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coarse-scale finite element model of the composite laminate is used for carrying out the
structural analysis. The computed displacements at the edges of each solar cell are passed
via a projection scheme as boundary conditions to a 3D local fine-scale finite element
model of the cells which accounts for cohesive cracks. The evaluated crack opening

Keyw.ordS: . displacements along the crack faces are finally used as input to an electric model
Nonlinear finite element method .. 1 1s . . . .

Laminate characterizing the grid line/solar cell ensemble. The identification of the relation between
Cohesive zone model the localized electric resistance due to cracks and the crack opening, to be used as a con-
Global/local modeling stitutive model of cracks, is finally discussed in reference to experimental tests performed
Multi-physics in the laboratory.

Generalized electric model © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The durability of photovoltaic (PV) modules is a relevant issue debated by the scientific community during the recent
years [1-3]. It is also subject of intensive discussion by international organizations [4] aiming at providing a rationale for
the interpretation of laboratory and field degradation data of PV modules coming from different producers and installed
in different climate zones.

After a period of feed-in tariffs promoted by many EU Governments to accelerate investments in the PV sector, PV parks
characterized by sufficient energy production in the previous framework are not always adequate to produce profits for the
investors within the new regulations. Therefore, it becomes of paramount importance to understand the possible sources of
losses in the energy production, quantify the degradation of a PV system, define more accurate business plans accounting for
maintenance costs, and eventually invoke warranties when the under performance of PV modules exceeds producers’ spe-
cifics. Apart from PV parks where installed PV modules have an almost standard layer composition (Fig. 1(a)), the problem of
durability is expected to be even more relevant in the next few years due to the rapid progress of building-integrated PV
systems. In this case, in addition to energy production, modules have also to guarantee a safe structural performance and

* Corresponding author. Tel.: +39 0583 4326 604; fax: +39 0583 4326 565.
E-mail addresses: marco.paggi@imtlucca.it (M. Paggi), mauro.corrado@polito.it (M. Corrado), irene.berardone@polito.it (I. Berardone).
! Present address: Civil Engineering Institute, Materials Science and Engineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 18,
CH-1015 Lausanne, Switzerland.

http://dx.doi.org/10.1016/j.engfracmech.2016.01.018
0013-7944/© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2016.01.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.engfracmech.2016.01.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marco.paggi@imtlucca.it
mailto:mauro.corrado@polito.it
mailto:irene.berardone@polito.it
http://dx.doi.org/10.1016/j.engfracmech.2016.01.018
http://www.sciencedirect.com/science/journal/00137944
http://www.elsevier.com/locate/engfracmech

M. Paggi et al./Engineering Fracture Mechanics 168 (2016) 40-57 41

Nomenclature

X position vector

u displacement vector

d nodal displacement vector

N shape functions matrix

R rotation matrix

Eloc gap vector in the local reference system

& crack opening

g crack sliding

Ene critical crack opening displacement

Sie critical crack sliding displacement

E Young modulus

\J Poisson ratio

Omax peak normal cohesive traction

Tmax peak tangential cohesive traction

Iy relative displacements at the peak cohesive tractions
r root mean square of the heights of the crack rough profile
T cohesive traction vector

C tangent constitutive matrix

ferack residual vector

K tangent stiffness matrix

Vv voltage (V)

It surface current density through the thickness of the solar cell (A/cm?)
I linear current density along the finger (A/cm)

Ps distributed sheet resistance (Q)

Rer localized crack resistance (Q cm)

14 local coordinate along the finger

Ear position of the crack along the finger

&o position of the minimum of the voltage along the finger
Vo value of the minimum of the voltage along the finger
l distance between two busbars

other architectonic specifics like shadowing and ambient comfort. These requests lead to customized PV modules with a
layer composition tailored to specific needs, see for instance the semi-transparent PV modules used for facades or roofs,
Fig. 1(b), or semi-flexible PV modules that can be bonded to curved substrates, Fig. 1(c). For all of these cases, the resistance
of Silicon to cracking and durability are important concerns to be scrutinized.

PV modules are laminates composed of thin layers, as schematically shown in Fig. 2. From the lower side towards the
upper side exposed to sun we usually have a backsheet (0.1 mm thick) or glass (3 mm thick), a layer of an encapsulant mate-
rial (typically Epoxy-Vinil-Acetate, EVA, 0.5 mm thick), solar cells (0.16 mm thick) separated in their plane by few millime-
ters of encapsulant, another layer of EVA like the previous one, and finally a glass cover (3 mm thick) for rigid PV modules, or
a polymeric layer like PET (0.2 mm thick) in case of semi-flexible modules.

Commercial modules might have different size and number of cells. In case of modules installed in PV parks, it is common
to have a layer with 10 x 6 square solar cells of about 150 mm side. Solar cells transform the solar radiation in electric energy
via the so-called photovoltaic effect [5]. Solar cells are made of monocrystalline or polycrystalline Silicon, a semiconductor
able to provide a reasonable energy conversion efficiency of about 15-20% at a relatively low production cost. In the com-
monly used technology, electrons are collected on the front side of the solar cell by tiny electric conductors called grid lines or
fingers deposited on the cell surface. Two or three busbars are soldered on the cell surface and collect the fingers along the
direction orthogonal to them, see Fig. 3. These main conductors electrically connect all the solar cells in series. In another
technology, to avoid partial shadowing induced by fingers and busbars in order to increase the energy conversion efficiency,
a back contact is used and no fingers and busbars are present on the front side. In the present study we restrict our modeling
to solar cells with front contacts.

Cracks can originate during various stages from production to installation. They are often invisible with the naked eye but
can be accurately identified by the electroluminescence (EL) technique, whose methodology is described in Section 4 where
experimental tests are presented. For illustrative purposes, EL images taken by the present authors during various experi-
mental campaigns are shown in Fig. 4. Regardless of the PV technology, cracks can isolate large portions of solar cells by com-
pletely interrupting fingers in a worst case scenario, or can just increase the electric resistance related to the finger-solar cell
contact at the point where the crack crosses the grid line. Such electrically damaged regions contribute to the drop in the
current-voltage curve of the whole PV module and to its electric power-loss.
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(a) PV park

(c) Semi-flexible modules in building-integrated PV

Fig. 1. Photovoltaic parks and new solutions for building-integrated photovoltaics.
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Fig. 2. (a) A sketch of a PV module with glass cover, and of (b) a semi-flexible PV module with PET cover.

At present we are still far from having a simulation tool able to quantify the impact of cracks on the electric efficiency and
durability of PV modules. Under the assumption of a worst case scenario, cracks have been treated in [1] as defects interrupt-
ing fingers and leading to insulated portions of the Silicon cell. Using an electric model accounting for the active cell area, an
estimate of the maximum possible power-losses has also been made in [1]. In that model, the position and the orientation of
cracks with respect to the busbars were found to be key parameters, since they impact on the electric performance in dif-
ferent ways in relation to the size of the portion of the solar cell becoming insulated. Alternatively to the direct experimental
approach, a method to estimate the probability of cracking has been proposed in [6] based on the Weibull statistics of Silicon



M. Paggi et al./ Engineering Fracture Mechanics 168 (2016) 40-57 43

Fig. 3. A photo of a solar cell showing fingers and busbars.

strength and predicting the stress level in solar cells by a linear elastic stress analysis. From the computational point of view,
since cracks have a different impact on the electric response depending on the type of solar cell technology (monocrystalline
or polycrystalline Silicon), their position with respect to the busbars, and also on the stress state induced by loading, a
pioneering multi-physics and a multi-scale finite element approach based on nonlinear fracture mechanics was proposed
in [7]. It has also been further extended in 8] by proposing a thermoelastic cohesive zone model to simulate thermomechan-
ical problems in solar cells during cooling after lamination, considering partial heat conduction across crack faces, depending
on their opening.

In the present study we propose an advancement with respect to [7] in terms of computational modeling. First, we pro-
pose a completely general global/local framework which can be used to handle large size PV modules and provides a more
accurate prediction of crack opening. Second, the over-conservative one-diode electric model proposed in [7] with param-
eters dependent on the potentially electrically inactive area identified by assuming that all the cracks are perfectly insulated
lines is herein refined. Namely, we propose an accurate electric model for each finger with localized resistances dependent
on the crack opening. We are therefore able to simulate cracks with a degree of electric insulation variable with the load
level. Model parameters identification is discussed in Section 4, showing the capabilities of the model to accurately predict
the electric response of cracked solar cells embedded in PV modules under the action of mechanical loads. It also elucidates
the fundamental mechanisms responsible for the coupling between the mechanical and the electric fields due to cracks.
Model parameters identification is finally discussed and the proposal of a perspective coupled electro-mechanical constitu-
tive law for cracks concludes the study.

2. The proposed global/local approach

The global/local approach is a computational strategy often adopted in fiber-reinforced or laminated composites to deal
with problems having two very different length scales [9,10], such as the scale of the component and the scale of its
microstructure. In general, a homogeneous global or coarse-scale model is used to compute the displacement field. The dis-
placements from the global model are taken as boundary conditions for the local model, which is a fine-scale representation
of a portion of the composite where the material microstructure and its mechanical degradation is simulated with a greater
accuracy. In some cases, a feedback from the local model to the global one is required, viz. by updating the global stiffness
matrix.

In the present problem, to investigate the effect of realistic loading conditions, it is necessary to simulate the whole com-
posite laminate and the phenomenon of cracking at the cell level, which requires much more details than the global stress
analysis. A single fine resolution finite element model able to accurately simulate cohesive cracks in solar cells embedded in
the PV module would be computationally too expensive to solve. Moreover, the experimental evidence in [6] shows that
cracks have a low impact on the stiffness of the module. Therefore, uncoupling of the global finite element model of the
PV module from a local finite element model of each solar cell appears to be a viable choice to reduce the computation cost,
allowing also the use of parallel computing schemes for each cell.

On this line of research, in the pioneering attempt in [7], the global model of the PV module to perform linear elastic
structural analyses was composed of plate finite elements based on the Kirchhoff theory. The composite structure of the lam-
inate was accounted for by introducing effective elastic properties depending on the stack composition. A 2D local model of
each solar cell was then proposed by using plane stress continuum triangular and quadrilateral linear finite elements sep-
arated by interface elements along the grain boundaries of polycrystalline Silicon. The global structural analysis provided the
out-of-plane displacement w, and the rotations ¢, and ¢, in the finite element nodes of the composite plate. These gener-
alized displacements were used to determine the in-plane displacements at the level of each solar cell, to be imposed as
boundary conditions to the local model solved under the assumption of plane stress.
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(¢) Monocrystalline Si cells with back
contacts

Fig. 4. Electroluminescence images showing crack patterns in different PV module technologies: (a) polycrystalline Silicon; (b) monocrystalline Silicon; (c)
monocrystalline Silicon with back contacts.

Here, a refined three-dimensional global/local approach is proposed, providing a more accurate description of the phys-
ical phenomenon of electric degradation due to cracking, and a more consistent coupling between the coarse-scale and fine-
scale finite element models in terms of kinematics.

2.1. The coarse-scale finite element model of the laminate

To efficiently deal with different loading conditions and PV module geometries, the global coarse-scale finite element
model used to simulate the structural response of the PV module should be as general as possible. To deal with the most
complex loading scenario, we propose to use linear brick elements for thermo-mechanical loading simulations, or solid shell



M. Paggi et al./Engineering Fracture Mechanics 168 (2016) 40-57 45

elements like those used in [10,11]. Alternatively, if geometry and loading allow a simplification, like in case of bending of
the whole PV module with respect to one of its two symmetry axes, it might be convenient to consider a cross-section of the
module and perform a 2D simulation using two-dimensional linear continuum elements. Examples will be provided in
Section 4.

In any case, solid-like discretizations (2D plane stress or plane strain solid elements for plane problems; bricks and tetra-
hedra, or solid shell finite elements for three dimensional problems) should be preferred over Kirchhoff-Love plate elements
used in [7] for the following reasons:

¢ In the framework of solid-like finite elements it is easier to accurately model the interspace between solar cells than in
Kirchhoff plate elements. This task is important when the evolution of the gap between solar cells is a quantity of interest,
viz. for the prediction of failure of the busbars due to cyclic thermo-mechanical loads.

e Thermo-visco-elastic constitutive models for the encapsulant are easier to be implemented in solid-like elements than in
Kirchhoff plate elements. Generalized thermo-visco-elastic models are in fact already available in most of the commercial
packages and this might foster the use of the proposed global/local approach at the industrial level for the simulation of
degradation processes in PV modules [12-14].

o Solid-like finite elements have a kinematics that can be consistently coupled with 2D or 3D interface elements for cohe-
sive fracture [11], since only translational degrees of freedom are present without rotational degrees of freedom like in
the Kirchhoff plate elements. This is important for the simulation of the decohesion of the backsheet layer from the other
laminae, a phenomenon requiring the discretization of all the laminae composing the PV stack. In the case of problems
displaying large displacements, the interface element formulation proposed in [10,15] can also be consistently used.

From the global coarse-scale finite element model of the laminate, displacements in the x,y and z directions of the nodes
of the finite elements belonging to the edges of the solar cells can be determined by a simple post-processing of the linear
finite element results. These displacements have to be passed as input to the local model as boundary conditions. In doing
this, since the finite element discretization used in the fine-scale model is not required to match the one used in the global
model, a projection operation has to be programmed. From the algorithmic point of view, it is convenient to introduce geo-
metrical entities like facets to distinguish between the nodes of the finite elements belonging to the different sides of the
solar cell, namely the lower side, the upper side, the two vertical sides along the x-direction, and the two vertical sides along
the y-direction.

For each node of the finite elements belonging to a given facet of the local model, their displacement boundary conditions
are evaluated by performing a linear interpolation between the displacement values of the closest neighboring nodes in the
global model. This projection procedure is described in the Algorithm 1.

Algorithm 1. Numerical algorithm for the displacements projection from the global to the local model.

for t = 1 to T displacement or loading increments do
Impose force or displacement boundary conditions in the global model;
Solve the global model in terms of displacements using a full Newton-Raphson method in case of nonlinear
constitutive laws for cohesive interfaces between the layers, or for geometric nonlinearities, if included;
for s = 1 to S solar cells do
for i =1 to N facets defining the sides of the cell do
for j = 1 to M nodes in the local model belonging to the facet i do
Find the two closest nodes P, and P, belonging to the same facet in the global model;
Impose a displacement vector u; = Nyu¥) + N,u®, where u") and u® are the displacement vectors of the
nodes P; and P,, and Ny, are linear shape functions (k = 1, 2).
end
end
end
end

2.2. The fine-scale finite element model of the solar cells

In the fine-scale model of each solar cell, a three dimensional finite element discretization of the continuum is considered
by using linear brick elements. A MATLAB pre-processor for the finite element analysis program FEAP [16] has been written
to generate the finite element mesh of monocrystalline Silicon solar cells including one or two internal cracks, whose loca-
tions are defined by the coordinates of their tips. Block commands in FEAP are used to generate a structured finite element
mesh and duplicate the nodes of the elements along the crack. Three dimensional interface elements with a cohesive zone
model formulation are then inserted through the cell thickness with a certain traction-separation relation that can be
defined arbitrarily. An example of a 3D finite element discretization of a solar cell is shown in Fig. 5.
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Fig. 5. An example of a local model with two cohesive cracks in red. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Since the interface elements are the only elements inducing a nonlinearity in the local model, their modeling is herein
presented with care. The contribution to the Principle of Virtual Work of the interface cohesive tractions T acting along
the cohesive crack surfaces Sy is:

Hcrack = /S g};chS (1)
0

where g, is the gap vector that accounts for opening and sliding displacements between the two faces of the crack. The vir-
tual variation of I,y reads:

(%) "Tds 2)

Introducing now the discretization of the interface by using isoparametric finite elements, the interpolated position vec-
tor of the points belonging to the average plane between the crack faces in the undeformed configuration is obtained by mul-
tiplying the interface element nodal values by the operator N that collects the shape functions:

5Hcrack = 5uT/

So

X = X¢ = NMX", (3)

where the superscript n denotes quantities evaluated at the nodes of the discretized geometry, viz. X" =

X1,Y1,Z1...,Xs, YS,ZS)T. In case of a 3D quadrilateral linear interface element (see Fig. 6), the matrix operators have the
following expression:

Crack through the cell

Upper surface of the solar cell (interface clements)

/A
/.‘

Brick elements & locn Lower surface

of the solar cell

Fig. 6. A sketch of an interface element embedded between brick elements, through the thickness of Silicon cells.
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N =[N NI N5l Ny (4a)
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where 0 is a 3 x 3 null matrix and I'is a 3 x 3 identity matrix. The shape functions in the standard natural reference system
(1,52) € [-1,+1] x [-1,+1] read:

N; :}1(1 —s1)(1-5,) (5a)
N, :}1(1 +51)(1—53) (5b)
N; =}1(1 +51)(1+5,) (50)
N4:‘ll(1 —51)(] +52) (Sd)

The gap vector in the reference cartesian frame, g, can be obtained by pre-multiplying the nodal displacement vector
d=(u,v1,w;...,uUs, yg,wg)T by a suitable operator L which provides the difference between the displacements of the
two crack faces. Within the finite element discretization, the interpolation scheme of the gap vector reads:

g=~g®=NLd (6)
where the matrix operator L is:
- 0 0 0 I 0 0O
0 -1 0 0 01I1OODO
L= (7)
0o 0 -1 0 00O0TPOO
0 0 0 -1 00OT11

The constitutive relation for the crack, i.e., the so-called cohesive zone model (CZM), is usually provided in a local frame
defined by the tangential and the normal vectors to the middle surface of the interface element (t;,t, and n), see Fig. 6. These
unit vectors can be determined via differentiation of the average coordinates with respect to the natural coordinates s; and
S7.

The gap vector in this local frame, i, = (8ioct, > Gloct, s Sioen) ', is computed by multiplying the gap vector in the reference
frame by a rotation operator R:

gleoc = Rge (8)
where the rotation matrix collects the components of the unit vectors t;, t,, and n:
tl‘x tl.y tl.z
R= t2.x t2y t2.z (9)
n n, n
Introducing the finite element discretization, Eq. (8) can be rephrased as:

g . = RNLd = RBd (10)
where B := NL has been introduced to simplify the notation. Examining the terms entering the virtual variation of Eq. (2), the
partial derivative (9gy,./0u) is given by:

agloc agfoc

— %~ 20— RB 11

ou ~ od (11)
Inserting this intermediate result into the discretized version of Eq. (2), where u is simply replaced by d, the following
general formulation valid for any CZM relation is derived:

STTE = od" / (RB)'TdS (12)
JS
For the cohesive traction vector T = (14,72, )", an irreversible CZM whose shape is characterized by a linear ascending
branch followed by an exponential softening is used. Coupling between fracture modes is accounted for. The resulting
expressions for the normal and total tangential cohesive tractions are:
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g = Omax €XP <*glx;\gt\>7 lf Ig < g_rn < g% (13)
0, if &b g
rmaxexp(@>%, if 0g&lch

T= | TmacsgN(g,) exp (Eukd) i bl & (14)
0, if &> &

where the model parameters are: Iy, which defines the opening and sliding displacements corresponding to the peak CZM
tractions before the onset of exponential softening; the critical opening and sliding displacements, g, and g, corresponding
to complete debonding in pure opening and shearing loading; the root mean square of the microscopic surface roughness of
the crack profile, r, computed as in [8]. As compared to other CZM formulations like in [22], defining the cohesive tractions by
a single nonlinear equation over the whole separation range which is easier to be numerically implemented, here the ascend-
ing branch is treated separately from the softening one. This choice allows us to keep the slope of the linear branch high and
not related to the value of oy, and keep constant the interface fracture energy acting on g,,. and g.. A graphical represen-
tation of the pure Mode I and Mode II CZM relations is provided in Fig. 7.

Due to the nonlinearity in the CZM relation, a consistent linearization of Eq. (12) is required for the application of the
Newton-Raphson solution scheme. The contribution of the weak form at the k + 1 iteration can be related to that of the
previous iteration k by a truncated Taylor series expansion:

a(Sl_lﬁrack (dk) Ad

e k+1\ o e k
OMT{gp (A7) 2 ST, (A) + =20

crack crack

(15)

where Ad = d“*' — d*. Henceforth, the iteration index will be omitted to simplify notation. Performing the linearization of
the cohesive traction vector T = (11, T2, O')T as customary, we obtain:

aT
—C (16)
8gloc
where C represents the tangent interface constitutive matrix of the element:
i) oy o1y
O8loct1  OBlocz  Blocn
o a1y a1y aty
C= O8loc1 O8locrz  8locn (17)

Ja Ja da
O8loc1 O8locrz  I8locn

The final formulation is the following:

D) _ [ prR1cRBds (18)
od Js,

o T
TC
GC --I
i 8t f
; T l() gtc gt
l() Enc &n
Pl
- _‘CC
(a) Mode I (b) Mode II

Fig. 7. CZM formulation for irreversible opening and sliding deformation.
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providing the residual vector f, and the tangent stiffness matrix K of the interface element:

ferack = / (RB)'TdS (19a)
So
K= | B'R'"CRBdS (19b)

So

This formulation can also be augmented by considering thermal conduction as proposed for 2D in [8]. The crack opening
displacement computed at each node of the interface element is finally passed as input to the electric model, which allows
for the simulation of the electric response of the solar cell.

3. The electric model

The most common PV solar cells are made of Silicon. An atom of Silicon in the crystal lattice absorbs a photon of the inci-
dent solar radiation and, if the energy of the photon is high enough, then an electron from the outer shell of the atom is freed.
This process results in the formation of a hole-electron pair, where the hole is a place where there is a lack of an electron in
the crystal structure. To avoid the natural recombination of electrons and holes, a potential barrier is built into the cells by
doping the Silicon on the side exposed to sunlight with Phosphorous, to form n-Silicon, which has an excess of electrons in its
outer shell. Similarly, on the opposite side, Silicon is doped with a very small amount of Boron, to form p-Silicon, which has a
deficiency of electrons in its outer shell. By connecting the p — n junction via an external circuit, a current flows through it.
Electrical contacts are made by metal bases on the bottom of the cell and by metal grids (fingers) on the top layer. These
fingers are soldered to busbars that are the main conductors connecting in series the various solar cells building the PV mod-
ule, see the sketch in Fig. 8.

Under the assumption of an ideal semiconductor, which has homogeneous properties everywhere in the plane of the solar
cell, a simple one-dimensional electric model can be introduced to quantify the amount of current I(¢) along the finger, for
each position described by the coordinate ¢ ranging from one busbar to the other. According to [17], in fact, the voltage is not
constant, but it is a function of ¢ due to a distributed resistance of the grid line, caused by metallization and emitter resis-
tances. For each voltage V(¢), the current I;; through the thickness of the cell, i.e., through the p — n junction, can be finally
modeled by a single diode equation.

In the present section, this electrical model is generalized by accounting for one or two intersecting cracks. Preliminary
results in [18] have shown that, in addition to the spatial variation of the grid line resistance as in [17], a localized resis-
tance at the position along the finger crossed by a crack has to be introduced to model experimental trends. However, the
relation between this localized resistance and the crack opening was not investigated in [18] and is the subject of the pre-
sent study.

By introducing for each finger a local reference frame (¢,#,{) with the axis ¢ directed along the finger direction and
ranging from the first busbar at ¢ = 0 to the second at ¢ =1 (see Fig. 8), the surface density of electric current through
the thickness of the solar cell originated in the semiconductor by the photovoltaic effect, Iy (A/cm?), the voltage V (V),
and the linear density of current (per unit depth) along the finger, I; (A/cm), depend on the position ¢ due to the sheet
resistance in the ¢-direction pg (Q/cm?) evaluated as the grid resistance Rgiq (Q/cm) divided by the spacing between
two fingers.

Without illumination from the sun, as during the conditions of the electroluminescence test performed inside a dark
room, where the voltage at the busbars is externally imposed by a power supplier, the following ordinary differential equa-
tion relates the linear density of current along the finger I;(¢) to the derivative of the voltage:

d
L= —pit(d) (20)

cracks

finger
/ / i busbar

5O nghag
I (&) i i
0 %crﬁl &0 da &,cr.z l é

Fig. 8. Schematic representation of a finger intersected by two cracks.
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Moreover, for continuity conditions on an infinitesimal portion of the grid line and the solar cell behind it, the derivative
of the linear density of current along the finger has to be equal to the surface density of current passing through the solar cell
thickness:

dls (&
- e @1
By inserting the expression for It in Eq. (20) into Eq. (21), the following second order ordinary differential equation is derived:
d’v(¢) )
@ Pslie(S) (22)

The surface density of current through the thickness of the solar cell, I, is due to the semiconductor properties whose
response can be approximated by a single diode model [7]:

V() - Rhomltt(x)>

Vs (23)

Iie(¢) = Io1 exp (
where Ry, is the local sheet resistance in series with the diode, Iy, is the saturation current density, n; ~ 1 is the ideality
factor, V1 = kT/e is the thermal voltage dependent on the absolute temperature T and on the Boltzmann’s constants k
and e, the magnitude of the electrical charge of the electron.

Due to the implicit nature of Eq. (23), the current I cannot be obtained in a closed form and we suggest to recast Eq. (23)
in a way so that the Newton-Raphson method can be applied:

3 V(&) — Rhomlie (¢
F1a(8)) = (@)~ for exp (157 Tt () o 24)
mVr
The approximation I';'(¢) at a generic iteration i + 1 is obtained from that of the previous iteration I',(¢) as follows:
. . daF1', .
K@= o - [g1] e (25)
tt]
where
df:| V(é) — Rhomli (CV) Rhom
—| =1+1Ipex L - 26
|:d1tt i o1 €Xp < nVr mVr ( )

Considering I, = 0.2 mA/cm? as the starting value, convergence is achieved when the error in the computed I, is less than a
prescribed tolerance. Due to the consistent update of the tangent, the rate of convergence is quadratic and few iterations are
needed to achieve an error within the machine precision.

Numerical integration of the ODE in Eq. (22) is performed by discretizing the grid line in nodes (nnd) with a regular spac-
ing d¢. The starting point for the integration is the point at ¢ = ¢, where the voltage is minimum, V. For a finger not inter-
sected by cracks, this point is simply located in the middle between two busbars (&, = I/2). For a finger intersected by a
crack, &, is a free parameter to be identified by matching the value of the voltage at the busbars, which is a known imposed
value in the EL test (see the sketch in Fig. 8). For a tentative value of &;, whose initial guess can be ¢, = 1/2 and the corre-
sponding voltage, V(&,) = Vo, which is in general lower than the applied voltage at the level of busbars (0.7 V for a typical EL
test), the integration path is separated in two parts. In reference to Fig. 8, the first part is comprised between &, and the bus-
bar on the left, and the second part ranges from ¢, and the busbar on the right. The current density I (¢) is assumed to be
constant within each integration interval. Under such an hypothesis, the voltage profile within each interval d¢ is parabolic
and the following equations hold:

1

V(E+dE) = V(&) + V'(§)de +5V"(§)de? (27a)
V(& +dE) = V(&) +V'(&de (27b)
It(€+d¢) = I¢(&) + Tn(&)dE (27¢)

where (') and (”) denote, respectively, first and second order derivatives with respect to ¢.

Examining the integration in the first region (from & = &, to ¢ = 0), the boundary conditions are V(&) = Vo and V(&) = 0.
The vertical current I(¢) is then computed with the Newton-Raphson method applied to Eq. (23). Next step, the voltage
V(& —dg¢), its derivative V'(¢ — d¢) and the linear density of current along the finger, If(¢ — d¢) are evaluated at the new inte-
gration point ¢ — d¢ according to Eq. (27). The negative sign of d¢ is due to the fact that we are integrating from ¢ = &, > 0 to
£=0.

At the point &..; where a crack crosses the finger, an additional localized resistance R..; is introduced, dependent on its
crack opening, in agreement with experimental findings in [ 19] recently confirmed by optical microscope images and electric
measurements in [20]. Indeed, as firstly pointed out in [19], the effect of a crack on I; is quite evident from the analysis of EL
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images. The brightness of the EL image, in fact, is proportional to I;; [21] by a scaling factor. When the crack opening displace-
ment is sufficiently large, a discontinuity in the gray-scale of the EL image takes place. Due to the presence of the concen-
trated resistance, a discontinuity in the voltage distribution takes place in correspondence of this crack position, & ;:

V(éc_rl) = V(éz—r]) + Rcr.llf(écr.l) (28)

Afterwards, the integration proceeds as previously done before meeting the crack. Regarding the integration in the second
region, from ¢ = &, up to ¢ = I, the same procedure as before is applied to compute V(¢ + d¢), V'(¢ + d¢) and I¢(¢ + d¢) in the
point with coordinate ¢ + d¢, starting from the boundary condition imposed at ¢ = &,.

Again, in case of another crack intersecting the finger at ¢ = & ,, the voltage is increased in that point by the action of a
concentrated resistance R..». The algorithm for two cracks intersecting a finger, which is the most general case found from EL
inspections after production, is summarized in Algorithm 2. In the case of a single crack, it is sufficient to set equal to zero
one of the two localized crack resistances.

Algorithm 2. Algorithm for the computation of the electric voltage and currents along a finger intersected by one or two
cracks.

Data: d¢, &y, &cr2; Nnumber of integration points nnd; and nnd,; distance [ between two busbars; tolerance
tolp = 5 x 1072 on the error w.r.t. experimental data; tolerance tol; = 0.7/10 w.r.t. the value of the voltage at the
busbars, V, spatial tolerance tol, = I/ max{nnd;,nnd,}; tolerance tol; = 1 x 10~ "3 of the Newton-Raphson method

Initialize: norm — 1, normy « 1, error «— 1,errory «— 1, Vg « 0.7, &, — 1/2

while error > tolp do

while errory > tol; do

Integrate from ¢ = &y to ¢ = 0:

for j =1 to nnd, do

if |& — ¢q| < tol, then
Modify the voltage V according to Eq. (28)

end

Compute I;j with the Newton-Raphson method;

Initialize i = 1,1}, = 0.2 A;

while norm > tol; do
i—i+1;

Compute Ii, Eq. (25);
Compute norm = ||I, — I 1]

end

liej Iit“;

Compute Itj, V}’, and VJ'- using Eq. (27), ¢ « ¢ —d¢

end

Integrate from ¢ = &y to & =1:

for j =1 to nnd, do

if [¢ — ¢e 2] < tol, then

| Modify the voltage V according to Eq. (28)

end

Compute I;j with the Newton-Raphson method;

Initialize i = 1,1}, = 0.2 A;

while error>tol; do
i — i+ 1; Compute I, Eq. (25);

Compute norm = ||I}, — Ii1|;

end

Iej — I

Compute Igj, V{, and V} using Eq. (27), & — &+ d¢;

end

Compute errory = max{||V(¢ =0) — V,||,|[|[V(¢ =) — V}p|} and modify &g;
end
Compute error= Yp"4 "% (If — 1% )/I%,, and reduce Vo;

end
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4. Model parameters identification
4.1. Description of the experimental test

To get insight into the mechanisms leading to the coupling between the mechanical and the electric fields due to cracks
and identify the model parameters, a bending test on a rectangular PV module was performed by monitoring cracking at dif-
ferent deformation levels by using EL imaging. This is a non-destructive method based on the evaluation of the level of lumi-
nescence emitted by Silicon when subjected to an imposed electric potential in forward bias condition. Electrically insulated
zones or cracks can be identified by their low EL intensity, thus resulting in dimmer images. In the present tests, a voltage of
0.7 V was applied to the PV panels by the Genesys GENH60-12.5 (750W-1U, TDK Lambda) power supplier. EL emission was
detected by the cooled digital 12 bit CCD camera pco.1300 solar, with a resolution of 1392 x 1040 pixel and equipped by the
Schneider Kreuznach XNP F1.4 lens with SWIR coating 800-1800 nm. Tests were performed inside a darkroom, shading all
the possible sources of light to avoid reflection effects. By using nearly the maximum aperture of the camera (F1.8), the focus
of the camera was adjusted during the bending test to obtain perfect focus for all the various deflections of the module. An
exposure time of 5 s was used for each photo. A post-processing of the acquired EL images was made by using the facilities of
the software CamWare. In particular, cut-off filters of 600 and 8200 nm were used for all the images to make them compa-
rable and remove very high and very low emission in the spectrum of the signal. EL data at any pixel can be converted in
current through the thickness, I;, according to the method proposed in [21].

A semi-flexible module made of 2 rows of 5 monocrystalline Silicon solar cells each was tested in bending. The size of the
cells is 156 x 156 mm. The partially symmetric arrangement of the layers through the thickness (0.265 mm of polyethylene
terephthalate, 0.600 mm of epoxy-vinyl-acetate, 0.166 mm of Silicon, 0.400 mm of epoxy-vinyl-acetate and 0.345 mm of
backsheet, see Fig. 2(b)) and the different Young moduli of the materials lead to Si cells just above the neutral axis of the
cross-section. This type of module, which has a certain degree of flexibility, can be used in many applications where the sub-
strate to be bonded is curved. In order to induce a tensile stress state inside solar cells, the curvature imposed to the module
was such that the convex side after bending corresponds to the PET side (front side, see Fig. 9).

To create pre-existing cracks and study their evolution depending on the imposed bending, moderate impacts were made
with PMMA balls of 4 cm of diameter at a velocity of 6 m/s, simulating the action of hail impacts. In this way, cracks are
introduced by an indentation effect. The PV module is then loaded in bending and the EL images of the four solar cells in
the middle of the panel are shown in Fig. 10 for different mid-span deflections. Location of impacts can be clearly
distinguished by the circular dark spots from where diagonal cracks, influenced by the crystallographic planes of cubic face
centered monocrystalline Silicon, depart. These patterns are completely invisible with the naked eye and can only be deter-
mined by the EL technique.

In the sequel, as far as the numerical model is concerned, we focus our attention on the cell No. 1, which has a crack
between two busbars near the left edge of the cell far from the other cracks. Its local electric resistance is increasing with
deflection, as it can be seen by the localized dimmer EL signal around the crack.

/
<

-~

Fig. 9. Sketch of the mechanical test. The cells 1-4 are monitored by EL and their images are shown in Fig. 10.
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(d) 15 cm

Fig. 10. Electroluminescence images of the 4 solar cells in Fig. 9, for different deflections of the PV module.

4.2. Description of the numerical simulation

The well defined geometry of the test and the application of a mono-axial bending allow the use of the coarse-scale anal-
ysis for a single cross-section of the module, parallel to the bending plane. Therefore, a 2D plane strain model has been con-
sidered, in which the layers of the module are explicitly represented, with their specific mechanical and geometrical
parameters. Furthermore, the symmetry of the problem can be exploited in order to analyze only half the module, as shown
in Fig. 11(a). In the same figure, the mesh adopted, constituted by 4-node isoparametric finite elements, is also shown. At this
scale, a linear elastic behavior has been assumed for all the materials composing the layers. The visco-elastic behavior typical
of EVA is not taken into account, since only short term loading at a constant ambient temperature is imposed during this test.

—— crack

— finger

Disp x (mm)
02 01 0

0.08

~
Coord. Z (mm)

0.04

-0.010 -0.005 0.000 0.005 0.010
Displacement X (mm)

-
S

(b)

Displacement Z (mm)

0 10 20 30 40 50 60 70 80 B
Coordinate X (mm)

> o~ s o

Fig. 11. (a) The coarse-scale 2D finite element model of the PV module subjected to bending; (b) displacements passed to the local model of the solar cell
located between points A and B (cell number 1 in Figs. 9 and 10); (c) mesh of the local 3D finite element model of the solar cell.
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The mechanical properties used are reported in Table 1. As regards the boundary conditions, the vertical displacement is
restrained at the free edge, whereas symmetry boundary constraints are applied along the symmetry cross-section. Then,
a transversal displacement, which corresponds to the mid-span deflection of the experimental tests, is applied in the same
cross-section (see Fig. 11). For each of the considered values of deflection, namely 6, 9, 12 and 15 cm, the displacements
along the boundaries of the solar cells are extracted, and used as input for the local-scale analysis as described in Sec. 2.
Finite element results for the solar cell No. 1 in Fig. 9, whose EL images are shown in Fig. 10, are presented.

With reference to the coarse-scale FE model represented in Fig. 11(a), the region A-B consists of the location of the half
cell investigated in the local model. A schematic of the displacements obtained along the boundaries of the cell for a
given value of mid-span deflection is shown in Fig. 11(b): the left side of the cell is subjected to a linear variation of the
displacement in the x-direction, whereas the top and bottom surfaces are subjected to a nonlinear displacement distribution
in the z-direction, according to the deformation of the whole module. The cross-section B-B has constrained displacements
along the x-direction, for symmetry reasons.

According to the procedure described in Section 2, the displacements along the boundaries are passed to the local fine-
scale model as boundary conditions imposed to the nodes belonging to the various facets of the cell. At this level, a 3D finite
element model with 8-node isoparametric brick elements is considered as shown in Fig. 11(c). The crack observed near the
left edge of the solar cell No. 1 between the busbars in the EL test in Fig. 10 is introduced in the model before the generation
of the 3D mesh, and it is discretized by interface elements described in Section 2.2. Other cracks are not modeled, since they
are far apart from the considered one and their interaction is expected to be negligible. A linear elastic behavior is assumed
for Silicon, with mechanical properties reported in Table 1. The cohesive zone model outlined in Section 2.2 is used for mod-
eling the nonlinear response of cracks, with parameters typical of Silicon. In particular, we selected: max=Tmax=175 MPa,
20c=8 = 0.1 um, r=0.035 pm, lp=0.02 pm.

The analysis at the fine-scale model has been therefore carried out for the four different imposed displacement distribu-
tions derived from the coarse-scale model in correspondence of the four mid-span deflections. The contour plot of the in
plane displacement in the ¢ direction is shown in Fig. 12 for the four considered cases. Such contour plots clearly evidence

Table 1
Material properties for the coarse-scale FE model.
E (GPa) v
PET 2.5 0.30
EVA 0.001 0.30
Si 160 0.22
Backsheet 2.8 0.30

disp & (mm)
00016

Fig. 12. Deformed meshes and contour plots of the in plane displacement in direction ¢ for the 3D local fine-scale model of the cracked cell for the following
values of the mid-span deflection of the module: (a) 6 cm, (b) 9 cm, (c) 12 cm, and (d) 15 cm. Note the jump of displacements in correspondence of the
discontinuity represented by the crack faces.
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Fig. 13. Current through the cell thickness in a monocrystalline Si cell along a finger crossed by a crack for various mid-span deflections. Model parameters

are reported in Table 2.

Table 2
Values of the identified parameters of the electrical model.
Deflection (cm) g, (um) &o (cm) Vo (V) Rer (Q cm)
6 0.13 3.97 0.582 0.03
9 0.17 3.97 0.582 0.04
12 0.22 4.79 0.577 0.43
15 0.27 4.85 0.577 0.53

how the normal gap between the crack faces changes, which is the parameter playing the major role in determining the
resistance of the crack to the electric current flux. Such a gap is an increasing function of the deflection applied to the PV
module (to emphasize this correlation, the same range of colors has been selected for the four contour plots).

4.3. Identification of the relation between crack resistance and crack opening

For each deformation level, the crack opening displacement can be computed along the crack. For all the fingers, the elec-
tric model presented in Section 3 can be applied. For illustrative purposes, we focus now on a single finger crossed by the
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Fig. 14. Correlation between localized crack resistance and crack opening.

crack. Matching between the proposed model predictions and the experimental values of I, for different deflections allows
determining the relation between crack resistance and crack opening displacement, which is the primary variable to be iden-
tified. This relationship is expected to be of general validity and independent of boundary conditions, in analogy with the
cohesive zone model relating the local tractions to crack opening and sliding.

In Fig. 13 we show the predicted I, data with solid line in comparison with experimental data (in black dots). The ¢—coor-
dinate ranges from 0 to [ = 7.4 cm, i.e., from one busbar to another. The finger under examination is highlighted in blue in
Fig. 13 and it corresponds to the finger? in blue in Fig. 11(c). The value of the crack opening in correspondence of the considered
finger are: 0.13, 0.18, 0.22 and 0.27 um, for the mid-span deflections of 6, 9, 12 and 15 cm, respectively.

The following parameters of the electric model can be easily identified by matching the experimental values of I;; for a

finger not crossed by cracks: Ryom = 0.2 Q cm?, Vr =25 mV, ps = 0.13 Q, Ip; = 1.48 x 1072 AJfcm?.

The point of the finger crossed by the crack is at the distance &, = 6.6 cm from the lower busbar and it can be identified
from the EL images. The value of £, where the voltage is minimum, and its value V, are identified by matching the value of
0.7 V of the voltage at the busbars imposed in the EL test. The localized resistance R is identified by matching the jump in
the current I, in correspondence of ¢ = &, and in general by minimizing the error between the numerically predicted and the
experimental values of I, along the finger. All the values of the identified parameters are collected in Table 2.

As a general trend, the coordinate &, of the minimum of the voltage progressively approaches the crack position & as long
as the deformation increases. The localized crack resistance is an increasing function of the crack opening, as shown in
Fig. 14. This trend is in agreement with recent experimental results reported in [20], where a glass-based mini-module with
a solar cell notched by a laser was subjected to a Mode I three-point bending test. The authors measured the overall back and
front size resistances of the solar cell, due to the combined effect of the localized crack and the distributed resistance, along
with crack opening measured via a microscope. Although numerical predictions cannot be easily compared with the exper-
imental results, since a single localized resistance is used in the present model instead of two, the same significant increase
in the resistance has been noticed in the experiments for crack openings larger than 6 pm. The larger value of crack opening
measured in experiments for the minimodule with glass superstrate instead of PET is reasonably due to the presence of
residual thermoelastic compressive stresses that in PV modules with glass cover can reach up to 45 MPa [23] and are much
higher than in the PET configuration.

5. Conclusions and outlook

A kinematically consistent global/local finite element approach to the simulation of cracking in solar cells embedded in
PV modules has been proposed. Via a projection of displacements from the global coarse model of the laminate to the fine-
scale local model of the solar cells, it is possible to quantify crack opening of cracks and run fine-scale local analyses in par-
allel. The computed crack opening displacements obtained by solving the local models can be sequentially transferred as
input to the electric model of each finger, for an accurate simulation of the electric response of cracked solar cells.

A parameters identification procedure has been discussed in reference to experimental results obtained by the present
authors. The electric resistance vs. crack opening determined by matching the simulated I; values and the experimental ones
is considered to be the first step to determine a robust electromechanical constitutive relation for cracks of the type R.:(g,),
to be applied to all the cracks intersecting fingers. This relation should be independent of boundary conditions and can be
used as a constitutive relation for the cracks, as for the cohesive traction-relative displacement relation, or for the heat
flux-temperature jump relation.

2 For interpretation of color in ‘Fig. 11°, the reader is referred to the web version of this article.
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The multi-physics capabilities of the proposed computational approach are essential to understand the physics behind
the electric degradation of cracks, which is a phenomenon strongly affected by thermo-mechanical deformation. Nonethe-
less, the use of a simplified electric model for each finger makes the application of the model feasible and appealing for the
photovoltaics community.

In perspective, the proposed model can be used for quality assessment and rejection of cracked PV modules after produc-
tion. The numerical approach presented here can be in fact used in conjunction with an automatic crack detection algorithm
to identify cracks and crack geometries from in-line inspection of EL images. Based on these images, coarse-scale and fine-
scale finite element meshes of the PV module can be generated by considering the actual stacking sequence and materials
composing the module layers based on manufacturer’s specifics. The fine-scale finite element mesh can be generated by an
automated meshing software able to deal with an arbitrary number of detected cracks. Global/local simulations finally allow
the prediction of the EL signal of each cell in the presence of cracks, based on the proposed electric model and the identified
R.r(g,) relation. The reliability of the numerical predictions can therefore be ascertain with care in comparison with exper-
imental EL images taken in the laboratory. All the model parameters can therefore be tuned in a condition that can be con-
trolled and reproduced. Then, the predictive capabilities of the proposed numerical tool can be explored to simulate the
degradation of the electric response of PV module with cracked solar cells under different weathering scenarios that cannot
be simulated in the laboratory. This can be done by considering the complex stress state inside the PV module, realistic load-
ing conditions, and the actual orientation of cracks impacting the power-loss in different ways depending on their crack
opening and therefore on their orientation with respect to the stress field inside the module.

Acknowledgements

MP would like to acknowledge funding from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013)/ERC Grant Agreement No. 306622 (ERC Starting Grant “Multi-field and multi-scale Com-
putational Approach to Design and Durability of PhotoVoltaic Modules” - CA2PVM). The support of the Italian Ministry of
Education, University and Research to the Project FIRB 2010 Future in Research “Structural mechanics models for renewable
energy applications” (RBFR107AKG) is gratefully acknowledged by MC and IB.

References

[1] Kontges M, Kunze I, Kajari-Schroder S, Breitenmoser X, Bjgrneklett B. The risk of power loss in crystalline silicon based photovoltaic modules due to
micro-cracks. Solar Energy Mater Solar Cells 2011;95:1131-7.
[2] Kajari-Schrdder S, Kunze I, Eitner U, Kéntges M. Spatial and orientational distribution of cracks in crystalline photovoltaic modules generated by
mechanical load tests. Solar Energy Mater Solar Cells 2011;95:3054-9.
[3] Kajari-Schroder S, Kunze I, Kéntges M. Criticality of cracks in PV modules. Energy Proc 2012;27:658-63.
[4] IEA PVPS Task 13. Performance and reliability of photovoltaic systems. Subtask 3.2: review of failures of photovoltaic modules. ISBN: 978-3-906042-
16-9.
[5] Duffie JA, Beckman WA. In: Solar engineering thermal processes. Hoboken, NJ: John Wiley & Sons, Inc.; 2013 [chapter 23].
[6] Sander M, Dietrich S, Pander M, Ebert M, Bagdahn ]. Systematic investigation of cracks in encapsulated solar cells after mechanical loading. Solar
Energy Mater Solar Cells 2013;111:82-9.
[7] Paggi M, Corrado M, Rodriguez MA. A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules.
Compos Struct 2013;95:630-8.
[8] Sapora A, Paggi M. A coupled cohesive zone model for transient analysis of thermoelastic interface debonding. Comput Mech 2013;53:845-57.
[9] Pietropaoli E, Riccio A. A global/local finite element approach for predicting interlaminar and intralaminar damage evolution in composite stiffened
panels under compressive load. Appl Compos Mater 2011;18:113-25.
[10] Reinoso ], Blazquez A, Estefani A, Paris F, Caiias ], Arévalo E, et al. Experimental and three-dimensional global local finite element analysis of a
composite component including degradation process at the interfaces. Composites; Part B 2012;43:1929-42.
[11] Reinoso ], Paggi M, Rolfes R. A computational framework for the interplay between delamination and wrinkling in functionally graded thermal barrier
coatings. Comput Mater Sci 2015. http://dx.doi.org/10.1016/j.commatsci.2015.08.031. in press.
[12] Eitner U. Thermomechanics of photovoltaic modules (Ph.D. thesis). Zentrum fiir Ingenieurwissenschaften der Martin-Luther-Universitdt Halle-
Wittenberg; 2011.
[13] Paggi M, Kajari-Schroder S, Eitner U. Thermomechanical deformations in photovoltaic laminates. ] Strain Anal Engng Des 2011;46:772-82.
[14] Paggi M, Sapora A. An accurate thermoviscoelastic rheological model for ethylene vinyl acetate based on fractional calculus. Int | Photoenergy 2015
252740.
[15] Paggi M, Reinoso J. An anisotropic large displacement cohesive zone model for fibrillar and crazing interfaces. Int ] Solids Struct 2015;69-70:106-20.
[16] Zienkiewicz OC, Taylor RL. The finite element method, 5th ed., vols. 1-3. Oxford, UK: Butterworth-Heinemann; 2000.
[17] Breitenstein O, Riffland S. A two diode model regarding the distributed series resistance. Solar Energy Mater Solar Cell 2013;110. 77-6.
[18] Berardone I, Corrado M, Paggi M. A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects.
Energy Proc 2014;55:22-9.
[19] Paggi M, Berardone I, Infuso A, Corrado M. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules. Sci Rep
2014;4:4506. http://dx.doi.org/10.1038/srep04506.
[20] Kasewieter ], Haase F, Larrodé MH, Kéntges M. Cracks in solar cell metallization leading to module power loss under mechanical loads. Energy Proc
2014;55:469-77.
[21] Fuyuki T, Kondo H, Kaji Y, Ogane A, Takahashi Y. Analytic findings in the electroluminescence characterization of crystalline silicon solar cells. ] Appl
Phys 2007;101:023711.
[22] Tvergaard V. Effect of fiber debonding in a whisker-reinforced metal. Mater Sci Engng A 1990;107:23-40.
[23] Ojo SO, Paggi M. A thermo-visco-elastic shear-lag model for the prediction of residual stresses in photovoltaic modules after lamination. Compos Struct
2016;136:481-92.



http://refhub.elsevier.com/S0013-7944(16)00021-7/h0005
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0005
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0005
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0010
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0010
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0015
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0025
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0030
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0030
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0035
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0035
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0040
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0045
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0045
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0050
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0050
http://dx.doi.org/10.1016/j.commatsci.2015.08.031
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0065
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0070
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0070
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0075
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0080
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0085
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0090
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0090
http://dx.doi.org/10.1038/srep04506
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0100
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0100
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0105
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0105
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0110
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0115
http://refhub.elsevier.com/S0013-7944(16)00021-7/h0115

	A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads
	1 Introduction
	2 The proposed global/local approach
	2.1 The coarse-scale finite element model of the laminate
	2.2 The fine-scale finite element model of the solar cells

	3 The electric model
	4 Model parameters identification
	4.1 Description of the experimental test
	4.2 Description of the numerical simulation
	4.3 Identification of the relation between crack resistance and crack opening

	5 Conclusions and outlook
	Acknowledgements
	References


