary to use another concept of absolute continuity
(the log-absolute continuity), equivalent to the classical one,
which takes into account the logarithmic measure 𝜇. We first
present the definition in the one-dimensional case.

Definition 20 (see [55]). One says that 𝑓 : R
+

→ R is log-
absolutely continuous on [𝑎, 𝑏] ⊂ R

+
(𝑓 ∈ AClog([𝑎, 𝑏])) if for

every 𝜀 > 0 there exists 𝛿 > 0 such that, for every collection
of nonoverlapping intervals [𝛼]

, 𝛽
]
]
𝑛

]=1 in [𝑎, 𝑏] such that
𝑛

∑

]=1

󵄨󵄨󵄨󵄨log (𝛽
]
) − log (𝛼]

)
󵄨󵄨󵄨󵄨 < 𝛿, (42)

then
𝑛

∑

]=1

󵄨󵄨󵄨󵄨𝑓 (𝛽
]
) − 𝑓 (𝛼

]
)
󵄨󵄨󵄨󵄨 < 𝜀. (43)

By AClog(R+)we will denote the space of functions which are
of bounded variation on R

+
and log-absolutely continuous

on [𝑎, 𝑏], for every [𝑎, 𝑏] ⊂ R
+
.

Now, in the general multidimensional frame, 𝑓 : R𝑁
+

→

R is log-absolutely continuous on 𝐼 = ∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R𝑁

+
if, for

every 𝑗 = 1, 2, . . . , 𝑁, the 𝑗th sections of𝑓,𝑓(x󸀠
𝑗
, ⋅) : [𝑎

𝑗
, 𝑏
𝑗
] →

R, are (uniformly) log-absolutely continuous for almost every
x󸀠
𝑗
∈ R𝑁−1
+

.
By means of the definition of the log-absolute continuity,

in [55] it is proved that Mellin integral operators, as the
classical convolution operators, preserve absolute continuity:
this, together with the fact that the set of the absolutely
continuous functions is a closed subspace of the set of the BV-
functions, allows us to obtain the following characterization.

Theorem21 (see [55]). Let𝑓 ∈ BV(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂ K̃
𝑤
∩

𝐴𝐶(R𝑁
+
).Then𝑓 ∈ 𝐴𝐶(R𝑁

+
) if and only if lim

𝑤→+∞
𝑉R𝑁
+

[𝑀
𝑤
𝑓

−𝑓] = 0.

In [56] approximation properties for Mellin integral
operators were studied in the frame of BV𝜑-spaces, using the
multidimensional version of the 𝜑-variation on R𝑁

+
intro-

duced in [51]. In particular the following theorem is obtained.

Theorem 22 (see [56]). Let 𝑓 ∈ 𝐴𝐶
𝜑

(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂

K̃
𝑤
. Then there exists a constant 𝜇 > 0 such that

lim
𝑤→+∞

𝑉
𝜑

R𝑁
+

[𝜇 (𝑀
𝑤
𝑓 − 𝑓)] = 0. (44)
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Figure 1: Examples of Gauss-Weierstrass kernel 𝐺
𝑤
(𝑥, 𝑦) and Picard kernel 𝑃

𝑤
(𝑥, 𝑦) with 𝑤 = 10.

The proof of Theorem 22 is based on the estimate of the
error of approximation [56],

𝑉
𝜑

[𝜆 (𝑀
𝑤
𝑓 − 𝑓)]

≤ 𝜔
𝜑

(𝜆𝐴𝑓, 𝛿)

+ 𝐴
−1

𝑉
𝜑

[2𝜆𝐴𝑓]∫
|1−t|>𝛿

󵄨󵄨󵄨󵄨𝐾𝑤 (t)
󵄨󵄨󵄨󵄨 ⟨t⟩
−1

𝑑t,

(45)

and on a convergence result for the𝜑-modulus of smoothness

𝜔
𝜑

(𝑓, 𝛿) fl sup
|1−t|≤𝛿

𝑉
𝜑

R𝑁
+

[𝜎t𝑓 − 𝑓] , (46)

𝛿 > 0.This last result was obtained in [51] bymeans of a direct
approach: the function 𝑓 is approximated in 𝜑-variation by
two auxiliary functions, constructed on a grid on which their
sections are piecewise constant.

In order to prove the converse of Theorem 22, it is
again necessary to use a concept of logarithmic 𝜑-absolute
continuity, which takes into account the homothetic structure
ofR𝑁
+
.We report below the definition in the one-dimensional

case, while for the multidimensional case it is sufficient to
proceed as for the log-absolute continuity.

Definition 23 (see [57]). One says that 𝑓 : [𝑎, 𝑏] → R is log-
𝜑-absolutely continuous on [𝑎, 𝑏] ⊂ R

+
if there exists 𝜆 > 0

such that, for every 𝜀 > 0, there exists 𝛿 > 0 for which

𝑛

∑

]=1
𝜑 (𝜆

󵄨󵄨󵄨󵄨𝑓 (𝛽
]
) − 𝑓 (𝛼

]
)
󵄨󵄨󵄨󵄨) < 𝜀, (47)

for all finite collections of nonoverlapping intervals [𝛼]
, 𝛽

]
] ⊂

[𝑎, 𝑏], ] = 1, . . . , 𝑛, such that

𝑛

∑

]=1
𝜑 (log (𝛽]

) − log (𝛼]
)) < 𝛿. (48)

The log-𝜑-absolute continuity is equivalent to the 𝜑-
absolute continuity and allows obtaining the characterization
of AC𝜑(R𝑁

+
) in terms of convergence in 𝜑-variation of Mellin

integral operators.

Theorem 24 (see [57]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂

K̃
𝑤
∩𝐴𝐶
𝜑

(R𝑁
+
). Then 𝑓 ∈ 𝐴𝐶

𝜑

(R𝑁
+
) if and only if there exists

𝜆 > 0 such that lim
𝑤→+∞

𝑉
𝜑

R𝑁
+

[𝜆(𝑀
𝑤
𝑓 − 𝑓)] = 0.

Remark 25. We point out that taking 𝑁 = 1 as particular
case of Theorem 24 we obtain the characterization of 𝜑-
absolute continuity in the one-dimensional case, namely, for
the classical Musielak-Orlicz 𝜑-variation.

Remark 26. It is not difficult to find examples of kernel
functions which fulfill Assumptions (𝐾̃

𝑤
.1) and (𝐾̃

𝑤
.2).

Among them, for example, themoment-type kernels (or aver-
age kernels) are defined as

𝐴
𝑤
(t) fl 𝑤

𝑁

⟨t⟩
𝑤

𝜒
]0,1[
𝑁 (t) , t ∈ R

𝑁

+
, 𝑤 > 0. (49)

It is easy to see that they fulfill Assumption (𝐾̃
𝑤
.1). Moreover,

for every 𝛿 ∈]0, 1[, |1 − t| > 𝛿 implies that there exists an
index 𝑗 = 1, . . . , 𝑁 such that |1 − 𝑡

𝑗
| > 𝛿/√𝑁; hence {t ∈

]0, 1[
𝑁

: |1 − t| > 𝛿} ⊂ ⋃
𝑁

𝑗=1
{t ∈ R𝑁

+
: 0 < 𝑡

𝑗
< 1 − 𝛿/√𝑁, 0 <

𝑡
𝑖
< 1, ∀𝑖 ̸= 𝑗}.Therefore

∫
|1−t|>𝛿

󵄨󵄨󵄨󵄨𝐴𝑤 (t)
󵄨󵄨󵄨󵄨 ⟨t⟩
−1

𝑑t

≤

𝑁

∑

𝑗=1

{

{

{

(∏

𝑖 ̸=𝑗

∫

1

0

𝑤𝑡
𝑤−1

𝑖
𝑑𝑡
𝑖
)∫

1−𝛿/√𝑁

0

𝑤𝑡
𝑤−1

𝑗
𝑑𝑡
𝑗

}

}

}

= 𝑁(1 −
𝛿

√𝑁
)

𝑤

󳨀→ 0,

(50)

as 𝑤 → +∞; that is, also (𝐾̃
𝑤
.2) is satisfied.
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Other families of kernel functions to which the previous
results can be applied are the Mellin-Gauss-Weierstrass ker-
nels, defined as

𝐺̃
𝑤
(t) fl

𝑤
𝑁

𝜋𝑁/2
𝑒
−𝑤
2
| log t|2

, t ∈ R
𝑁

+
, 𝑤 > 0, (51)

or the Mellin-Picard kernels, which are defined as

𝑃̃
𝑤
(t) fl

𝑤
𝑁

2𝜋𝑁/2

Γ (𝑁/2)

Γ (𝑁)
𝑒
−𝑤| log t|

, t ∈ R
𝑁

+
, 𝑤 > 0. (52)

We point out that these definitions are the natural refor-
mulations, in the present multiplicative setting of R𝑁

+
, of

the classical Gauss-Weierstrass kernels and Picard kernels,
respectively (see Remark 17).

5. Further Results

We will now give some hints about further approximation
results that were obtained in BV-spaces.

First of all, an interesting problem is to study the nonlin-
ear versions of operators (I) and (II). We point out that the
nonlinear case is much more delicate than the linear one and
requires some ad hoc assumptions; on the other side, it not
only is interesting from amathematical point of view, being of
coursemore general than the linear one, but also is important
from the point of view of the applications. Indeed, there are
several applicative problems that cannot be faced bymeans of
linear processes; an example is furnished by some problems
of Signal Processing.

The nonlinear version of the convolution integral opera-
tors (II) is

(𝑇
𝑤
𝑓) (s) = ∫

R𝑁
𝐾
𝑤
(t, 𝑓 (s − t)) 𝑑t,

𝑤 > 0, s ∈ R
𝑁

,

(III)

where {𝐾
𝑤
}
𝑤>0

is a family of measurable functions𝐾
𝑤

: R𝑁×

R → R of the form

𝐾
𝑤
(t, 𝑢) = 𝐿

𝑤
(t)𝐻
𝑤
(𝑢) (53)

for every t ∈ R𝑁, 𝑢 ∈ R. Here 𝐿
𝑤

: R𝑁 → R and 𝐻
𝑤

: R →

R with 𝐻
𝑤
(0) = 0 is a Lipschitz kernel for every 𝑤 > 0; that

is, there exists 𝐾 > 0 such that
󵄨󵄨󵄨󵄨𝐻𝑤 (𝑢) − 𝐻

𝑤
(V)󵄨󵄨󵄨󵄨 ≤ 𝐾 |𝑢 − V| , ∀𝑢, V ∈ R. (54)

Moreover we assume that

(𝐾
𝑤
.1) 𝐿
𝑤

: R𝑁 → R is a measurable function such
that 𝐿

𝑤
∈ 𝐿
1

(R𝑁), ‖𝐿
𝑤
‖
1
≤ 𝐴, for some𝐴 > 0 and for

every 𝑤 > 0, and ∫
R𝑁

𝐿
𝑤
(t)𝑑t = 1, for every 𝑤 > 0;

(𝐾
𝑤
.2) for any fixed 𝛿 > 0, ∫

|t|>𝛿
|𝐿
𝑤
(t)|𝑑t → 0, as

𝑤 → +∞;
(𝐾
𝑤
.3) denoted by𝐺

𝑤
(𝑢) fl 𝐻

𝑤
(𝑢) − 𝑢, 𝑢 ∈ R,𝑤 > 0,

𝑉
𝐽
[𝐺
𝑤
]

𝑚 (𝐽)
󳨀→ 0, as 𝑤 󳨀→ +∞, (55)

H3(u)
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u
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Figure 2: Example of kernels 𝐻
𝑤
(𝑢), 𝑤 = 3, 5, 7, 9.

uniformly with respect to every (not trivial) bounded
interval 𝐽 ⊂ R; that is, for every 𝜀 > 0 there exists
𝑤 > 0 such that 𝑉

𝐽
[𝐺
𝑤
]/𝑚(𝐽) < 𝜀, for every 𝑤 ≥ 𝑤

and for every bounded interval 𝐽 ⊂ R.

Remark 27. We point out that Assumption (𝐾
𝑤
.3) is due to

the nonlinear frame and of course it is obviously satisfied
in the linear case (𝐻

𝑤
(𝑢) = 𝑢, 𝑢 ∈ R). Moreover it is

not difficult to provide examples of kernels which fulfill all
the previous assumptions. For example, we can consider the
kernel functions 𝐾

𝑤
(𝑡, 𝑢) = 𝐿

𝑤
(𝑡)𝐻
𝑤
(𝑢), 𝑡 ∈ R+

0
, 𝑢 ∈ R, 𝑤 >

0, where {𝐿
𝑤
}
𝑤>0

are approximate identities,

𝐻
𝑤
(𝑢) =

{{

{{

{

𝑢 + log(1 +
𝑢

𝑤
) , 0 ≤ 𝑢 < 1,

𝑢 + log(1 +
1

𝑤𝑢
) , 𝑢 ≥ 1,

(56)

and the definition of𝐻
𝑤
(𝑢) is extended in odd way for 𝑢 < 0

(see Figure 2).

The problem of the convergence in variation for the
nonlinear integral operators (III) was faced in [58, 59]; in
particular, the main convergence result reads as follows.

Theorem 28 (see [58]). If 𝑓 ∈ 𝐴𝐶(R𝑁) and {𝐾
𝑤
}
𝑤>0

satisfy
(𝐾
𝑤
.𝑖), 𝑖 = 1, 2, 3, then

lim
𝑤→+∞

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 0. (57)

Similar approximation results were obtained in [60] for
the nonlinear convolution integral operators (III) in the
frame of BV𝜑(R𝑁) and in [61] for the nonlinear version of
the Mellin integral operators (II) in BV(R𝑁

+
).

We finally point out that, besides the problem of con-
vergence, the rate of approximation has been also studied in
all the previously mentioned settings. In order to do it, as
it is natural, one has to introduce suitable Lipschitz classes
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which take into account the variation functional. We point
out that, in order to approach the mentioned problem, the
assumptions on kernels have to be slightly modified.

For example, let us consider the case of the convolution
integral operators (I) in the setting of BV(R𝑁). In this frame
the Lipschitz class is defined as

𝑉Lip𝑁 (𝛼) fl {𝑓 ∈ BV (R
𝑁

) : 𝑉R𝑁 [𝜏t𝑓 − 𝑓]

= 𝑂 (|t|
𝛼

) , as |t| 󳨀→ 0} ,

(58)

𝛼 > 0, and Assumption (𝐾
𝑤
.2) has to be replaced by the

following:

(𝐾
󸀠

𝑤
.2) for any fixed 𝛿 > 0, ∫

|t|>𝛿
|𝐿
𝑤
(t)|𝑑t = 𝑂(𝑤

−𝛼

),
as 𝑤 → +∞.

Moreover we will say that {𝐾
𝑤
}
𝑤>0

is an 𝛼-singular kernel,
for 0 < 𝛼 ≤ 1, if

∫
|t|>𝛿

󵄨󵄨󵄨󵄨𝐾𝑤 (t)
󵄨󵄨󵄨󵄨 𝑑t = 𝑂 (𝑤

−𝛼

) , as 𝑤 󳨀→ +∞, (59)

for every 𝛿 > 0. Then it is possible to obtain the following
result about the order of approximation for the convolution
integral operators (I).

Theorem 29 (see [25]). Let 𝑓 ∈ 𝑉𝐿𝑖𝑝
𝑁

(𝛼) and let {𝐾
𝑤
}
𝑤>0

⊂

K
𝑤
be an 𝛼-singular kernel satisfying (𝐾

𝑤
.1) and (𝐾

󸀠

𝑤
.2).

Moreover assume that there exists 0 < 𝛿̃ < 1 such that

∫
|t|≤̃𝛿

󵄨󵄨󵄨󵄨𝐾𝑤 (t)
󵄨󵄨󵄨󵄨 |t|
𝛼

𝑑t = 𝑂 (𝑤
−𝛼

) , as 𝑤 󳨀→ +∞. (60)

Then

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 𝑂 (𝑤
−𝛼

) , (61)

as 𝑤 → +∞.

Similar results in the nonlinear casewere obtained in [58],
while, for results about the rate of approximation for convolu-
tion integral operators with respect to the multidimensional
𝜑-variation, see [21] and [60] (nonlinear case).

The case of Mellin integral operators was studied in [36]
and in [61] (nonlinear case) with respect to the Tonelli varia-
tion, while the case of the multidimensional 𝜑-variation was
studied in [56]. We finally refer to [62, 63] for approximation
results in the slightly different setting of BV𝜑((R+

0
)
𝑁

).
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vergence des séries de Fourier,” Comptes Rendus de l’Académie
des Sciences Paris, vol. 204, pp. 470–472, 1937.

[42] J. Musielak, Orlicz Spaces and Modular Spaces, vol. 1034 of
Lecture Notes in Mathematics, Springer, Berlin, Germany, 1983.

[43] J. Szelmeczka, “On convergence of singular integrals in the
generalized variationmetric,” Functiones et Approximatio, Com-
mentarii Mathematici, vol. 15, pp. 53–58, 1986.

[44] W.Matuszewska andW.Orlicz, “Onproperty B1 for functions of
bounded 𝜑-variation,” Bulletin of the Polish Academy of Sciences
Mathematics, vol. 35, no. 1-2, pp. 57–69, 1987.

[45] A.-R. K. Ramazanov, “On approximation of functions in terms
of Φ-variation,” Analysis Mathematica, vol. 20, no. 4, pp. 263–
281, 1994.

[46] J. A. Adell and J. de la Cal, “Bernstein-type operators diminish
the 𝜑-variation,” Constructive Approximation, vol. 12, no. 4, pp.
489–507, 1996.

[47] V. V. Chistyakov and O. E. Galkin, “Mappings of bounded 𝜙-
variation with arbitrary function 𝜙,” Journal of Dynamical and
Control Systems, vol. 4, no. 2, pp. 217–247, 1998.
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