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PAPER

Heritability estimates of enteric methane emissions predicted from fatty
acid profiles, and their relationships with milk composition, cheese-yield
and body size and condition

G. Bittante and A. Cecchinato

Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), University of Padova, Legnaro, Italy

ABSTRACT
In the present study we estimated the genetic parameters of enteric methane emissions (EME)
traits predicted from milk fatty acid profile (FA) and those of their predictors in 1,091 Brown
Swiss cows reared on 85 farms in order to assess the potential of using EME-related phenotypes
in selective breeding. Univariate and bivariate genetic models were fitted in a Bayesian frame-
work. The means of the marginal posterior distribution of intra-herd heritability ranged from
0.12 for estimated methane production (g/d/cow) to 0.24 for estimated methane yield (g/kg dry
matter intake [DMI]), with intermediate values for estimated methane intensity, increasingly
higher when expressed per kg of corrected milk (0.13), fresh cheese (0.16), or cheese solids
(0.20). Regarding the correlations, the milk quality traits and percentage cheese yields were gen-
erally moderately correlated with the estimated EME traits, and were variable in terms of sign.
Daily milk and cheese yield traits were, as expected, all highly positively correlated with esti-
mated daily methane production. In contrast, they were negatively correlated with estimated
methane yield and intensity, the estimates being large in the case of phenotypic and herd cor-
relations, and low in the case of additive genetic and residual correlations. With the exception
of the negative correlations with daily methane production, EME traits exhibited trivial correla-
tions with body size and BCS of cows, which, in turn, were negatively correlated with milk yield.
Although the results should be validated on a larger population and different breeds, our study
demonstrate the presence of additive genetic variation of EME traits, which could be exploited
in breeding programmes for the improvement in both milk production and the ecological foot-
print of dairy farming.

HIGHLIGHTS

� Enteric methane emissions (EME) of dairy cows can be estimated on the basis of milk fatty
acid profile.

� EME exhibited exploitable genetic variation.
� Genetic selection could be preferentially based on predicted methane intensity per kg of
milk, or per kg of cheese in countries where milk production is used mainly for
cheese-making.
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Introduction

In agriculture, ruminant productions are considered to
be the major activities responsible for global green-
house gas (GHG) emissions, because of enteric
methane emissions (EME) (Knapp et al. 2014), to
which dairy cows make a significant contribution. Also
in Italy EME represent the most important source of
GHG of the dairy cows (Pirlo and Car�e 2013; Battaglini
et al. 2014; Pulina et al. 2017; Lovarelli et al. 2019).

Direct quantification of GHG through the gold
standard method, based on respiration chambers,
requires facilities, tools, capital investments and know-
ledge that are available only in some research centres,
making it very expensive to directly evaluate EME on
a large number of animals.

Analysis of milk fatty acid (FA) profiles and the use
of combinations of FAs are considered valuable meth-
ods for use in the field, as recently reviewed by
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Negussie et al. (2017). This is because there are direct
links between EME, the type of fermentation in the
fore-stomach, the quantities and proportions of vola-
tile FAs in the rumen, the quantities and proportions
of FAs absorbed by the intestines, and the transfer
and de novo synthesis of FAs in the udder, as shown
in many experiments on cow’s feeding (Chilliard
et al. 2000).

Interesting studies recently carried out on the rela-
tionships between the FA profiles of milk obtained by
gas-chromatography (GC), considered to be the gold
standard for this type of analysis, and some EME traits
have been reviewed by van Gastelen and Dijkstra
(2016). These studies were carried out with small
numbers of cows in respiration chambers, so the
results cannot be easily generalised to field condi-
tions. On the other hand, van Lingen et al. (2014)
undertook a meta-analysis of results from research in
this area, by combining the data from 4 experiments
carried out at the University of Reading (UK) and 4
experiments carried out at Wageningen University
(the Netherlands), covering 30 different diets and 146
complete gas balances. They devised two equations
for predicting methane yield per unit of DMI (CH4/
DMI, in g/kg), and methane intensity per unit of fat/
protein-corrected milk (CH4/CM, in g/kg), both with
acceptable levels of accuracy (R2: 0.54 and 0.47,
respectively) considering that the data came from dif-
ferent experiments with different diets and environ-
mental conditions. Similar prediction performances
where recently obtained by the same group (van
Gastelen et al. 2018) using the results of Dutch experi-
ments for predicting also the daily methane produc-
tion per cow (dCH4, in g/d).

In a previous study (Bittante et al. 2018), we applied
these equations of van Lingen et al. (2014) to a large
dataset of detailed FA profiles of milk samples from a
survey on 1,158 Brown Swiss cows from 85 herds from
different dairy systems. We also used this information,
combined with the cheese yield of individual cows to
estimate methane intensity per unit of fresh cheese
(CH4/CYCURD, g/kg) and per unit of cheese solids
(CH4/CYSOLIDS, g/kg). In addition, we estimated dCH4,
g/d by multiplying CH4/CM by daily corrected milk
yield (dCMY, kg/d). We were able to characterise the
estimated EME traits of different dairy systems and the
effects of individual sources of variation (i.e. DIM and
parity). No studies on the individual genetic variation
of all the aforementioned traits have been conducted
so far.

The aims of this study were: i) to estimate the herit-
abilities of 5 EME traits obtained from the yield,

composition and detailed FA profiles of milk, and from
individual cheese yields; ii) to test, through a sensitiv-
ity analysis, the robustness of these estimates across
different dairy systems and feeding, parity, and lacta-
tion stage; iii) to estimate the additive genetic, pheno-
typic, herd, and residual (co)variances among the 5
estimated EME traits, and between these and the phe-
notypes used for their estimation, and also the body
size and condition.

Material and methods

Animals, samples and analyses

This study is part of the Cowability-Cowplus project
(Bittante et al. 2015) and details about the animals,
herds, milk sampling and analyses, detailed gas-
chromatographic fatty acid profiling and individual
model-cheese making were described in details in the
previous study on the estimation of EME traits from
FA profile and on the analysis of their phenotypic
sources of variation (Bittante et al. 2018). Briefly, after
editing, a total of 1,091 Brown Swiss cows from 85
herds, all enrolled in the Herd Book of the breed, were
considered. Pedigree information was provided by the
Italian Brown Swiss Cattle Breeders Association
(ANARB, Verona, Italy). We considered cows with
phenotypic records available for the investigated traits
and all known ancestors. Each sampled cow had
known ancestors for at least four generations and the
pedigree file included 8,845 animals.

The body size and condition of each cow were
defined as: measured heart girth, and body weight
(BW) and body condition score (BCS), estimated by a
trained university technician. The milk yield was
sampled once, and two milk subsamples per cow
were immediately refrigerated (4 �C) without preserva-
tive and used to analyse milk quality traits (50mL),
and to produce individual model cheeses (2,000mL) at
the Cheese-Making Laboratory of the Department of
Agronomy, Food, Natural Resources, Animals and
Environment (DAFNAE) of the University of Padova
(Legnaro, Padova, Italy). Individual cheese yields,
expressed in percentages, were measured as the ratio
between the weight of the fresh cheese wheel and
the weight of milk processed (%CYCURD), and as the
ratio between the weight of the fresh wheel multi-
plied by its percentage DM and the weight of the milk
processed (%CYSOLIDS). From the daily milk yield
(dMY), individual daily productions (kg/d) of fresh
cheese (dCYCURD) and cheese solids (dCYSOLIDS) were
calculated by multiplying dMY by the traits concerned
(%CYCURD or %CYSOLIDS), and of daily fat and protein
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corrected milk production (dCMY) according to van
Lingen et al. (2014).

Detailed FA profiles of the milk samples were
obtained using a ThermoQuest gas chromatograph
(Thermo Electron Corp., Waltham, MA) fitted with a
flame-ionization detector and a high polar fused-silica
capillary column (Chrompack CP-Sil88 Varian,
Middelburg, the Netherlands; 100m, 0.25mm i.d.; film
thickness 0.20 lm) by the method described in detail
by Mele et al. (2016). Milk FA composition was
expressed as grams per 100 g of total FAs, and, in
conformity with van Lingen et al. (2014) equations,
we examined the following FAs: 4:0 (butyric acid);
16:0iso (iso-palmitic acid); 18:1t10; 18:1t11 (vaccenic
acid); 18:1c9 (oleic acid); and 18:2c9,c12 (linoleic acid).

Definition of EME phenotypes

In the present study, we examined the following
estimated EME traits, as defined by de Haas
et al. (2017):

� Methane yield: (CH4/DMI), predicted according to
van Lingen et al.’s (2014) equation:

CH4=DMIðg=kgÞ ¼ 23:39þ 9:74� 16:0iso–1:06

� 18:1t10þ t11–1:75

� 18:2c9, c12ðR2 ¼ 0:54Þ
where 16:0iso is iso-palmitic acid, 18:t10,þt11 is the
sum of the 18:1t10 and vaccenic acids, and 18:2c9,c12
is the linoleic acid of milk, all expressed as % of the
sum of all milk FAs.

� Methane intensity-milk: (CH4/CM), predicted accord-
ing to van Lingen et al.’s (2014) equation:

CH4=CMðg=kgÞ ¼ 21:13–1:38� 4 : 0þ 8:53

� 16:0iso–0:22� 18 : 1c9–0:59

� 18:1t10þ t11ðR2 ¼ 0:47Þ

where 4:0 is butyric acid, and 18:1c9 is oleic acid,
all expressed as % of the sum of all milk FAs.

� Methane production: (dCH4), calculated as:

dCH4ðg=dÞ ¼ CH4=CM� dCMY

� Methane intensity-cheese: (CH4/CYCURD), calculated
as:

CH4=CYCURDðg=kgÞ ¼ dCH4=dCYCURD

� Methane intensity-cheese solids: (CH4/CYSOLIDS), cal-
culated as:

CH4=CYSOLIDSðg=kgÞ ¼ dCH4=dCYSOLIDS

� Daily DMI of each cow (dDMIest), indirectly esti-
mated (only to test the consistency of van Lingen
et al.’s (2014) equations) as:

dDMIestðkg=dÞ ¼ dCH4=ðCH4=DMIÞ

Statistical analysis

Non-genetic effects, which were included in the mixed
models used to estimate the genetic parameters for
the estimated EME traits and for the traits used to
make the estimations, were identified through a pre-
liminary analysis reported in detail by Bittante et al.
(2018). For all traits, the model accounted for the
effects of herd/date (85 levels), days in milk (DIM: class
1, <60 d; class 2, 60 to 120 d; class 3, 121 to 180 d;
class 4, 181 to 240 d; class 5, 241 to 300 d; class 6,
>300 d), and parity (1 to 4 or more).

The genetic determinism of the estimated EME
traits and their predictors (y) was investigated by ana-
lysing the data with the following mixed model:

y ¼ Xbþ Z1hþ Z2aþ e [1]

where y is the vector of phenotypic records with
dimension n; X, Z1, and Z2 are the appropriate inci-
dence matrices for systematic effects (b), herd/date
effects (h), and polygenic additive genetic effects (a),
respectively. In b were included the effects of days
DIM and parity. The priors for b and the variance
components were assumed to be flat.

A sensitivity analysis was carried out repeating the
genetic analyses on reduced datasets obtained exclud-
ing some cow’s category. To test the effect of dairy
system and feeding, two datasets were obtained
removing all traditional farms with tied cows, and,
alternatively, all modern farms using total mixed
rations (TMR) with or without use of maize silage. To
test the effect of parity, two datasets were obtained
removing all primiparous or all old (�4 parities) cows,
respectively. Finally, to test the effect of the stage of
lactation, two datasets were obtained removing all
cows in early (<60 DIM) or late (>240 DIM) lactation,
respectively.

We estimated the genetic, herd-date and residual
correlations between the studied variables by conduct-
ing a set of bivariate analyses that implemented
model 1 in its multivariate version. In this case, the
traits involved were assumed to jointly follow a multi-
variate normal distribution along with the additive
genetic, herd/date and residual effects. The corre-
sponding prior distributions for these effects were:
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ajG0, A � MVN 0,G0,⨂Að Þ,
hjH0, � N 0,H0,⨂Inð Þ and

ejR0, � N 0,R0,⨂Imð Þ,
where G0, H0, R0 are the corresponding variance-
covariance matrices between the traits involved, and
a, h, and e are vectors of dimension equal to the
number of animals in the pedigree (n and m) times
the number of traits considered.

Marginal posterior distributions of all unknowns
were estimated using the Gibbs Sampling algorithm.
The analyses were implemented using the software TM
(available at http://cat.toulouse.inra.fr/�alegarra/). For
all analyses, the total number of iterations was 850,000
with a burn-in of 50,000 and a thin interval of 100. The
posterior mean was used as the point estimate for all
parameters. For heritability estimates, the lower and
upper bounds of the highest 95% probability density
regions (HPD95%) were obtained from the estimated
marginal densities. For the phenotypic, genetic, herd
and residual correlations, besides the mean of each
marginal posterior distribution, we also estimated the
probability of each mean being greater than 0 when
the mean is positive, or lower than 0 when the mean is
negative (P). We considered all estimates with P greater
than 95% as ‘relevant’ correlations.

Intra-herd heritability (h2) was computed as h2 ¼
r2
a=ðr2

a þ r2
eÞ, and the herd/date incidence

as HD ¼ r2
h=ðr2

a þ r2
h þ r2

eÞ:

Results

Mean and standard deviation of the estimated EME
traits and of their predictors (informative milk FAs,
quality traits, and daily yield traits), and also of cow’s
size and condition traits are reported in Table 1.
A comprehensive discussion of these traits was
reported by Bittante et al. (2018).

Variance components, and estimates of
heritability and herd incidence

Point estimates and features of the marginal posterior
densities for the additive genetic variance and heritabil-
ity (h2Þ of traits are reported in Table 2. The intra-herd
heritability estimates of EME traits was: 0.25 for CH4/
DMI, 0.12 for CH4/CM, 0.17 for dCH4, 0.16 for CH4/
CYCURD, 0.20 for CH4/CYSOLIDS and 0.12 for dDMIest. As
the incidence of herd-date variance on total variance
(HD) was very high for all traits (46 to 71%), the corre-
sponding across-herd heritabilities were lower, varying
from 0.06 to 0.09 (data not shown). Heritability esti-
mates for the daily production traits (dMY, dCMY,

dCYCURD and dCYSOLIDS) varied from 0.12 (dCMY) to
0.15 (dCYCURD), whereas the value of HD for these traits
was around 50%. The quality and technological traits of
the milk samples had higher h2 values than the yield
traits (varying from 0.13 for fat percentage to 0.28 for
protein percentage), and a relatively low incidence of
HD: The informative FAs used for predicting EME exhib-
ited a high incidence of HD and relatively low values of
h2, varying from 0.07 (butyric acid) to 0.21 (linoleic
acid). All h2 estimates are characterised by a relatively
low range of HPD95. Heart girth and BW showed inter-
mediate within-herd heritability (0.27 and 0.25, respect-
ively) and BCS slightly higher (0.33); their HD were
similar to those of milk quality traits (0.23 to 0.25).

Sensitivity analysis

Table 3 shows the results of the sensitivity analysis on
h2 and HD estimates. The only factors affecting the h2

Table 1. Descriptive statistics of all the investi-
gated traits.
Item Mean SD

Estimated Methane emissionsa

CH4/DMI, g/kg 21.34 1.58
CH4/CM, g/kg 14.26 1.63
dCH4, g/d 358 104
CH4/CYCURD, g/kg 100 16
CH4/CYSOLIDS, /kg 208 31
dDMIest, kg/d 17.1 5.5

Informative milk FAs (%FA)b

4:0 - Butyric acid 3.45 0.90
16:0iso - Iso-Palmitic acid 0.32 0.09
18:1t10 0.29 0.09
18:1t11 - Vaccenic acid 1.20 0.37
18:1c9 - Oleic acid 18.33 3.19
18:2c9,c12 - Linoleic acid 2.04 0.59

Quality traitsc

Milk fat, % 4.23 0.72
Milk protein, % 3.71 0.43
%CYCURD, % 15.06 1.89
%CYSOLIDS, % 7.23 0.94

Daily yield traitsd

dMY, kg/d 24.5 7.9
dCMY, kg/d 25.6 8.1
dCYCURD, kg/d 3.66 1.17
dCYSOLIDS, k/d 1.76 0.57

Body size and condition
Heart girth, cm 200 8
Est. body weight, kg 668 51
Body condition score 2.97 0.34

aEstimated Methane Emissions: CH4/DMI, g/kg: methane yield,
emitted per kg DMI; CH4/CM, g/kg: methane intensity per kg
fat and protein corrected milk produced; dCH4, g/kg: daily
methane production per cow; CH4/CYCURD, g/kg: methane inten-
sity per kg of fresh cheese produced; CH4/CYSOLIDS g/kg:
methane intensity per kg of cheese solids produced; dDMIest,
kg/d: estimated daily DMI of cows.
bInformative milk FAs are the fatty acids included as independ-
ent variables in the equations used to estimate the enteric
methane emissions (van Lingen et al. 2014).

cQuality traits: %CYCURD: wt of fresh cheese as % of processed
milk; %CYSOLIDS: wt of cheese solids as % of processed milk.
dDaily yield traits: dMY: daily milk yield; dCMY: daily fat and pro-
tein corrected milk yield; dCYCURD: daily production of fresh
cheese per cow; dCYSOLIDS: daily production of cheese solids.
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estimates (average h2 of reduced datasets being at
least 1.0 SD unit above or below the corresponding
average estimate found on the entire dataset, shown
in bold) were: the dairy system on CH4/CM, whose h2

was increased by both the exclusion of traditional
farms with tied cows or the exclusion of modern farms
using TMR, and the stage of lactation because remov-
ing late lactation cows led to a decrease of CH4/DMI
and an increase of the 3 methane intensities. The var-
iations observed for HD effect were much smaller. The
only relevant change was observed for dCH4 when
traditional farms with tied cows were removed from
the analysed dataset: in this case the herd variability
was reduced from 0.44 to 0.30 (Table 2).

Additive genetic correlations among traits

Table 4, shows the point estimates of the marginal
posterior densities of the additive genetic correlations
among the estimated EME traits, and between them
and the traits used for their estimation. All estimates

with P greater than 95%, indicating relevance in a
Bayesian framework, are shown in bold. Phenotypic,
herd, and residual correlations have been also
obtained and are reported in supplementary material
(Tables S1, S2 and S3, respectively).

In general, the estimated methane yield and the 3
estimated methane intensity traits are all positively
correlated with each other from the phenotypic, gen-
etic, herd and residual point of view. Estimated
methane production, on the other hand, had much
lower correlation coefficients with the other EME traits,
and sometime negative correlation coefficients with
estimated methane yield.

As expected, the estimated EME traits were corre-
lated with the informative FAs used for their estima-
tion, and with the proper sign (positive for iso-palmitic
acid, negative for the others). Vaccenic acid was the
only FA almost not correlated with the majority of
estimated EME traits.

The correlations between milk quality traits (i.e.
composition, and percentage cheese yields) and the

Table 2. Marginal posterior densities of genetic variance (r2
a), herd-date variance (r2

h), residual variance (r2
e), heritability ðh2Þ

and herd-date variance as proportion of total variance ðHDÞ for all the investigated traits.

Item

Variances h2
HD

r2
a r2

h r2
e Mean HPD95a Mean

Estimated Methane emissionsb

CH4/DMI, g/kg 0.18 1.78 0.53 0.25 0.10; 0.43 0.71
CH4/CM, g/kg 0.12 1.45 0.94 0.12 0.01; 0.28 0.57
dCH4, g/d 916 4166 4371 0.17 0.02; 0.28 0.44
CH4/CYCURD, g/kg 17 149 88 0.16 0.03; 0.32 0.59
CH4/CYSOLIDS, /kg 82 497 317 0.20 0.05; 0.41 0.55
dDMIest, kg/d 1.7 13.3 11.6 0.12 0.02; 0.28 0.50

Informative milk FAs (%FA)c

4:0 - Butyric acid 0.024 0.436 0.299 0.07 0.01; 0.20 0.57
16:0iso - Iso-Palmitic acid 0.001 0.004 0.003 0.18 0.07; 0.33 0.53
18:1t10 0.001 0.005 0.004 0.20 0.04; 0.43 0.51
18:1t11 - Vaccenic acid 0.011 0.089 0.041 0.20 0.06; 0.39 0.63
18:1c9 - Oleic acid 0.980 1.719 5.993 0.14 0.02; 0.33 0.20
18:2c9,c12 - Linoleic acid 0.025 0.247 0.091 0.21 0.08; 0.42 0.68

Quality traitsd

Milk fat, % 0.054 0.103 0.356 0.13 0.03; 0.29 0.20
Milk protein, % 0.023 0.023 0.058 0.28 0.12; 0.49 0.22
%CYCURD, % 0.513 0.920 1.568 0.25 0.11; 0.42 0.31
%CYSOLIDS, % 0.143 0.155 0.468 0.23 0.09; 0.41 0.20

Daily yield traitse

dMY, kg/d 2.85 22.84 19.80 0.13 0.02; 0.27 0.50
dCMY, kg/d 3.35 25.21 24.28 0.12 0.02; 0.24 0.47
dCYCURD, kg/d 0.085 0.628 0.484 0.15 0.01; 0.39 0.52
dCYSOLIDS, k/d 0.021 0.143 0.120 0.15 0.04; 0.29 0.50

Body size and condition
Heart girth, cm 13 15 35 0.27 0.07; 0.51 0.24
Est. body weight, kg 438 601 1340 0.25 0.08; 0.44 0.25
Body condition score 0.026 0.021 0.050 0.33 0.17; 0.51 0.23

aHPD95: bounds of the 95% high posterior density interval.
bEstimated Methane Emissions: CH4/DMI, g/kg: methane yield, emitted per kg DMI; CH4/CM, g/kg: methane intensity per kg fat and protein corrected
milk produced; dCH4, g/kg: daily methane production per cow; CH4/CYCURD, g/kg: methane intensity per kg of fresh cheese produced; CH4/CYSOLIDS g/
kg: methane intensity per kg of cheese solids produced; dDMIest, kg/d: estimated daily DMI of cows.

cInformative milk FAs are the fatty acids included as independent variables in the equations used to estimate the enteric methane emissions (van Lingen
et al. 2014).
dQuality traits: %CYCURD: wt of fresh cheese as % of processed milk; %CYSOLIDS: wt of cheese solids as % of processed milk.
eDaily yield traits: dMY: daily milk yield; dCMY: daily fat and protein corrected milk yield; dCYCURD: daily production of fresh cheese per cow; dCYSOLIDS:
daily production of cheese solids.
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Table 3. Sensitivity analysis of the heritability (h2) and herd effect (HD) obtained excluding alternatively from the entire dataset
of phenotyped cows those belonging to the extreme dairy systems (traditional farms with tied cows or modern farms using total
mixed rations), or parities (primiparous or old cows), or lactation stages (fresh cows and late lactation cows).a

Item Entire dataset

All dairy systems excluded All parities excluded Entire lactation excluded

Tied cows Modern TMR 1st � 4th DIM <60 d DIM >240 d

Cows with EME, N. 1,091 753 746 768 817 926 762
CH4/DMI, g/kg
h2, mean 0.25 0.29 0.31 0.34 0.31 0.25 0.17
h2, SD 0.08 0.10 0.11 0.12 0.11 0.08 0.08
HD, mean 0.71 0.68 0.69 0.70 0.69 0.73 0.70

CH4/CM, g/kg
h2, mean 0.12 0.25 0.21 0.14 0.09 0.09 0.29
h2, SD 0.06 0.11 0.09 0.09 0.04 0.04 0.14
HD, mean 0.57 0.59 0.55 0.54 0.56 0.64 0.54

CH4/CYCURD, g/kg
h2, mean 0.16 0.17 0.22 0.15 0.18 0.16 0.39
h2, SD 0.08 0.08 0.09 0.08 0.09 0.07 0.13
HD, mean 0.59 0.56 0.58 0.55 0.58 0.61 0.58

CH4/CYSOLIDS, g/kg
h2, mean 0.20 0.24 0.30 0.22 0.19 0.15 0.39
h2, SD 0.09 0.10 0.12 0.10 0.09 0.08 0.12
HD, mean 0.55 0.54 0.54 0.52 0.55 0.59 0.53

dCH4:
h2, mean 0.17 0.23 0.24 0.21 0.21 0.16 0.15
h2, SD 0.08 0.10 0.10 0.10 0.11 0.09 0.08
HD, mean 0.44 0.30 0.41 0.46 0.44 0.44 0.46

aBoldface indicates estimated average h2 values of reduced datasets being at least 1.0 SD unit above or below the corresponding estimated h2 value of
the entire dataset.
Estimated Methane Emissions (EME): CH4/DMI, g/kg: methane yield, emitted per kg DMI; CH4/CM, g/kg: methane intensity per kg fat and protein cor-
rected milk produced; CH4/CYCURD, g/kg: methane intensity per kg of fresh cheese produced; CH4/CYSOLIDS g/kg: methane intensity per kg of cheese sol-
ids produced; dCH4: daily methane production per cow.

Table 4. Mean of the marginal posterior distribution of additive genetic correlations among the estimated EME traits and
between EME traits and informative milk fatty acids (FAs), milk quality, daily yield, and body size traits.a

Item
Yield

Intensity
Production

CH4/DMI CH4/CM CH4/CYCURD CH4/CYSOLIDS dCH4
Estimated EME traitsb

CH4/CM, g/kg 0.53 –
CH4/CYCURD, g/kg 0.78 0.68 –
CH4/CYSOLIDS, /kg 0.76 0.76 0.94 –
dCH4, g/d 0.02 0.23 0.10 0.27 –

Informative milk FAs (%FA)c

4:0 - Butyric acid 0.03 �0.72 �0.19 0.07 0.04
16:0iso - Iso-Palmitic acid 0.64 0.03 0.45 0.56 �0.49
18:1t10 �0.43 �0.64 �0.39 �0.10 �0.65
18:1t11 - Vaccenic acid �0.06 �0.48 �0.24 �0.31 �0.86
18:1c9 - Oleic acid �0.25 �0.89 �0.54 �0.79 �0.70
18:2c9,c12 - Linoleic acid �0.92 �0.65 �0.78 �0.66 �0.05

Quality traitsd

Milk fat, % �0.64 0.15 �0.19 �0.24 0.27
Milk protein, % �0.53 �0.03 �0.35 �0.47 �0.23
%CYCURD, % �0.81 0.00 �0.64 �0.54 0.26
%CYSOLIDS, % �0.70 �0.17 �0.49 �0.62 0.04

Daily yield traitse

dMY, kg/d 0.08 �0.19 �0.03 0.17 0.84
dCMY, kg/d �0.28 �0.26 �0.28 �0.14 0.95
dCYCURD, kg/d �0.48 �0.18 �0.50 �0.24 0.91
dCYSOLIDS, k/d �0.33 �0.16 �0.41 �0.40 0.86

Body size and condition
Heart girth, cm 0.32 0.20 �0.18 0.09 �0.63
Estimated body weight, kg 0.31 0.40 0.26 0.44 �0.65
Body condition score 0.03 0.14 �0.09 �0.17 �0.74

aBoldface indicates additive genetic correlations with >95% of posterior probability accumulated above 0 (positive estimates) or below 0 (nega-
tive estimates).
bEstimated Methane Emissions: CH4/DMI, g/kg: methane yield, emitted per kg DMI; CH4/CM, g/kg: methane intensity per kg fat and protein corrected
milk produced; dCH4, g/kg: daily methane production per cow; CH4/CYCURD, g/kg: methane intensity per kg of fresh cheese produced; CH4/CYSOLIDS g/
kg: methane intensity per kg of cheese solids produced; dDMIest, kg/d: estimated daily DMI of cows.

cInformative milk FAs are the fatty acids included as independent variables in the equations used to estimate the enteric methane emissions (van Lingen
et al. 2014).
dQuality traits: %CYCURD: wt of fresh cheese as % of processed milk; %CYSOLIDS: wt of cheese solids as % of processed milk.
eDaily yield traits: dMY: daily milk yield; dCMY: daily fat and protein corrected milk yield; dCYCURD: daily production of fresh cheese per cow; dCYSOLIDS:
daily production of cheese solids.
Estimated Methane Emissions (EME): CH4/DMI, g/kg: methane yield, emitted per kg DMI; CH4/CM, g/kg: methane intensity per kg fat and protein cor-
rected milk produced; CH4/CYCURD, g/kg: methane intensity per kg of fresh cheese produced; CH4/CYSOLIDS g/kg: methane intensity per kg of cheese sol-
ids produced; dCH4: daily methane production per cow.
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estimated EME traits were generally moderate to low
and of varying signs. In fact, the phenotypic, genetic,
herd and residual correlations were generally lower
than 30% in absolute value, except for those between
the two %CYs and the methane intensities that they
were jointly used to estimate (CH4/CYCURD and CH4/
CYSOLIDS). Important exceptions were the high nega-
tive additive genetic correlations between estimated
methane yield and all the milk quality traits (�0.53 to
�0.81, p> 95%), and between estimated methane
intensity per unit of cheese solids and milk protein
content (�0.47, p> 95%).

Daily milk and cheese yield traits were all, as
expected, highly positively correlated with estimated
daily methane production from the phenotypic, gen-
etic, herd and residual point of view. In contrast, they
were negatively correlated with the estimated
methane yield and intensities.

Lastly, from the genetic point of view, body size
and condition traits were weakly correlated with the 4
methane yield and intensity traits, whereas they were
negatively correlated with methane production
(Table 4).

Discussion

Heritability and herd incidence of informative
traits used for estimating EME traits

Heritability estimates of milk traits used to estimate
EME traits ranged from 0.07 to 0.28, in line with previ-
ous findings obtained from the same database. The
genetic parameters of milk and cheese-making traits
were reported in detail by Bittante et al. (2013). The
milk fatty acid profiles were described and discussed
by Pegolo et al. (2016, 2017), and Cecchinato et al.
(2019). It is worth noting that none of the FAs van
Lingen et al. (2014) included in their equations for pre-
dicting EME traits are synthesised in the cow’s udder.
Moreover, with the exception of oleic acid, these FAs
are present in milk in low proportions and have large
phenotypic variability mainly due to the large differen-
ces among different herds (with different feeding
practices), as reported in Table 2 with the incidence of
HD: The intra-herd heritability of these FAs, with the
only exception of butyric acid, is of the same order as
the milk yield and quality traits. It is worth noting that
the heritability estimates in Holsteins were also similar
to (iso-oleic and vaccenic acids) or greater than (buty-
ric acid) our estimates (van Engelen et al. 2015), and
that HD was very high for the two former FAs
(56–60%), and much lower for the latter (16%).

Oleic acid (18:1c9), on the other hand, is present in
milk in large proportions, has a much lower coefficient
of phenotypic variability, and is less affected by herd
than the other FAs (Table 2). As discussed in the previ-
ous phenotypic study (Bittante et al. 2018), oleic acid
has been frequently found to have an inhibitory effect
on rumen fermentations, particularly those producing
acetate and butyrate (Chilliard et al. 2000), that are
the basis of fat synthesis in the cow’s udder. It is not
surprising, then, that the oleic acid proportion in milk
is negatively correlated with de novo synthetised FAs.
In a multivariate factor analysis this FA is included,
with a negative sign, in a latent explanatory factor
together with the main de novo FAs (Mele et al. 2016).
But oleic acid, during negative energy balance, could
be originated also from body fat mobilisation.

Heritability and herd incidence on EME traits
estimated from milk FA profile and cheese traits

Methane in the fore-stomach and intestines of rumi-
nants is produced by extensive microbial fermentation
of ingested and ruminated feedstuffs. There is no
known bovine gene directly involved in enteric
methane production, but there is a growing body of
research on the complex, reciprocal relationships
between the organism of the ruminant host and its
gastro-intestinal microbiota (Weimer et al. 2010;
Kiaosa-Ard and Zebeli 2013), also known as the ani-
mal’s ‘hidden organ’. In light of this, we may speak of
‘indirect heritability’ quantifying the indirect effect of
the bovine genome on rumen production of methane
by microorganisms.

Some studies have been carried out on the EME
genetics of bovine species in different conditions, and
with different populations and EME quantification
techniques. As recently reviewed by de Haas et al.
(2017) and by Brito et al. (2018), no estimates have
been made of the genetic parameters of dairy cows
for EME traits measured using the gold standard
method, respiratory chambers. Moreover, this method,
which requires highly sophisticated experimental facili-
ties, is not expected to be used in the near future for
genetic studies on large numbers of cows and it can-
not be used in commercial herds in field conditions. In
light of this the estimates of genetic parameters of
EME available, included ours, should be taken with
prudency. Two approaches are possible: i) the use of
less accurate direct methods; or ii) the use of indirect
methods correlated with or calibrated on direct meth-
ods (possibly using respiratory chambers).
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Direct methods, suitable for field conditions, involve
the use for analysing breath/eructate gas composition
during milking or feeding are much less accurate and
are the object of a strong scientific debate between
authors that criticise heavily the use of these methods
(Hristov et al. 2018; Huhtanen and Hristov 2018) and
authors affirming ‘… that even if measurements are
inaccurate, imprecise, or biased, they might provide
valuable information for selective breeding.’
(Bovenhuis et al. 2018). Using these systems, Lassen
and Løvendahl (2016) estimated a heritability value of
16% for the CH4/CO2 ratio of the air, which is the
phenotype measured by the apparatus, whereas van
Engelen et al.(2018) found for the same trait a repeat-
ability of 14% and a heritability of only 3% (31% and
11%, respectively, after log transformation). Similar
questions have been raised for infra-red analysers
placed in feeder bin (Wu et al. 2018). Moreover, these
methods sometimes yield different results among
them (Hristov et al. 2016), and respect to respiration
chambers in response to different cow’s diets
(Hammond et al. 2016), as recently reviewed by
Hristov et al. (2018).

As a comparison between these methods of direct
measurement of gas composition of air/breath and an
indirect method like that based on milk FA profile and
used in this study is not available, future research on
this issue is needed.

Among the indirect methods, some involve measur-
ing the cow’s feed intake and assessing the correlation
between feed intake and methane production. De
Haas et al. (2011) estimated a heritability of predicted
methane production of 35%, close to that of residual
feed intake (40%). Methane intensity (g/kg CM) was
also estimated and found to have very high heritabil-
ity (58%), but it should be considered that all cows
were reared in one experimental farm. Pickering et al.
(2015), using similar methods, estimated h2 of
methane production to be 13%. The assumption that
methane yield and methane intensity benefit from an
increase in feed efficiency (de Haas et al. 2011;
Negussie et al. 2017), was recently demonstrated not
corresponding to the experimental results obtained in
the rumen, where the most efficient cows showed a
different microbial populations and more intense feed
fermentation and digestion (Flay et al. 2019).

Moreover, measurement of DMI and body tissue
deposition/mobilisation for calculating residual feed
intake and feed efficiency is not easy at field level and
can explain some inconsistency in relations between
feed efficiency and expected EME traits (Negussie
et al. 2017).

Predictions of EME based only on simulations based
on milk yield and composition, expected body weight,
and expected daily feed intake (Yin et al. 2015)
depend only on equations used, and could suffer from
circularity of arguments. Furthermore, simulations
based only on milk yield and body weight are not
useful for genetic selection of EME traits because they
do not give any information on the actual EME pro-
duction of a given cow respect to predicted one
(residual methane emission), which should be the true
objective of selection.

Indirect prediction of methane yield and/or
methane intensity from measured milk samples char-
acteristics (FAs or FTIR spectra absorbance) are based
on predictors specific of a given cow and independent
from its milk yield or body weight and could be much
more useful to the dairy sector (Bittante and Cipolat-
Gotet 2018).

Kandel et al. (2017) used calibration equations set
up using SF6 gas tracer on the milk FTIR spectra.
Methane production estimated to have a heritability
coefficient of 22–25%, and methane intensities of
17–18%, Shetty et al. (2017) also used FTIR milk spec-
tra to predict the CH4/CO2 ratio, measured with IR
sniffers, but the results were modest and the authors
judged this method to be unfeasible for predicting
EME traits.

Only van Engelen et al. (2015), like the present
study, used measured milk fatty acid profiles to pre-
dict the methane yield (g/kg DMI) of 1,905 primipar-
ous Holstein cows. These authors compared three
calibration equations based on different FAs from
three single feeding trials (50 observations) in respir-
ation chambers (Dijkstra et al. 2011). Even though the
predicting equations were characterised by relatively
high accuracy (R2 0.63 to 0.73), the heritability esti-
mates of these three predictions were very different
from each other: 12%, 20% and 44%, respectively. It
should be considered that those equations were based
on only 50 observations of 3 experiments in one
research centre. Our intra-herd heritability estimate for
methane yield is 24% (Table 2). The across-herd herit-
ability is obviously lower, especially for the traits char-
acterised by the greater herd effect. Unlike van
Engelen et al. (2015), we used prediction equations,
also based on respiration chamber measurements,
obtained from a meta-analysis (van Lingen et al.
2014), which combined data from 2 countries/research
centres, 8 trials, 30 diets, and 146 observations. The
results obtained should in any case be evaluated with
prudence because the EME prediction equations used
in this study (van Lingen et al. 2014) were
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characterised by moderate accuracy (R2 0.47 to 0.54),
as often happens with meta-analysis on large and het-
erogeneous datasets. We preferred to use these latter
equations because the variety of diets and feed sup-
plements tested, together with the similar level of
daily milk yield, appeared to warrant a better transfer-
ability to the conditions of our territory, as discussed
in details in our previous work (Bittante et al. 2018).
Unfortunately, we cannot compare the results
obtained with the van Lingen’s et al. (2014) equations
with those, also from a meta-analysis, proposed by
van Gastelen et al. (2018) because of the lack in our
database of one fatty acid per equation.

Effect of dairy system, parity and lactation stage
on heritability of EME traits

The focal question regarding the representativeness of
EME estimated using methods developed on a limited
number of precise observations obtained in the
respiratory chambers, i.e. an environment very differ-
ent from commercial farms, cannot be solved directly.
In the previous phenotypic analysis on this dataset
(Bittante et al. 2018), we found that the results
obtained were well in agreement with expectations
from different dairy systems, parities and lactation
stages based on animal’s physiology. Here we tested
indirectly this question at a genetic level through a
sensitivity analysis (Table 2). The Bayesian approach
used allowed not only to obtain the central parameter
(average) of the heritability estimates, but also their
distribution. Using a relevance threshold of being at
least 1.0 SD unit above or below the average heritabil-
ity obtained on the entire dataset, very few estimates
obtained on reduced datasets presented relevant dif-
ferences respect to the reference value.

The exclusion from the dataset of ‘extreme’ farms,
like those very traditional with tied cows or those
modern with TMR, tended to increase the heritability
values of all the EME traits, even though a statistical
relevance was reached only for methane intensity-
milk, whose heritability almost doubled respect to the
reference on the entire dataset. If this could be due to
a too large environmental variability (see HD values)
or to some G� E interaction cannot be addressed and
requires further research. In any case it seems that a
more homogeneous dairy system could allow a
greater accuracy of genetic evaluation of animals for
EME traits and particularly CH4/CM.

The effect of excluding very young or very old
cows from the dataset was not relevant, whereas the
stage of lactation affects heavily all the EME traits. In

particular, in early lactation the emissions are much
lower than later, as confirmed in the phenotypic study
(Bittante et al. 2018). This is due to the fact that a rele-
vant proportion of energy requirement of the fresh
high yielding cow is covered by the mobilisation of
body fatty reserves (negative energy balance), without
any corresponding release of methane from the rumen.
Also genetic parameters are affected by lactation
stages, as shown by Vanrobays et al (2016) on infra-red
predicted EME traits. Anyway, the exclusion of the cows
in early lactation, and then of those possibly being in
severe negative energy balance (and seldom included
in respiration chamber experiments), seems not affects
the heritability estimates of any EME traits. On the con-
trary, the exclusion from the dataset of the cows in late
lactation exerted a relevant effect on the estimation of
heritability of almost all EME traits (only methane pro-
duction heritability was not affected). The heritability of
methane yield was reduced, whereas that of the three
methane intensities was strongly increased (Table 3). It
is worth noting that in this phase of lactation generally
milk yield is decreasing, like feed intake, whereas the
cow is reconstituting the fatty body reserves. The entity
and proportions of these phenomena depends heavily
on the fact that the cow is pregnant or not and, in the
first case, on the stage of pregnancy. The pregnancy in
itself requires energy: the quantity of energy deposited
in foetus and foetal annexes in lactating cows is not
much high, but the efficiency of deposition of energy
for pregnancy is particularly low (NRC 2001), meaning
large energy losses, and how much they involve
methane losses is not known and require fur-
ther research.

The differences between the studies regarded also
the breed of cows as we sampled Brown Swiss cows
whereas the other studies were carried out on
Holsteins. Even though it seems not probable that the
breed of dairy cows with similar feeding regime and
productive level affect the microbial activity in the
rumen, it should be noted that Xue et al. (2011), com-
paring Jersey crossbreds with Holsteins purebreds,
found many productive and metabolic differences
between the two genotypes, but they observed that
their energy loss from EME as a ratio of total energy
intake remained very similar, also using diets of very
different roughage: concentrate ratio.

Correlations between traits and selection
opportunities for EME phenotypes

Knowledge of the genetic correlations among EME
traits, and between them and their predictors is

122 G. BITTANTE AND A. CECCHINATO



fundamental, especially where the aim is to design an
optimal selection index, and only a few studies have
reported these genetic parameters, almost always with
large standard errors of estimates. What is still lacking
is a reliable estimation of the genetic correlations
between informative FAs and EME obtained with the
golden standard method of respiration chambers that
can go beyond the phenotypic correlations obtained
by van Lingen et al. (2014). The knowledge of genetic
correlations would allow the direct inclusion of inform-
ative fatty acids in a selection index aimed at improv-
ing ecological footprint of dairy sector. We found that
milk yield is genetically correlated only with estimated
daily methane production, although this is mainly
because the latter is obtained from the former and
because increased milk yield imply larger DMI and
rumen loads. Milk quality, on the other hand, is nega-
tively (favorably) correlated with methane yield, but
not with methane intensity (with the obvious excep-
tion of the two %CY traits, and partly of milk protein
content, with methane intensity per unit of cheese).

The possibility to use the heritabilities of estimated
EME traits, the genetic correlations with other milk
traits, and the availability of direct and indirect meth-
ods of prediction, other than those using respiration
chambers, in large scale surveys, may open the way to
genetic and/or genomic selection of dairy populations.

Current breeding programmes in many countries
have an unfavourable effect on methane production
(g/d), but a favourable effect on methane intensity (g/
kg CM), as also demonstrated by Pryce and Bell
(2017). In fact, selection for greater milk yield, and
consequently greater feed intake and possibly live
weight, is obviously leading to an increase in daily
methane production per cow. The inclusion of
methane production (g/d) with a negative weighing
within a selection index would reduce the genetic pro-
gress in daily milk production because of the positive
(unfavourable) genetic correlation between these two
traits. The reduction of methane production per cow
could be counterbalanced by an increase of the num-
ber of cows needed to fulfil the dairy-chain needs
(Pryce and Bell. 2017). On the contrary, the increase in
milk yield is said to increase cow’s efficiency and
dilute methane production (g/d), thereby reducing
methane intensity (g/kg CM), even though recent
feeding experiments questioned this assumption (Flay
et al. 2019). The main problem facing selection for
improving cow’s efficiency and also for reducing daily
methane production is that an inaccurate estimation
of the variation of body reserves will lead to an
unwanted selection for thin cows, increasing in this

way fertility and longevity problems in the long time.
For this reason, we included also body size and condi-
tion among the traits considered in this study. As
shown in Table 4, the EME traits estimated from milk
fatty acids were not relevantly correlated, from the
genetic point of view, with the cow’s body size and
condition, with the relevant exception of the negative
correlations with methane production. This does not
mean that increasing body size and condition will
improve ecological footprint of dairy farms, but simply
that high producers are less heavy and fat than low
producers because of fatty body depot mobilisation.
The genetic correlations between daily milk yield and
hearth girth (�0.64), estimated live weight (�0.73)
and BCS (�0.78), in fact, are all high and negative
(data not shown).

If the market demand for milk is the leading driver
of the dairy industry, methane intensity, and not
methane production, should be the selection objective
of the dairy chain. Moreover, where the dairy sector is
oriented mainly to cheese production, like in Italy and
many other European countries, greater account
should be taken of methane intensity per unit of
cheese in an attempt to optimise the relationships
between economic and ecological sustainability in the
dairy industry. It should also be considered that the
new methane intensity traits (Table 1) calculated in
terms of predicted EME per kg of fresh cheese (h2 ¼
0.16) or per kg of cheese solids (h2 ¼ 0.20) exhibited
greater heritabilities than the predicted EME per kg
CM (h2¼ 0.13).

The economic value of EME traits and the break-
even prices of recording them were also modelled by
Hansen Axelsson et al. (2015). These authors demon-
strated that, when the cow’s entire career is taken into
account, and not only its lactation periods, a viable
and economic alternative to EME phenotyping of dairy
cows is to use stayability after the 1st calving as an
indirect indicator to dilute the EME of the replacement
heifer on a longer productive lifespan.

Indirect EME predictions could be used for properly
calibrating genomic selection. Genome-wide associa-
tions and genomic selection of EME traits have been
more extensively studied in beef populations than in
dairy cattle (Hayes et al. 2016; Manzanilla-Pech et al.
2016), mainly with an eye to the possibility of directly
measuring these traits in candidate young bulls. In
any case, Lassen et al. (2016) found very similar herit-
ability values for methane production and methane
intensity when they were estimated on the basis of
pedigree information or genomic relationships. They
also found some interesting correlations between fatty
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acid profile and EME traits, although they pointed out
the need for further research on larger numbers
of cows.

Conclusions

In the present study, we estimated the genetic param-
eters of EME traits obtained from equations based on
a meta-analysis of their relationships with milk FA pro-
files. Heritability of estimated methane production (g/
d) was similar to that of milk yield, whereas heritability
of estimated methane intensity (g/kg CM) was similar
to that of fat content. Estimated methane intensities
per kg of fresh cheese and per kg of cheese solids, of
interest to countries where a large proportion of the
milk produced goes into cheese making, were more
heritable than those per kg of corrected milk. Lastly,
estimated methane yield (g/kg DMI) was the most her-
itable trait, together with the protein content and
cheese yield of milk. Although results should be vali-
dated on larger population and different breeds, our
estimates indicate the feasibility of selecting dairy
cows for the improvement both milk production and
the ecological footprint of dairy farming. However, fur-
ther research is needed to study the representative-
ness of these indirect methods for estimating EME
traits and especially on the effect of different dairy
systems and feeding regimes and the complex interre-
lationships with feed efficiency, body reserve manage-
ment and cow’s fitness.
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