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Original Article

Background: To account for the dynamic aspects of carcinogenesis, 
we propose a compartmental hidden Markov model in which each per-
son is healthy, asymptomatically affected, diagnosed, or deceased. Our 
model is illustrated using the example of smoking-induced lung cancer.
Methods: The model was fitted on a case-control study nested in the 
European Prospective Investigation into Cancer and Nutrition study, 
including 757 incident cases and 1524 matched controls. Estimation 
was done through a Markov Chain Monte Carlo algorithm, and simu-
lations based on the posterior estimates of the parameters were used 
to provide measures of model fit. We performed sensitivity analyses 
to assess robustness of our findings.
Results: After adjusting for its impact on exposure duration, age 
was not found to independently drive the risk of lung carcinogenesis, 
whereas age at starting smoking in ever-smokers and time since ces-
sation in former smokers were found to be influential. Our data did 
not support an age-dependent time to diagnosis. The estimated time 
between onset of malignancy and clinical diagnosis ranged from 2 to 
4 years. Our approach yielded good performance in reconstructing 

individual trajectories in both cases (sensitivity >90%) and controls 
(sensitivity >80%).
Conclusion: Our compartmental model enabled us to identify 
time-varying predictors of risk and provided us with insights into 
the dynamics of smoking-induced lung carcinogenesis. Its flexible 
and general formulation enables the future incorporation of disease 
states, as measured by intermediate markers, into the modeling of the 
natural history of cancer, suggesting a large range of applications in 
chronic disease epidemiology.

(Epidemiology 2014;25: 28–34)

Evidence is accumulating in chronic disease epidemiol-
ogy to suggest that disease risk is governed not only by 

cumulative levels of exposure but also by dynamic aspects of 
its history. This has been formalized within the exposome1–3 
and life-course epidemiology4 concepts according to which 
the risk of chronic disease could be better defined and sub-
sequently predicted by characterizing the individual chemical 
environment—in turn, defined by the biological response to 
external exposures at several critical time points in life.

Several regression-based approaches already include 
dynamic aspects of exposure and measure their impact in risk 
inferences.5,6 Novel approaches rely on the application of meth-
ods developed in infectious disease epidemiology to study 
chronic diseases,7 where longitudinal models aim at the predic-
tion of both the size and the dynamics of an epidemic, and hence 
by design include a temporal component in causal inferences.

Compartmental models, in which the population is sub-
divided into several states reflecting their health status, have 
been particularly successful, notably in the study of AIDS/
HIV infection.8 Health states are either observed9,10 or hid-
den,11,12 and the purpose of such methods was to estimate, 
based on the observed individual or population-based trajecto-
ries, the transition probabilities between (observed or hidden) 
states that drive the dynamics of the disease natural history.

As part of causal diagram approaches, compartmen-
tal models constitute an explicit and intuitive representation 
of causal structures linking exposures and outcomes.13–15 
Multistage models, developed in cancer epidemiology, 
have been used to infer biological pathways16,17 and to pro-
vide insight into putative cellular mechanisms involved in 
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carcinogenesis and their potential control.18–21 As an exten-
sion of these approaches to fit macroscopic data, and to ease 
the interpretability of model parameters, we propose an indi-
vidual-based compartmental model for the natural history of 
smoking-induced lung cancer using case-control data nested 
in a large longitudinal prospective cohort study. Several 
approaches have already been proposed to infer measures of 
absolute risk of lung cancer from multistate models applied 
to case-control data set making use of external information to 
characterize absolute lung cancer rates in the population.22–25 
Our approach differs from these, in that it does not provide 
absolute risk measures but seeks for the determinants of the 
disease progression to ensure optimal reconstruction, at the 
individual level, of disease development across the full study 
population.

We chose a compartmental hidden Markov model 
derived from a previous study,26 whose structure has been 
adapted to model the natural history of lung carcinogenesis 
at the individual level. Parameter estimation is done through 
a Markov Chain Monte Carlo procedure implemented in C++, 
which is detailed in the eAppendix (http://links.lww.com/
EDE/A742) and freely available on the author’s Web site: 
http://www.imperial.ac.uk/people/m.chadeau.

METHODS

EPIC Data
The European Prospective Investigation into Cancer 

and Nutrition (EPIC) study27 is a large prospective cohort 
study with over 520,000 volunteer subjects enrolled between 
1992 and 2000 from 23 centers in 10 Western European coun-
tries.28,29 We use data from a lung cancer case-control study 
nested in the cohort; 757 incident cases and 1524 controls 
were matched on age and sex. For each subject, extensive 
questionnaire data are available, as well as one blood sample 
in which cotinine concentration has been measured by mass 
spectrometry–based methods.30 These data provide detailed 
information on smoking history and a quantitative measure-
ment of smoking intensity at enrollment. The main character-
istics of the studied population are given in eTable 1 (http://
links.lww.com/EDE/A742).

Exposure Assessment
As detailed in eAppendix (http://links.lww.com/EDE/

A742) section 1, the questionnaire data describing smoking 
habits as a function of age were used to derive, for each par-
ticipant at each year from birth to the end of follow-up, the 
average smoking intensity (measured in number of cigarettes 
smoked per day). We also accounted for a background expo-
sure to tobacco smoke (mainly reflecting passive smoking) by 
sampling, for each participant at each year, a blood cotinine 
level from the cotinine distribution in nonsmokers at the time 
of blood collection (ie, never or former smokers). This con-
centration was subsequently converted in terms of fractional 
smoking intensity and added to the active smoking exposure 

(if any). The resulting exposure history consists of a cumu-
lated smoking intensity for each individual i at each calendar 
year t: Ei(t).

Parameterization of the Hidden Markov Model
Along the disease course, each study subject moves 

across four states: Susceptible (S), healthy persons; Incubat-
ing (I), persons with a growing and undiagnosed lesion/tumor; 
Removed (R), patients with a diagnosed lung cancer; and 
(M), persons who died from a cause other than lung cancer 
(Figure 1). We focus on the first diagnosis and consider state R 
as absorbing. By definition, states S and I are hidden and only 
their union (SUI) can be observed: symptom-free individuals 
can be either healthy or with an undiagnosed tumor.

Time (t) is considered as discrete in the model and the 
time unit is 1 year. The first time interval (t = 1) is defined as the 
year of birth of the oldest person in the study (1929), and the last 
interval is the year at which the last event (diagnosis or death 
from a cause other than lung cancer) was observed (2010).

The S to I transition occurs with the last irreversible event 
causing one cell’s activity to be altered and ultimately to form 
a tumor. According to Knudson’s hypothesis, this transition 
corresponds to the “last hit”31,32 or to malignant conversion in 
the multistage model proposed by Moolgavkar and Luebeck.33 
This assumes that once the S to I transition occurs, target cells 
have been irreversibly affected by exposures and can multiply 
to eventually form a tumor only according to a dynamic that 
is not necessarily driven by the same factors (eg, the tumor 
growth process may not depend on exposures). The time spent 
in state I defines the time to diagnosis, which reflects both the 
dynamics of malignant cell multiplication through the time 
taken for the tumor to become detectable and the screening 
efficiency (ie, the time interval for someone with a detectable 
tumor to be tested and diagnosed). The Markovian property 
applied to compartmental models imposes that the time spent 
in each state is exponentially distributed. This parametric 
assumption may be too restrictive and may be relaxed by arbi-
trarily subdividing a given state into K substates.26,34 Here, we 

FIGURE 1.  State space of the model. Circled states are hidden, 
others are observed.

http://links.lww.com/EDE/A742
http://links.lww.com/EDE/A742
http://www.imperial.ac.uk/people/m.chadeau
http://links.lww.com/EDE/A742
http://links.lww.com/EDE/A742
http://links.lww.com/EDE/A742
http://links.lww.com/EDE/A742


Chadeau-Hyam et al	 Epidemiology  •  Volume 25, Number 1, January 2014

30  |  www.epidem.com	 © 2013 Lippincott Williams & Wilkins

consider K substates (I1, …, IK) a person has to pass through to 
reach R. To enable any S–Ia, Ia–Ib, Ia–R, a, b ∈ [1, K]2 transi-
tion within a 1-year interval, time is considered as continuous 
in the subchain with transition rate γ. In the context of the 
present study, substates are included only for technical rea-
sons (to ensure a flexible modeling of time to diagnosis), and 
the number of such substates K is fixed.

The corresponding 1-year interval transition can be 
expressed using a Gamma distribution with parameters γ and 
K. As a first approach, we considered disease progression to 
be independent of age. Sensitivity to the latter assumption has 
formally been assessed (eAppendix, http://links.lww.com/
EDE/A742 section 4.2).

Other-cause mortality rates (mi(t) for individual i at 
time t) were derived from a publicly available actuarial table 
providing the mortality rates by age, sex, and smoking status 
(eAppendix, http://links.lww.com/EDE/A742 section 2.1).35

We define the probability of an S to I transition as:
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where Si(t) is the binary smoking status for person i at time t, 
t tq

i ( ) is the time elapsed since smoking cessation, and μ, λ1, λ2, 
and λ3 are four real parameters. The probability of entering 
lung carcinogenesis, p tS I

i
− ( ), is then defined as a function of 

exposure to tobacco smoke Ei(t) and can be decomposed into 
four terms: (1) an intercept on the logistic scale measured by 
μ; (2) the effect of age at t ai(t) measured by λ1; (3) the effect 
of age when started smoking a ti

0 ( ) measured by λ2; and (4) the 
effect of time since quitting smoking t tq

i ( ) measured by λ3. For 
never-smokers, Si(t) = 0 for all t and the effect of age at start-
ing smoking is set to 0. For current and never-smokers, the 
effect of time since smoking cessation is null t tq

i ( ) =( )0 . This 
function was chosen so that it yields a null probability in non-
exposed persons (ie, those who were never actively or pas-
sively exposed to tobacco smoke), it is an increasing function 
of exposure, and it tends to be 1.0 for an infinite exposure.

To address the issue of temporal collinearity between 
age and exposure duration, we consider lifetime cumulative 

exposure functions. Hence, effects of age, age at starting smok-
ing, and time since smoking cessation (estimated through λ1, 
λ2, and λ3, respectively) are adjusted for exposure duration.

The individual exposure history Ei(t) is considered to 
be quasi-observed, plugged into the model, and used for the 
formal estimation of the five parameters μ, λ1, λ2, λ3, and γ.

The definition of the full set of transition probabilities, 
together with details of the likelihood calculations, are given 
in the eAppendix (http://links.lww.com/EDE/A742), includ-
ing our general recursive procedure to exactly calculate the 
longitudinal probability to be asymptomatically affected.26 
Parameter estimation was done through a Metropolis-Hast-
ings algorithm detailed in eAppendix (http://links.lww.com/
EDE/A742) section 3, setting uninformative uniform prior 
distributions on [–100, 100] for μ, λ1, λ2, λ3, and log(γ).

Based on the joint posterior distribution of μ, λ1, λ2, λ3, 
and γ, obtained from the Markov Chain Monte Carlo run, it is 
then possible to simulate individual trajectories across the unob-
served states S, I, R, and M. Such simulations have the potential 
to provide estimates of the model fit because they quantify how 
well the model is reconstructing each of the individual trajecto-
ries and its dynamics: through simulated transitions and calen-
dar year at which these occurred. To account for variability in 
the parameter estimates, we ran the simulation for 10,000 sets 
of parameters sampled from their joint posterior distribution. 
Simulations were summarized by the mean time spent in I (ie, 
time to diagnosis) and the proportion of simulations for which 
an S to I transition was simulated (pcase) in each participant, 
given the person’s exposure and main risk determinants.

RESULTS
The Markov Chain Monte Carlo algorithm ran for 

50,000 iterations, and the convergence of the runs was visu-
ally assessed from the history plots for each parameter.

Parameters Estimate—Model Assessment
Results setting K = 2 are summarized in Table 1, where 

the posterior mean and 95% credible interval are given for 
each parameter. Corresponding posterior distributions are 
plotted in eFigure 2 (http://links.lww.com/EDE/A742) and 
show a sharp shape.

TABLE 1.  Parameter Estimates for K = 2, Setting Each of λ1, λ2, and λ3 to 0

Parameter Estimates: Posterior Mean (95% Credible Interval)
Bayesian Information 

Criterion Scoreμ λ1 λ2 λ3 γ

Full model 1.52 (0.44 to 2.86) 0.03 (0.01 to 0.05) –0.08 (–0.10 to –0.06) –0.06 (–0.08 to –0.05) 2.45 (2.13 to 2.81) 8255.6

λ1 = 0 3.32 (3.01 to 3.62) — –0.08 (–0.10 to –0.06) –0.06 (–0.08 to –0.04) 2.56 (2.22 to 2.93) 8257.0

λ2 = 0 1.86 (0.31 to 3.55) 0.03 (0.00 to 0.05) — –0.11 (–0.13 to –0.09) 3.27 (3.00 to 3.57) 8287.4

λ3 = 0 2.22 (1.28 to 3.21) 0.01 (0.00 to 0.03) –0.11 (–0.12 to –0.09) — 2.29 (1.94 to 2.68) 8301.5

Results (posterior mean and 95% credible intervals) are based on 50,000 iterations (with 20,000 iterations burn-in).
μ indicates intercept on the log scale; λ1, effect of age ai(t); λ2, effect of age at starting smoking ai

0; λ3, effect of time since smoking cessation t tq
i ( ); and γ, continuous time Ia–Ib 

transition rate.
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Our model estimated a positive effect of age (measured by 
λ1) and a negative effect of age at starting smoking (measured 
by λ2) and of time since smoking cessation (measured by λ3). 
The contributions of λ1, λ2, and λ3 to the fit of the model were 
assessed by running the models with each of these parameters 
sequentially set to 0 and comparing the quality of the fit—mea-
sured by their Bayesian information criterion (BIC) scores—of 
resulting models to that of the full model. As shown in Table 
1, the model with λ1 = 0 yields BIC values that are very close 
to those obtained for the full model (differences in BIC lower 
than 2), suggesting that including λ1 in the model only margin-
ally improves the quality of fit. Conversely, setting λ2 or λ3 to 
0 leads to a greater increase of the BIC compared with the full 
model (differences in BIC greater than 30 and 45, respectively). 
This suggests that, once adjusted on exposure duration, age has 
a weak independent effect on the risk of smoking-induced lung 
cancer. In contrast, age at starting smoking for ever-smokers and 
time since smoking cessation for former smokers have a stron-
ger negative effect, leading early smokers and late quitters to 
be at greater risk of lung cancer irrespective of exposure levels.

Simulations of individual trajectories are summarized 
in Figure  2, which shows the median of pS–I (over 10,000 

simulated values), for each person/calendar year combination, 
as a function of the exposure estimated for that person in that 
year (Figure 2A). This plot suggests a leveling-off of the dose-
response relationship and a saturation of the risk of lung can-
cer at high tobacco smoke exposures. The distribution of the 
time spent in I is reported in Figure 2B and suggests a time to 
diagnosis ranging from 1 to 4 years.

The quality of the fit of our model can be assessed by 
analyzing its ability to reconstruct individual trajectories 
among cases and controls separately. Figure 3 shows that the 
average probability of simulating an S to I transition (pcase) 
in actual cases peaks at 93% while a secondary mode can be 
observed around 20%. eFigure 3 (http://links.lww.com/EDE/
A742) shows that the latter corresponds to never-smokers, 
whose trajectory is by default not well reconstructed by our 
model that considers tobacco smoke as the only risk factor 
for lung cancer. The distribution of pcase in controls is left-
tailed, and its mode is around 21%. Among controls in whom 
an S to I transition was frequently simulated, a vast majority 
were heavy smokers; more than 95% of controls with pcase ≥ 
25% were ever-smokers. These are typically high-risk and yet 
disease-free individuals. We also investigated the ability of 
our model to reproduce the dynamics of disease progression. 
Simulations showed satisfactory performances, with an aver-
age time gap between simulated and actual date of diagnosis 
of 2.3 years (95% credible interval = 1.3 to –3.3).

Sensitivity Analyses
The model was run for three other values of K (K = 5, 

10, and 15), and resulting parameter estimates are summa-
rized in Table 2. Estimates of λ1, λ2, and λ3 seem unaffected by 
the choice of K, whereas estimates of γ clearly decrease with 
the number of hidden states. As expected, when K is larger, 
the number of required Ia–Ib transitions to reach R increases, 
in turn constraining γ so that the overall time spent in I is 
consistent across all values of K examined. We found that 
the time taken for a tumor to be detected ranged from 1.0 to 
4.0 years, with limited overlap across simulations (eFigure 4, 
http://links.lww.com/EDE/A742). Longer times to diagnosis 
imply more asymptomatic cases in the population at censor-
ship, hence supporting a larger number of S to I transitions and 
larger values of μ. This explains why the ranking of models 

FIGURE 2.  Summary of the 10,000 
simulated trajectories from the joint 
posterior distribution of μ, λ1, λ2, 
λ3, and γ estimated setting K = 2. A, 
Dose-response curves. For clarity, the 
exposure has been discretized, and 
whenever several observations were 
available in one range of exposure, 
the median value of pS−I has been 
plotted. B, Density estimation of the 
time to diagnosis (posterior mean = 
3.2 years).

FIGURE 3. Density estimation of the probability of simulat-
ing an S to I (pcase) transition in cases (solid line) and controls 
(dashed lines). Results are presented for K = 2 and are based on 
10,000 simulations derived from the joint posterior distribu-
tion of μ, λ1, λ2, λ3, and γ.
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with respect to estimates of μ is consistent with the one based 
on time to diagnosis.

Models for K = 2, 5, 10, and 15 were compared on the 
basis of their ability to reconstruct trajectories in both cases 
and controls. There is a natural trade-off between simulating 
an S to I transition in actual cases and not simulating such 
a transition in controls. eFigure 5 (http://links.lww.com/EDE/
A742) clearly shows that setting K = 2 yields better sensitivity 
in cases at the cost of slightly lower performances in controls. 
Altogether this suggests that setting K = 2 provides a better 
balance between these two antagonistic features.

Robustness of our results to the prior specification 
was assessed by substituting the uniform prior (with support 
[–100;100]) with zero-centered Gaussian priors for μ, λ1, λ2, 
λ3, and log(γ). As summarized in eTable 2 (http://links.lww.
com/EDE/A742), we considered prior variances ranging from 
1,000 to 10. Results clearly show that none of the parameter 
estimates (except for λ1, very marginally) was affected by the 
prior choice.

We also generalized our model to (1) enable a more 
flexible modeling of the role of exposure in pS–I (through an 
additional parameter λ0), and (2) account for an age-related 
time to diagnosis (through an additional parameter θ), as 
detailed in eAppendix (http://links.lww.com/EDE/A742) sec-
tions 4.1 and 4.2. For λ0 = 1, the S to I transition probability 
corresponds exactly to the reference model described above 
in Equation 1. For θ = 0, the time spent in I is considered 
independent of age, which again corresponds to the model 
described above. The comparisons of parameter estimates for 
the fully generalized model (ie, including θ and λ0) and the 
model in which θ = 0 on the one hand, and for the model in 
which λ0 = 1 and the model in which λ0 = 1 and θ = 0, on the 
other hand, both show that estimates of μ and γ are affected 
only by the inclusion of an age-dependent process driving the 
transitions among the substate of I (eTable 3, http://links.lww.
com/EDE/A742). Both models including θ show a moderate 
and positive effect of age, resulting in older individuals being 
diagnosed earlier after tumor initiation. However, correspond-
ing BIC scores suggest marginal improvement of the fit (BIC 
differences <9). Consistently, simulations show that includ-
ing an age-dependent sojourn time in the hidden state I does 

not yield any substantial improvement in the model ability to 
reconstruct trajectories in either cases or controls (eFigure 6, 
http://links.lww.com/EDE/A742).

Simulations also showed (eFigure 6, http://links.lww.
com/EDE/A742) that the baseline model (in which θ = 0 and 
λ0 = 1) performed better in reconstructing trajectories of cases 
than the model including the effect of exposure (λ0 ≠ 1), at the 
cost of slightly lower specificity in controls, exemplified by a 
wider peak at higher values of pcase. Given that in our study 
population controls are twice as numerous as cases, and that 
each control contributes more to the likelihood than cases, the 
better performances of the model including λ0 in reconstruct-
ing trajectories in controls yield an overall better fit to the data 
as measured by a lower BIC score compared with the baseline 
model (8,174.0 and 8,247.5, respectively).

Our data included age at recruitment as a case-control 
matching criterion, resulting in the age distribution in con-
trols being right-shifted compared with that of the full cohort 
population (eFigure 7, http://links.lww.com/EDE/A742). As 
detailed in eAppendix (http://links.lww.com/EDE/A742) sec-
tion 4.3, we performed a sensitivity analysis by resampling 
subsets of controls with and without age matching. Results 
showed, as expected, estimates of λ1 based on unmatched data 
to be consistently higher than those based on the unmatched 
data (eTable 4, http://links.lww.com/EDE/A742). Neverthe-
less, in both scenarios, the inclusion of attained age yielded 
only moderate improvements in the model fit (differences 
in BIC <10), suggesting that our conclusion regarding the 
absence of an effect of age (other than through exposure dura-
tion) on the probability of entering carcinogenesis was not 
affected or driven by age matching.

DISCUSSION
We have developed an individual-based compartmental 

model to estimate parameters driving the dynamics of lung 
cancer progression. Our model for the probability to enter 
carcinogenesis accounted for the direct effect of age on expo-
sure by considering lifetime cumulative exposure functions. 
We defined a logistic model for this probability, and subse-
quent simulations showed accurate trajectory reconstruction 
in cases and in the vast majority of controls. This model was 

TABLE 2.  Parameter Estimates for K = 2, 5, 10, and 15

Parameter Estimates: Posterior Mean (95% Credible Interval)

μ λ1 λ2 λ3 γ

K = 2 1.52 (0.44 to 2.86) 0.03 (0.01 to 0.05) –0.08 (–0.10 to –0.06) –0.06 (–0.08 to –0.05) 2.45 (2.13 to 2.81)

K = 5 0.63 (–0.27 to 1.33) 0.03 (0.01 to 0.04) –0.11 (–0.13 to –0.09) –0.03 (–0.04 to –0.02) 0.02 (0.00 to 0.13)

K = 10 0.97 (0.25 to 1.75) 0.02 (0.01 to 0.03) –0.11 (–0.12 to –0.09) –0.03 (–0.05 to –0.02) 0.01 (0.00 to 0.05)

K = 15 1.24 (0.42 to 2.03) 0.02 (0.01 to 0.03) –0.11 (–0.12 to –0.09) –0.04 (–0.05 to –0.03) 0.01 (0.00 to 0.04)

Results (posterior mean and 95% credible intervals) are based on 50,000 iterations (with 20,000 iterations burn-in).
μ indicates intercept on the log scale; λ1, effect of age ai(t); λ2, effect of age at starting smoking ai

0; λ3, effect of time since smoking cessation t tq
i ( ); and γ, continuous time Ia–Ib 

transition rate.
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generalized and included a more flexible modeling of the role 
of exposure on the probability of entering carcinogenesis. 
Although this model provided a better fit to the data, it did 
not yield better performances in reconstructing individual 
trajectories.

By construction, our model did not perform well in 
predicting disease onset in cases with low exposed cases. 
To improve the model, causes other than smoking should be 
accounted for by including main exposures (eg, occupational 
and environmental) and risk factors (eg, genetic polymor-
phisms). Such refinements would be enabled by the struc-
tural flexibility of our model, which can accommodate both 
time-dependent (eg, exposure history) and constant risk deter-
minants (eg, disease risk genetic markers or a single mea-
surement of other “-omic” markers) in the S to I transition 
probability.

We show that, once the direct effect of age on expo-
sure duration has been accounted for, age itself has no further 
impact on the probability of initiating lung carcinogenesis, 
whereas age at starting smoking appears to be an influen-
tial covariate. In accordance with the exposome paradigm2 
and the idea that exposures at critical life stages have differ-
ential effects, this result highlights age at first active expo-
sure to tobacco smoke as a driver for the risk of lung cancer. 
Higher lung cancer relative risks have been commonly found 
to be associated with earlier ages at initiation.36,37 After sev-
eral recent studies based on a two-stage clonal expansion 
model,24,38–40 we considered smoking duration as a driver for 
the risk of initiating lung carcinogenesis. Despite modeling 
its effect directly, we considered lifetime cumulative exposure 
estimates that were subsequently plugged into the model as 
quasi-observations. Our approach then incorporates the effect 
of age at starting smoking and time since smoking cessa-
tion on exposure duration. Based on individual trajectories, 
our model provides estimates of the adjusted effect of age at 
starting smoking on the risk of lung cancer that support the 
existence of susceptibility to tobacco smoke based on early 
exposure. Similarly, we found the time since quitting smoking 
to have a protective effect on the risk of lung cancer, as previ-
ously reported in the literature.41

The probability of developing a tumor in highly exposed 
persons was estimated to plateau, which is consistent with the 
leveling-off of the relative risk demonstrated in previous stud-
ies in heavy smokers.42 Possible reasons include potential sat-
uration effects, dose-dependent inhalation habits, and possibly 
depletion of susceptible subjects or increased measurement 
error at high exposures. Although our finding is also consistent 
with a prominent and saturating effect of smoking duration in 
malignant cell promotion, our model, in its current form, is 
not able to identify which step of the carcinogenic process is 
mostly affected. However, the described model theoretically 
could be extended to incorporate transitions between states 
representing cellular physiologic changes involved in cancer 
development.

Our study also provides insights into the dynamics of 
lung cancer pathogenesis and shows that patients are diag-
nosed 1 to 4 years after putative malignant conversion. This is 
consistent with the lag-time reported between malignant con-
version and death from lung cancer among miners exposed to 
arsenic, radon, or cigarette and pipe smoke from a biologically 
based two-stage clonal expansion model.43

In additional sensitivity analyses, our results were robust 
to the assumption that the time spent in I was independent of 
age and therefore suggested that our data did not support an 
age-dependent time to diagnosis. In the current setting, the 
role of clinical screening and technical detection efficiency as 
drivers of the time to diagnosis cannot be ruled out because 
substates I1, …, IK do not have a biological meaning. How-
ever, this could be modeled by considering that the first j sub-
states correspond to the time needed for the tumor to become 
detectable and that the remaining K–j states relate to the time 
needed for a patient with a detectable tumor to be screened 
and diagnosed.

We could also relax the model from the assumption 
that all participants are in state S at enrollment by including 
the initial state among S, I1, …, IK in the sampling scheme. 
Biomarkers of disease onset (eg, genes whose expression is 
different in diagnosed cases) could be used to inform the dis-
tribution of the health status at enrollment.

We showed that the application of a compartmental 
model to reconstruct the course of smoking-induced lung 
cancer provides biologically valid results and enables the 
investigation of multiple and dynamic aspects of disease risk. 
Although latest developments of regression-based models are 
also able to integrate the full individual exposure history in 
risk estimation44 and provide well-established measures of 
association, our approach shows complementary advantages 
with respect to modeling and parametric flexibility and refined 
measures of the performances of the model. The longitudinal 
nature of our model also allows age-dependent susceptibility 
functions to be included as disease risk determinants, whose 
estimation would constitute an intuitive approach for the iden-
tification of critical life stages at which each exposure is driv-
ing the risk of disease onset.

Based on these properties, we believe that the present 
study shows the potential for the application of longitudinal 
models for the life-course risk of chronic diseases.
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