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We apply a previously proposed perturbation theory of the diffusion equation for studying light propaga-
tion through heterogeneousmedia in the presence of absorbing defects. The theory is based on the knowl-
edge of (a) the geometric characteristics of a focal inclusion, (b) the mean optical path length inside the
inclusion, and (c) the optical properties of the inclusion. The potential of this method is shown in the
layered and slab geometries, where calculations are carried out up to the fourth order. The relative
changes of intensity with respect to the unperturbed (heterogeneous) medium are predicted by the theory
to within 10% for a wide range of contrasts dΔμa (up to dΔμa ≈ 0:4–0:8), where d is the effective diameter
of the defect andΔμa the absorption contrast between defect and local background. We also show how the
method of Padé approximants can be used to extend the validity of the theory for a larger range of ab-
sorption contrasts. Finally, we study the possibility of using the proposedmethod for calculating the effect
of a colocalized scattering and absorbing perturbation. © 2009 Optical Society of America

OCIS codes: 170.3660, 170.5280, 170.7050.

1. Introduction

Near-infrared spectroscopy (NIRS) and diffuse opti-
cal tomography (DOT) are optical techniques that
are currently the subjects of intensive research be-
cause of the unique characteristics of near-infrared
light when it is used to probe biological tissues. Near-
infrared light is noninvasive, it can penetrate rather
deeply in tissues (≈2 cm), and it is highly sensitive to
changes in the concentration of oxyhemoglobin and
deoxyhemoglobin. NIRS also features a high tempor-
al resolution (a few tenths of a millisecond), which
allows the detailed monitoring of relevant physiolo-
gical parameters. However, the propagation of near-
infrared light in biological tissues is governed mainly
by the phenomenon of scattering; therefore the
image quality of internal structures is naturally

deteriorated, and the spatial resolution is no better
than about 5mm.

The main challenge that NIRS and DOTare facing
is the accurate mapping of the optical properties
(namely, the absorption and reduced scattering coef-
ficients) from a series of measurements taken at the
boundary of a target organ. This inverse problem is
fundamentally ill posed [1]. Most of the solutions to
the inverse problem in DOT rely on accurate and
possibly fast forward models of photon migration
in tissues. Owing to the diffusive nature of light pro-
pagation in tissues, the diffusion equation (DE) is
widely used to predict measurements of data types
at different detector’s sites. Typical data types are
the intensity in the continuous wave (CW) domain,
amplitude and phase lag in the frequency domain,
and the distribution of time of flight of detected
photons in the time domain. Analytical solutions of
the DE are found for homogeneous media having reg-
ular geometries, such as the infinite, semi-infinite,
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and slab [2]. All of these geometries are currently
used for describing light propagation in several tis-
sue organs (e.g., breast, head, forearm, and calf)
whenever we want to obtain information on the aver-
age bulk concentration of oxyhemoglobin and deoxy-
hemoglobin and tissue oxygen saturation. The DE
has also been solved analytically for several regu-
larly bounded homogeneous media including single
regularly shaped defects [3–6], and also for layered
media [7–10]. These solutions are used for describing
the effect of tumors in the breast and for describing
light propagation in the head, respectively. For ima-
ging small tissue volumes or tissues containing clear
(low absorbing and low scattering) regions, the radia-
tive transfer equation (RTE) has also been used [11].
More realistic tissue geometries require numerical

methods for solving the DE or RTE. Among these
methods are the finite-element method [12–14], the
finite-difference method [15], and the boundary ele-
ment method [9]. These methods, despite their flex-
ibility in dealing with complex geometries, are rather
time consuming, especially for 3D calculations. An-
other effective method to study light transport in tis-
sues which is also capable of dealing with complex
geometries is the Monte Carlo method (MC) [16–19].
The MC method has the drawback of being rather
time consuming, and it is not usually implemented as
a forward model for image reconstruction. However,
the MC method is simple and reliable, and for these
reasons it has been used largely for assessing the
validity of other more complex numerical methods.
First and Nth-order perturbation theories for the

DE have also been proposed for studying photon mi-
gration in tissues [20–25]. In some early work [20,21]
the authors introduced the idea of improving the re-
sults of perturbation theory by using iterations of
first-order theory to correct the fluence rate and the
output flux. In the same studies calculations of light
propagation in the presence of single absorbing or
scattering defects were carried out in the frequency
domain for the infinite medium geometry. In more re-
cent work [24,25] higher-order perturbation theory
has been studied in the time domain for the slab geo-
metry including single absorbing and/or scattering
defects, and simple inversion procedures have been
proposed to study the optical properties of breast tu-
mors. Most of the approaches to higher-order pertur-
bation theory proposed in the literature adopted the
strategy of repeated iterations of first-order calcula-
tions (the Born approximation). This method implies
the calculation of multiple integrals of the same or-
der of the perturbation theory addressed. For exam-
ple a second-order theory requires the calculation of
a double integral in the volume of the defect, a third-
order theory requires the calculation of a triple inte-
gral in the volume of the defect, etc. In contrast our
approach to perturbation theory has two main
points: (a) we showed that rearranging those multi-
ple integrals can yield the expression for higher-
order path-length moments, which offer a more
intuitive viewpoint for studying absorbing

perturbations [22]; (b) we proposed a heuristic for-
mula to reduce the calculation of multiple integrals
to a single one. We mention that other groups also
used heuristic methods based on some correction
factors to improve the results of the Born approxima-
tion [26,27].

In our previous work [22] we proposed a method to
describe the output flux in presence of single or mul-
tiple absorbing defects embedded in a background
medium having an arbitrary geometry. The method
is based on the calculation of the moments of the gen-
eralized temporal point spread function, which re-
quires knowledge of the Green’s function for the
fluence rate and output flux. Explicit formulas were
given in the three domains of investigation, and nu-
merical results in the presence of single and multiple
absorbing defects were shown in the CW domain and
semi-infinite geometry. The key point of the proposed
theory is an approximate formula for calculating the
self-moments (i.e., the moments hlni in > 1 as hl2i i, hl3i i,
etc., where li is a random variable associated with
the path length traveled inside a defect by a detected
photon. More specifically hlni i is calculated by using
(a) the value of the mean path length hlii inside a
defect, (b) the value of the photon energy in the
volume occupied by the defect when a point source
is located at its center, and (c) some unitless scaling
parameters.

In other work [23] we showed that the scaling
parameters are rather insensitive to the shape and
size of the defect (at least when dmin ≈ dmax, where
dmin and dmax are the minimum and maximum chord
lengths connecting two points at the boundary of the
defects) and of the geometrical and optical properties
of the otherwise homogeneous background medium.
Explicit values of the scaling parameters were calcu-
lated up to the fourth-order moment, hl4i i. These
formulas guided us to the insight that the scaling
parameters are also rather robust in the presence
of strong heterogeneities of the background medium
and prompted us to study our method’s performance
in the layered and slab geometries.

In Section 2 we present a concise overview of the
theory, and we rewrite the proposed heuristic formu-
la for the calculation of the self-moments. Based on
the physical meaning of this formula, we speculate
that the theory may be used as a flexible way to de-
scribe the output flux in more complex geometries
and distribution of the optical properties. In Section 3
we show some results in the CW domain for two- and
three-layered geometries and also for slab geometry
characterized by a heterogeneous background. The
results predicted by the theory are validated by
means of MC simulations. We also show how the
method of Padé approximants [25,28] can be used
to further extend the limitations of the proposed
fourth-order perturbation theory. Finally, we investi-
gate the possibility of using the proposed formula for
studying the effect of a colocalized scattering and ab-
sorbing inclusion. In Section 4 we draw the conclu-
sions and discuss future applications of the theory.
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2. Theory

In our previous work [22] we proposed a heuristic for-
mula for the calculation of the self-moment of order n
inside a defect (hlni i):

hlni i ≈ cn−1hlii
�Z

Vi

ϕ0ðr; riÞdr
�

n−1
; n > 1; ð1Þ

where ϕ0ðr; riÞ is the Green’s function of the baseline
medium for the fluence rate (normalized to the
source strength, i.e., ½ϕ0� ¼ L−2, where L is the
length) when the pointlike source is at the center
of the defect (ri), cn−1 are unitless scaling parameters,
and hlii is the mean path length of detected photons
inside the defect. We have also studied the effect on
the detected intensity of a single or multiple defects
embedded in otherwise homogeneous media [23]. For
the calculation of the integral in Eq. (1) we applied
the method of the images; however we found that for
locations of the defect farther than about 5mm from
the external boundary, the calculation can be carried
out by using the Green’s function of infinite medium
geometry with the optical properties of the back-
ground medium. For these locations of the defect
the error induced by neglecting negative point
sources was less than 1%. By using extensive MC si-
mulations in the slab and semi-infinite geometries
for several defect’s positions and sizes (1mm ≤ r ≤
5mm, r being an effective radius of the defect) and
a wide range of optical properties of the background
medium (0:5mm−1 ≤ μ0s ≤ 2mm−1, 0:005mm−1 ≤ μa ≤

0:05mm−1) we found that the variances of the scaling
parameters are rather small and most of their values
lie in the ranges 1:48–1:58, 3:1–3:7, and 8:5–11:5
for c1, c2, and c3, respectively [23]. Explicit values
used here are c1 ¼ 1:53, c2 ¼ 3:4, and c3 ¼ 10. A
brief summary of the perturbative DE can be found
in Appendix A.
If we want to use Eq. (1) for general heterogeneous

media, it would make sense to choose as the
integrand the Green’s function of the baseline (un-
perturbed) heterogeneous medium under investiga-
tion. However, an important physical insight into
Eq. (1) is that while the mean path length (hlii)
depends on the global distribution of the optical prop-
erties of the medium between a given source–
detector pair, the other factor (i.e., the integral)
depends mainly on the local optical properties of
the defect. Therefore we hypothesize that Eq. (1)
can also be used for heterogeneous background med-
ia with the same approximations described above.
This is an important point because it allows a signif-
icant simplification of the calculations. Since these
arguments are valid for arbitrary background media,
we speculate that Eq. (1) may be used as a flexible
method to extend the limits of first-order perturba-
tion theory without adding any computational bur-
den even for heterogeneous media. The values of
the self-moments hlni i (n ¼ 2; 3; 4) calculated with
Eq. (1) were used in two ways:

a. For the calculation of MacLaurin series expan-
sion of the intensity change (ΔI=I0) as a function of
the absorption contrastΔμa between defect and local
background [22,23],

ΔIðΔμaÞ
I0

≈ −hliiΔμa þ
1
2!
hl2i iΔμ2a −

1
3!
hl3i iΔμ3a

þ 1
4!
hl4i iΔμ4a: ð2Þ

In Eq. (2)ΔIðΔμaÞ ¼ IðΔμaÞ − I0, where IðΔμaÞ and I0
are the detected intensities when the absorption con-
trast is Δμa and 0, respectively. Note that all the mo-
ments are calculated in the initial state of the
medium: Δμa ¼ 0.

b. For the method of Padé approximants [29].
This method uses the coefficients of MacLaurin ex-
pansion of ΔI=I0 to find a rational function
PM=NðΔμaÞ, of order M þN þ 1, that extends the
range of convergence of the truncated series [Eq. (2)].
The rational function is expressed as

ΔIðΔμaÞ
I0

≈ PM=NðΔμaÞ ¼
P

M
k¼0 akΔμka

1þP
N
k¼1 bkΔμka

: ð3Þ

For our results we used M ¼ N ¼ 2, because only
five coefficients can be derived from Eq. (2) (the first
being 0). The coefficients ak and bk are calculated by
imposing that the value of PM=NðΔμaÞ, and its first
M þN derivatives calculated at Δμa ¼ 0 coincide
with those of ΔI=I0 [Eq. (2)]. The method of Padé ap-
proximants, by using the same coefficients of the
MacLaurin expansion, has the ability to extend
the convergence of the approximating function for
a wider range of the independent variable Δμa. It
is a somewhat efficient but uncontrolled method be-
cause it is not possible to know exactly its range of
convergence [29]. We note that the rational function
in Eq. (3) has two poles in the complex field. When
one of the poles becomes real (zero), the plot of
ΔI=I0 against Δμa shows a vertical asymptote. Our
study indicates that zeros are sensitive to the coeffi-
cient of MacLaurin expansion. In the discussion we
will address this limitation of Padé approximants
and also a possible solution.

We used MC simulations for validation of the the-
ory. Details of the MC code were provided in previous
work [23,30,31]. MC simulations were used for two
purposes: (a) as a correct forward model of light pro-
pagation to calculate the values of ΔI=I0 for a wide
range of absorption contrasts Δμa and (b) for the di-
rect calculation of the self-moments [23] hlni i (n ¼ 1;
2; 3; 4), the first of which was used in Eq. (1) for de-
riving the other moments independently. For the MC
results the simulated photons (those injected into the
medium) were running until we detected 10,000
photons in each detector. The detected photons were
used for the calculation of re-emitted intensity (I);
therefore its estimated error is 1% for the baseline
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medium. The error increases up to 5%–10% as we
consider larger absorption contrasts between defect
and medium, up to Δμa ¼ 0:2–0:3mm−1. We note
that there is an alternative way to calculate hlii that
uses one of the available solutions for the Green’s
function of the DE in the layered or slab geometries
[30,31].

3. Results

In Fig. 1 is shown a schematic of a two-layer medium
and two cylindrical defects that we considered for our
results in the layered geometry. The thickness of the
first layer is 10mm, while the second layer, unless
otherwise specified, is infinite. The diameter and
height of cylinder A are 6mm, while the diameter
and height of cylinder B are 11.2 and 3mm, respec-
tively. We chose cylinder A because the minimum
and maximum chord lengths are similar (dmin ≈

dmax), and the scaling parameters cn−1 found in our
previous work [23] should apply for this case. Cylin-
der B was chosen as a model region of brain activa-
tion in neuroimaging studies. For the calculation of
total photon energy inside the defect [the integral
in Eq. (1)], we carried out a numeric integration over
parallelepipeds having the same volumes and
heights of the two cylinders. In the following results
only one of the two defects is present in any one test
case, and its position was changed to validate our
theory. To describe the size of these cylinders with
only one parameter, we chose to use an effective
diameter d, which is defined as the diameter of a
spherical defect having the same volume as the cy-
lindrical defects.
In Fig. 2 are plotted the changes of relative inten-

sity ΔI=I0 as the function of the absorption contrast

Δμa between defect and local background medium.
The six plots refer to the four orders of the proposed
theory, to the Padé approximants, and to MC results.
The optical properties of the layers are μa1 ¼
0:01mm−1, μ0s1 ¼ 0:5mm−1, and μa2 ¼ 0:015mm−1,
μ0s2 ¼ 1mm−1 for the first and second layer, respec-
tively. The defect is cylinder A (Fig. 1), which is lo-
cated in the top layer, with the center at ðx; y; zÞ ¼
ð6:5; 8; 0Þmm. We note that the lower surface of
the cylinder is only 0:5mm from the border between
top and bottom layers. In Figs. 2(a) and 2(b) are
plotted the changes of relative intensity at source–
detector distances of 15 and 30mm, respectively.
In Figs. 2(c) and 2(d) are plotted the same curves of
Figs. 2(a) and 2(b), respectively, on expanded scales.
From Figs. 2(a) and 2(b) we can see that increasing
orders of the proposed perturbation theory show an
increasing agreement with the MC curve: up to an
absorption contrast of Δμa ¼ 0:1mm−1, the discre-
pancy between the fourth-order theory and MC
curves is less than 12%, while first-order theory
shows a discrepancy of up to 65%. We also note that
the discrepancy between MC and Padé curves is less
than 1.5%. In Figs. 2(c) and 2(d) the agreement be-
tween perturbation theory and MC results becomes
increasingly worse for larger absorption contrasts, as
should be expected. However we can see that Padé
approximants show an agreement with MC results
better than 3% even for very large absorption con-
trasts. We stress that the good agreement found
between our theoretical results and MC simulations
are uniquely due to the accuracy with which
the higher-order self-moments are calculated by
Eq. (1). In Table 1 are written the values of the mo-
ments calculated by MC code and by the proposed
theory. Within the statistical errors of the MC results
we can say that the values of the self-moments cal-
culated by the theory match those calculated by the
MC code. We also repeated the simulation for a dif-
ferent choice of the reduced scattering coefficients
(all the other parameters were fixed), μ0s1 ¼
1:5mm−1, μ0s2 ¼ 1mm−1 for the first and second layer,
respectively, and we found that the agreement of
fourth-order theory with MC results was better than
10% for absorption contrasts up to Δμa ¼
0:045mm−1. Padé approximants again showed the
best agreement with MC results with a discrepancy
better than 8% for absorption contrasts up Δμa ¼
0:22mm−1.

In Fig. 3 we plot the changes of relative intensity
ΔI=I0 against Δμa between the defect and the local
background medium for the same medium of Fig. 2,
when defect A is located in the bottom layer, with the
center at ðx; y; zÞ ¼ ð13:5; 8; 0Þmm. For this case the
moments are slightly overestimated by the theory,
and consequently the third-order calculations show
a slightly better agreement with MC results than
the fourth order’s; however both orders’ calculations
are within 10% of the MC curve forΔμa < 0:06mm−1.
If we use the self-moments calculated directly by
the MC code in Eq. (2), the different orders of

Fig. 1. Schematic of two-layer medium and cylindrical defects
used for the simulations. The thickness of the first layer is
10mm, while the second layer is infinite. The diameter and height
of cylinder A are 6mm, while the diameter and height of cylinder B
are 11.2 and 3mm, respectively. The input point of the light source
is the origin of the reference system, and the two detectors have
coordinates ðx; y; zÞ ¼ ð0;15; 0Þmm and ðx; y; zÞ ¼ ð0; 30; 0Þmm, re-
spectively. The absorption and reduced scattering coefficient of the
first and second layers are μa1, μ

0
s1 and μa2, μ

0
s2, respectively. Only

one of the two defects is present in any one test case.
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perturbation theory show the expected behavior, and
the discrepancy between the fourth order and the
MC results is within 10% for Δμa < 0:07mm−1. A si-
milar result is obtained by using a different choice of
the scaling parameters: c1 ¼ 1:47, c2 ¼ 3:1, c3 ¼ 8:5.
We note that the new parameters are still within the
range found in our previous paper [23] and reported
in the Section 2. Padé approximants show the best
overall agreement with MC results, with a discre-
pancy less than 10% for a wide range of absorption
contrasts up to Δμa ¼ 0:2mm−1 as shown on the ex-
panded scales [Figs. 3(c) and 3(d)]. Also for this posi-
tion of the defect we ran another simulation with
μ0s1 ¼ 1:5mm−1, μ0

s2 ¼ 1mm−1(all the other para-
meters were not changed) for the first and second
layer, respectively. The agreement of fourth-order
theory with MC results was better than 7% for ab-
sorption contrasts up to Δμa ¼ 0:055mm−1, while
Padé approximants again showed the best agree-
ment with MC results with a discrepancy better than
6% for absorption contrasts up Δμa ¼ 0:2mm−1. We
note that the different quantitative agreements

between nth-order theory and MC results are mostly
intrinsic to nth-order theory and depend only slightly
on the approximations inherent in Eq. (1). In other
words the accuracy of nth-order theory, given a cer-
tain absorption contrast and volume of the defect, is a
quite complex function of its location and also of the
background optical properties.

In the following results we also tried to test the ro-
bustness of Eq. (1) for defects having different mini-
mum and maximum chord lengths (dmin ≪ dmax),
such as cylinder B of Fig. 1. In Fig. 4 ΔI=I0 is plotted
against the absorption contrast Δμa for the back-
ground medium of Fig. 2 when cylinder B is placed
in the top layer, with the center at ðx; y; zÞ ¼
ð7:5; 8; 0Þmm. Fourth-order theory and Padé approx-
imants show an agreement with MC results better
than 10% and 11%, respectively, at both source–
detector distances up to an absorption contrast of
Δμa ¼ 0:095mm−1. However, a closer look at the
fourth-order plots of Figs. 4(a) and 4(b) also reveals
that some moments are slightly underestimated by
the theory, since the fourth-order and MC curves in-
tersect each other. Padé approximants show an
agreement with MC results better than 10% for
Δμa ≤ 0:095mm−1 and better than 20% up to an ab-
sorption contrast of Δμa ¼ 0:29mm−1.

In Fig. 5, for the same medium and defect of Fig. 4,
ΔI=I0 is plotted against the absorption contrast Δμa
when the defect is located in the bottom layer, with
the center at ðx; y; zÞ ¼ ð12:5; 8; 0Þmm. Fourth-order
calculations have an agreement with MC results bet-
ter than 10% for Δμa ≤ 0:055mm−1. In the same

Fig. 2. The changes of relative intensity (ΔI=I0), obtained with different orders of perturbation theory, with Padé approximants and with
MC, are plotted against the changes of absorption contrast Δμa between cylinder A (Fig. 1) and the local background medium. The thick-
ness of the first layer is 10mm, and the optical properties are μa1 ¼ 0:01mm−1, μ0

s1 ¼ 0:5mm−1, and μa2 ¼ 0:015mm−1, μ0
s2 ¼ 1mm−1, for the

first and second layer, respectively. The defect is located in the top layer, with the center at ðx; y; zÞ ¼ ð6:5;8;0Þmm. Shown are the changes
of intensity at the (a) shortest (15mm) and (b) farthest (30mm) source–detector distance. In (c) and (d) the same curves are plotted on an
expanded scale.

Table 1. Calculated Values of the Momentsa

Moment

MC Code Proposed Theory

d1 ¼ 15mm d2 ¼ 30mm d1 ¼ 15mm d2 ¼ 30mm

hl21i ðmm2Þ 55� 6 48� 5 53 48
hl31i ðmm3Þ 980� 150 830� 130 941 854
hl41i ðmm4Þ 23; 000� 5000 19; 000� 5000 22,125 20,080

aThe medium and the defect are those of Fig. 2.
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range Padé approximants have an agreement with
MC results better than 5% and 0.2% at the
source–detector distance of 15 and 30mm, respec-
tively. For larger absorption contrast perturbation
theory has a wider discrepancy with MC results,
while Padé approximants show the best results: the
agreement with MC curves is better than 10% and
3% at the shortest and longest source–detector dis-
tances, respectively, for Δμa ≤ 0:23mm−1.
In Fig. 6 we carried out the calculations for a three-

layer medium that can be used as another simplified
model of the head. The thickness of the first layer,

where scalp and skull are lumped together, is
8mm, while the thin middle layer having thickness
of 2mm represents the cerebrospinal fluid. The bot-
tom layer, (20 cm thick) for the purpose of our calcu-
lation can be considered infinitely extended, and it
represents the brain where the defect (cylinder B) si-
mulates a focal hemodynamic change. The optical
properties of the layers are Δμa ¼ 0:01mm−1,
μ0
s1 ¼ 0:5mm−1, μa2 ¼ 0:002mm−1, μ0s2 ¼ 0:1mm−1,

μa3 ¼ 0:015mm−1, μ0
s3 ¼ 0:8mm−1 for the first, sec-

ond, and third layers, respectively. The defect (cylin-
der B) is located in the third layer, with the center at

Fig. 3. As in Fig. 2, but the defect is located in the bottom layer, with the center at ðx; y; zÞ ¼ ð13:5; 8;0Þmm.

Fig. 4. As in Fig. 2, but the defect is cylinder B of Fig. 1, located in the top layer, with the center at ðx; y; zÞ ¼ ð7:5;8; 0Þmm.

1 April 2009 / Vol. 48, No. 10 / APPLIED OPTICS D67



ðx; y; zÞ ¼ ð12; 8; 0Þmm. Third- and fourth-order
(Padé) calculations have similar agreements with
MC results, which is better than 10% (5%) for
Δμa ≤ 0:06mm−1. Padé approximants again show
an outstanding agreement withMC results for larger
absorption contrast also, which is better than 8%
for Δμa ≤ 0:2mm−1.
In the previous results the baseline medium was a

two or three-layer medium with different optical

properties in each layer. We argued that the useful-
ness of Eq. (1) for heterogeneous media relies in its
property that the effect of global and local (at the site
of the defect) distribution of the optical properties are
partly separated. Therefore we computed the inte-
gral of Eq. (1) by using the optical properties of
the layer where the defects were embedded, since
the effect of the other layer was accounted for
in hlii. In the previous examples we considered

Fig. 5. As in Fig. 2, but the defect is cylinder B of Fig. 1, located in the bottom layer, with the center at ðx; y; zÞ ¼ ð12:5;8; 0Þmm.

Fig. 6. Results obtained for a three-layer medium where the thicknesses of the first and second layers are 8 and 2mm, respectively. The
optical properties are μa1 ¼ 0:01mm−1, μ0

s1 ¼ 0:5mm−1; μa2 ¼ 0:002mm−1, μ0
s2 ¼ 0:1mm−1; and μa3 ¼ 0:015mm−1, μ0

s3 ¼ 0:8mm−1 for the
first, second, and third layers, respectively. The defect (cylinder B) is located in the third layer, with the center at ðx; y; zÞ ¼ ð12; 8;0Þmm.
Changes of intensity are shown (a) at the shortest (15mm) and (b) farthest (30mm) source–detector distance. In panels (c) and (d) the same
curves are plotted on an expanded scale.
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locations of the defects close to the borders of differ-
ent layers in order to test the validity of this hypoth-
esis. In the following results we also tried to push the
applicability of Eq. (1) a little further, and we studied
several cases where the background heterogeneous
medium was composed of two layers and one focal
region, occupied either by cylinder A or B, including
a scattering perturbation. Starting from this more
composite background medium we considered an ab-
sorbing perturbation in the same focal region occu-
pied by the cylinders. If we want to apply Eq. (1),
which local optical properties should we use for
the calculation of the integral? In this case the local
reduced scattering coefficient at the site of the cylin-
ders is confined in relatively smaller regions than
those considered for the layered media studied in
the previous examples. If we use the reduced scatter-
ing coefficient of the cylinders (μ0

scyl ) for calculation of
the integral, we are assuming that light propagation
occurs as if the whole layer where the cylinders are
embedded had the same reduced scattering coeffi-
cient of the cylinders; while if we use the reduced
scattering coefficient of the layer (μ0

slay ), we are disre-
garding the scattering change at the site of the
defect. In both cases we will miscalculate the mo-
ments, but the errors must have opposite signs.
Therefore we propose to carry out the calculation
of ΔI=I0 by using both sets of values of the moments
obtained with μ0

scyl and μ0
slay , respectively, and after-

ward take the average value. This empirical rule
was tested for different volumes of the defect in
the range ð20; 900Þmm3 and for different reduced
scattering coefficients of the media [ð0:5; 2Þmm−1]
and the defects [(ð0:05; 2:5Þmm−1]. Two examples
of these results are provided in Fig. 7, where the
changes in ΔI=I0 are plotted against the absorption
contrast at the source–detector distance of 30mm for
two different background media. The results in
Fig. 7(a) refer to a two-layer medium as in Fig. 2,
which also included cylinder A located with the cen-
ter at ðx; y; zÞ ¼ ð6:5; 6:8;−4:25Þmm and having a
reduced scattering coefficient of μ0

scyl ¼ 1mm−1.
Therefore this composite background medium in-

cluded a positive scattering perturbation in the first
layer, at the site of the cylinder. The results in
Fig. 7(b) refer to a two-layer medium having a
thickness of the first layer of 10mm and optical prop-
erties μa1 ¼ 0:01 mm−1, μ0

s1 ¼ 1mm−1, and μ0a2 ¼
0:015mm−1, μ0

s2 ¼ 1:5mm−1, for the first and second
layer, respectively. The background media included
also cylinder B located with the center at ðx; y; zÞ ¼
ð12; 6:8;−4:25Þmm and having a reduced scattering
coefficient of μ0

scyl ¼ 1mm−1. Therefore this composite
background medium included a negative scattering
perturbation in the second layer, at the site of the cy-
linder. We used Eq. (1) for the calculation of the self-
moment, given the value of hlii calculated by MC
code. In Fig. 7(a) the agreement of fourth-order cal-
culations and the MC curve is better than 10% for
Δμa ≤ 0:07mm−1. Padé approximants yielded excel-
lent comparison with MC results with an agreement
better than 1% for Δμa ≤ 0:19mm−1. In Fig. 7(b)
fourth-order calculations matched the MC curve to
within 11% forΔμa ≤ 0:055mm−1, while Padé approx-
imants showed an agreement better than 2%
for Δμa ≤ 0:19mm−1.

One important result that holds at least for values
of the volumes and reduced scattering coefficients
of the defects in the range ð20; 900Þmm3 and
ð0:05; 2:5Þmm−1, respectively, is that the presence
of a scattering perturbation alters the value of the
mean path length hlii usually by a few percent and
by no more than about 10%. For example in Fig. 7(a)
the mean path length within the cylinder is hlii ¼
2:83mm, which is very close to the value of mean
path length calculated inside the same region when
no scattering perturbation is considered in the first
layer (hlii ¼ 2:82mm ). In Fig. 7(b) the value of mean
path length within the cylinder is hlii ¼ 2:26mm, and
the value of mean path length within the cylinder for
a homogeneous second layer is hlii ¼ 2:23mm.
However, the presence of a scattering perturbation
affects gradually the higher-order self-moments.
For Fig. 7(a) hl4i i ¼ 27; 310mm4, while for the case
of a homogeneous first layer hl4i i ¼ 15; 340mm4.
For Fig. 7(b) hl4i i ¼ 84; 550mm4, while for the case

Fig. 7. In (a) we considered a background medium composed of the two-layer medium of Fig. 2 and also cylinder A (Fig. 1), which was
located in the first layer with the center at ðx; y; zÞ ¼ ð6:5;6:8;−4:25Þmm, and had reduced scattering coefficient of μ0

sc ¼ 1mm−1. In (b) we
considered a two-layer medium having the thickness of the first layer of 10mm and optical properties μa1 ¼ 0:01mm−1, μ0

s1 ¼ 1mm−1 and
μa2 ¼ 0:015mm−1, μ0

s2 ¼ 1:5mm−1for the first and second layer, respectively. The backgroundmedia also included also cylinder B located in
the second layer with the center at ðx; y; zÞ ¼ ð12;6:8;−4:25Þmm and having a reduced scattering coefficient of μ0

sc ¼ 1mm−1. The results
refer to a source–detector distance d ¼ 30mm.
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of a homogeneous second layer hl4i i ¼ 92; 450mm4.
The reason for this behavior is found in the diffusive
nature of photon migration. When the reduced scat-
tering coefficient of a region is increased with respect
to the background value, we can expect that on aver-
age the same number of detected photons will inter-
sect the region. However, the increased value of
scattering will change the distribution of path
lengths li of detected photons by favoring both short-
er and longer path lengths. Therefore the value of the
mean path length will change only to a very small
extent, but the higher-order self-moments will be
strongly affected by the longer path lengths. In other
words, detected photons that crossed strong scatter-
ing perturbations were either reflected or trapped by
the perturbation. An example of this behavior is
shown in Fig. 8, where we considered a background
medium and a defect as in Fig. 2 with the only differ-
ence that they were both nonabsorbing (i.e., μa1 ¼
μa2 ¼ μacyl ¼ 0). We calculated the distribution of in-
ternal path lengths (li) with 10,000 detected photons
when the reduced scattering coefficient of the cylin-
der was 0.05 and 2:5mm−1, that is, for a negative and
positive scattering perturbation, respectively. We can
see that the distribution of internal path lengths for
the stronger scattering cylinder is higher for very
short path lengths (li ≤ 3mm) and also for longer
path lengths (li ≥ 20mm). However, for the lower
scattering cylinder there is an intermediate range
of path lengths (3mm ≤ li ≤ 20mm) with higher prob-
ability of occurrence. As a consequence we can expect
little difference between the mean path lengths but a
large difference between higher-order moments. In
fact the first three moments are hlii ¼ 5:3mm,
hl2i i ¼ 69mm2, hl3i i ¼ 1290mm3 for the lower scatter-
ing cylinder, and hlii ¼ 5:7mm, hl2i i ¼ 152mm2,
hl3i i ¼ 6320mm3 for the higher scattering cylinder.
The property that a scattering perturbation will

change hlii only to small extent (≤10%) can be used
to study the effect of a colocalized scattering and ab-
sorbing perturbation, following the empirical rule
used in Fig. 7, with the value of mean path length
calculated inside the defect when there is no scatter-
ing contrast. Note that by this method we can study a
colocalized scattering and absorbing perturbation,

but nothing can be said about a pure scattering per-
turbation.

Finally, we emphasize the robustness of the path
length approach for studying higher-order perturba-
tion theory by showing one result in the slab geome-
try, which is used by several groups in breast imaging
[25,32,33]. In Fig. 9 is shown a schematic of a hetero-
geneous slab having thickness of 40mm and optical
properties μa ¼ 0:005mm−1 and μ0

s ¼ 0:5mm−1. A fo-
cal spherical region (10mm in diameter) located with
the center at ðx; y; zÞ ¼ ð12; 7; 0Þmm and having
μa1 ¼ 0:1mm−1 was included in the background med-
ium. This focal region with very high absorption coef-
ficient may simulate the presence of a network of
blood vessels. Another spherical region (10mm in
diameter) located at ðx; y; zÞ ¼ ð20; 0; 0Þmm was con-
sidered absorbing perturbation. Three detectors
were placed in transmittance at the distances from
the x axis of 0, 10, and 20mm. In Fig. 10 ΔI=I0 is
plotted against the absorption contrast Δμa between
the central spherical region and background for the
detector d1 and d3 (Fig. 9), respectively. The agree-
ment of the fourth-order calculation with MC results
was better than 12% for Δμa < 0:05mm−1, while
Padé approximants showed an agreement with the
MC curve of better than 1% for Δμa < 0:2mm−1.
These examples in layered and slab geometries
strongly suggest that similar results can be found
in other geometries used in NIRS and DOT.

4. Discussion and Conclusions

In this work we have applied Eq. (1), proposed in our
previous work [22], for studying perturbation theory
in layered and slab diffusive media. Although Eq. (1)
was proposed as a heuristic formula for the calcula-
tion of higher-order self-moments of focal inclusions

Fig. 8. Distribution of internal path lengths calculated with
10,000 detected photons for a background medium and a defect
as in Fig. 2, but both nonabsorbing. The distributions refer to
two values of the reduced scattering coefficient of the cylindrical
defect, as indicated.

Fig. 9. Schematic of the heterogeneous slab geometry composed
by a slab with μa ¼ 0:005mm−1, μ0s ¼ 0:5mm−1, and a spherical re-
gion (1) with μa1 ¼ 0:1mm−1 and the same reduced scattering coef-
ficient. The spherical region is located with the center at
ðx; y; zÞ ¼ ð12;7; 0Þmm. Another spherical region (2), located with
the center at ðx; y; zÞ ¼ ð20;0; 0Þmm was considered an absorbing
perturbation. Both spherical regions have the same diameter of
10mm. The thickness of the slab is 40mm. Three detectors are
placed in transmittance as indicated in the figure.
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in homogeneous media, in this work we have shown
its potential to describe photon migration in hetero-
geneous media. In particular we have considered the
layered and the slab geometries, since they are typi-
cally used in brain and breast imaging, respectively.
By considering different combinations of the optical
and geometrical properties of the media and the in-
clusions, we have found that Eq. (1) can be effectively
used to extend the limitations of first-order theory.
There is always a range of contrasts dΔμa, where
d is an effective diameter of the inclusion and Δμa
the absorption contrast between inclusion and local
background, where fourth-order perturbation theory
offers a clear improvement with respect to first-order
theory. We have found that in the range of contrasts
up to dΔμa < 0:4–0:8, fourth-order calculations
yields results accurate to within about 10%. It is also
rather straightforward to understand when fourth-
order calculations are affected by larger errors. In
fact, for all the trends of ΔI=I0 as the function of
Δμa presented in this work, the value of Δμa where
the first derivative is zero is usually affected by an
error of 10%–20%. Therefore, to have accurate
fourth-order calculations, the values ofΔμa are those
in a range where

∂ðΔI=I0Þ
∂ðΔμaÞ

≤ 0:

We have also used the method of Padé approxi-
mants, and we have found that it always shows
the best overall agreement with MC results. In the
range of absorption contrasts where fourth-order
theory yields useful results (accurate to within 10%),
the method of Padé approximants also shows a simi-
lar accuracy. The clear advantage of Padé approxi-
mants is for larger absorption contrasts, in the
range ð0:1; 0:2–0:3Þmm−1. However, a problem for
the application of this method is caused by the occur-
rence of zeros in the denominator of Eq. (3) for values
of Δμa in the range of interest. Zeros of the rational
function in Eq. (3) are sensitive to the coefficient of
MacLaurin expansion [Eq. (2)]. In particular, for
the values of cn used in this work, no zero was ever
found in all the cases presented. When we changed
the values of the scaling parameters to c1 ¼ 1:5,
c2 ¼ 3:1, and c3 ¼ 10, we systematically found one

zero located around Δμa ≈ 0:1mm−1. Even though
this absorption contrast is rather strong and is not
usually found in DOT, we cannot exclude in general
that a zero cannot be found in a lower range of Δμa.
The presence of zeros should be addressed before in-
corporating Padé approximants as a forward model
in a code for optical properties reconstruction. A zero
of Eq. (3) translates into the presence of a vertical
asymptote in the plot ofΔI=I0 againstΔμa. However,
we note that even if a vertical asymptote is present
the incorrect values of ΔI=I0 around the zero can be
easily spotted. In fact, on both sides of the asymptote
the decreasing trend ofΔI=I0 againstΔμa is abruptly
interrupted and reversed. Those values ofΔI=I0 char-
acterized by a reversed trend usually cover a range of
Δμa surrounding the zero with a width of ∼0:01–
0:02mm−1. Once spotted, the wrong points can be
eliminated by using an interpolating function. At
this level of the investigation this can be a safe
way to apply the method of Padé approximants as
a forward model solver.

Finally we note that in this work we have reduced
the problem of nth-order perturbation theory to the
estimation of the mean path length hlii; therefore the
computational complexity of the proposed theory is
the same as first-order perturbation theory (Born ap-
proximation). Analytical solutions for hlii are avail-
able only for regular geometries, and numerical
methods are required for more complex geometries.
Therefore it may be possible that the proposed meth-
od can be used in conjunction with some numerical
methods to estimate the effect of local inclusions
in arbitrary geometries, beyond the limits of first-
order perturbation theory. We have also tried to ex-
tend the range of applicability of Eq. (1) for coloca-
lized scattering and absorbing perturbations, and
we found very encouraging results in the layered geo-
metry. Last, we want to mention that the proposed
method is suitable for dealing with multiple defects,
as we showed in our previous work [23].

Appendix A

The perturbative DE for absorbing inclusions is for-
mally equivalent to the DE, and it is written as

−∇ · fDðrÞ∇½ΔϕðrÞ�g þ μaðrÞΔϕðrÞ ¼ −ΔμaðrÞϕf iðrÞ;
ðA1Þ

Fig. 10. For the slab geometry the changes of intensities ΔI=I0 are plotted at the detector (a) d1 and (b) d3 (Fig. 9).
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where DðrÞ is the diffusion coefficient; μaðrÞ and
ΔμaðrÞ are the absorption coefficient and the absorp-
tion perturbation, respectively; ΔϕðrÞ ¼ ϕfiðrÞ−
ϕinðrÞ, where ϕinðrÞ is the Green’s function of the flu-
ence rate for the baseline (initial state) medium and
ϕfiðrÞ is the Green’s function of the fluence rate after
the absorption perturbation has occurred (final
state). The fluence rate is normalized to the source
strength; therefore ½ϕ� ¼ L−2. The solution of Eq. (A1)
is expressed in integral form by the convolution the-
orem:

ϕfiðrÞ ¼ ϕinðrÞ −
Z
V

Δμaðr1Þϕinðr; r1Þϕfiðr1Þdr1; ðA2Þ

where V is the volume where the absorption pertur-
bation is located. Equation (A2) is a Fredholm equa-
tion of the second kind, and its solution is provided by
the Neumann series. The terms of the Neumann ser-
ies can be rearranged to derive the moments of the
generalized temporal point spread function. The gen-
eral expression of the self-moments for small absorb-
ing inclusions (i.e., inclusions having sizes much
smaller than the distance between inclusion and
both source and detector) is given by

hlni i ≈
n!hlii
Vi

Z
Vi

dr1

Z
Vi

ϕ0ðr1; r2Þdr2
Z
Vi

ϕ0ðr2; r3Þdr3

…

Z
Vi

ϕ0ðrn�1; rnÞdrn; ðA3Þ

where Vi and hlii are the volume and the mean path
length inside the inclusion, respectively. Since
ϕ0ðr1; r2Þ is the fluence rate when the source and
the field points are inside the same region (therefore
indefinitely close), we should question whether the
solution of the DE can be used as the integrand
and, if not, whether Eq. (A3) is a valid expression
of the moments within the RTE. It is possible to
prove that Eq. (A3) yields the correct values of the
self-moments up to n ¼ 2; however the Green’s func-
tion of the RTE for the fluence rate should be used for
calculation of the multiple integral. For higher per-
turbation orders, the moments derived within the
RTE, which are not formally equivalent to Eq. (3),
should be used, following an analogous procedure
[22]. Since the correct expressions of the moments
for n > 2 derived within the RTE are not useful for
practical calculations, we proposed the heuristic for-
mula given in Eq. (1). Finally, we note that the per-
turbative RTE can also be solved by using the
formalism of the transition operator or T matrix as
shown by other investigators [34].
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