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In this paper, a recent physics-based metaheuristic algorithm, the Colliding Bodies Optimization (CBO), already employed to solve
problems in civil and mechanical engineering, is proposed for the optimization of interplanetary trajectories by using both indirect
and direct approaches. The CBO has an extremely simple formulation and does not depend on any initial conditions. To test the
performances of the algorithm, missions with remarkably different orbital transfer energies are considered: from the simple planar
case, as the Earth-Mars orbital transfer, to more energetic ones, like a rendezvous with the asteroid Pallas.

1. Introduction

An important aspect of a space mission design is the obtain-
ing of the nominal optimal trajectory, traditionally the one
with minimum transfer time or maximum payload mass.
Trajectory optimization is an old problem, its origins date
back to the ancient Greeks, but its rigorous mathematical for-
mulation, as an optimal control problem, arrives only with
Pontryagin in the mid-1900s [1]. Optimal control is an issue
concerning the determination of the inputs into a dynamical
system that optimize (i.e., minimize or maximize) a specified
performance index while satisfying several constraints [2].
These constraints can be differential, as the equations of
motion, or algebraic, as departure, mid-course, and arrival
constraints. Because of the complexity of most applications,
optimal control problems are chiefly solved numerically.
Numerical methods adopted are divided into two major
classes: indirect methods and direct methods. In the former,
the original problem is transcribed into a multiple-point
boundary-value problem that is solved to determine candi-
date optimal trajectories, and the optimization phase consists
in finding the optimal set of costate variables. In a direct
method, the state and/or control of the optimal control prob-

lem is discretized, and the problem is transcribed into a non-
linear optimization problem [2]. Both approaches lead to a
parametric optimization where a set of optimal parameters
must be found. This optimization has often been conducted
by means of gradient-based research (e.g., Newton-
Raphson-based algorithms), but in the last decades, a new
kind of optimization procedures has been proposed and
developed: metaheuristics [3, 4]. The goal of metaheuristics
is to efficiently explore the search space looking for near-
optimal solutions. The fundamental characteristics are that
they are problem independent and they possess a nondeter-
ministic nature, useful to escape from local optima. This is
achieved by either allowing worsening moves or generating
new starting solutions for the local search in a more “intelli-
gent” way than just providing random initial solutions. This
stochastic nature is not employed blindly, but in an intelli-
gent, biased manner, and is what truly differentiates them
from gradient-based techniques, which are deterministic
and strongly dependent on an initial guess of the solution
[5, 6]. Gradient-based algorithms are largely employed in
all fields of engineering, including space trajectories optimi-
zation. However, in recent years, metaheuristic algorithms
have been increasingly adopted, especially in preliminary
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analysis of trajectories. Two of the most used algorithms, in
this domain, are Particle Swarm Optimization [7, 8] and
Differential Evolution [9, 10].

This paper is focused on the optimization of space trajec-
tories using the Colliding Bodies Optimization algorithm.
This is a novel population-based metaheuristic inspired by
the one-dimensional collision theory between bodies, where
each candidate solution being considered as a body with
mass. CBO utilizes a simple formulation to find extremals
of functions and does not depend on any internal parameter
[11]. In Section 2, CBO and its enhanced version will be
described briefly. Test cases using indirect methods are stud-
ied in Section 3, while those using direct methods are studied
in Section 4. Conclusions will be given in Section 5.

2. Colliding Bodies Optimization Algorithm

Colliding Bodies Optimization is a metaheuristic algorithm
developed by Kaveh and Mahdavi [11–13], inspired by the
one-dimensional collision theory. There are two versions of
this algorithm, a basic one [11] and an enhanced one [12],
that improves the basic version by means of a sort of Elitism
and Crossover. In the next two sections, some basic state-
ments are reported while details can be found in the cited
references.

2.1. Basic CBO Formulation. Each search agent is modelled as
a body with mass and velocity. The initial position of the ith
body is randomly provided in a j-dimensional search space
set by the user:

xij = xj,min + rand ⋅ xj,max − xj,min
� �

, ð1Þ

where rand is a random number between 0 and 1. A collision
occurs between two bodies, and their positions, after the
impact, are updated based on the one-dimensional collision
laws [11, 13]. Given the body Xk (also called particle or
object), its mass is defined as follows:

mk =
1/Jk

1/∑n
i=1 1/Jið Þ , k = 1,⋯, n, ð2Þ

where Jk is the cost function value of the kth particle and n,
which must be an even number, is the total number of bodies
used in the optimization process (the population size). The n
colliding bodies (CBs) are sorted into ascending order,
according to their objective function values, and then divided
into two equal groups: Stationary Objects (the lower half)
and Moving Objects (the upper half). Objects of the MO
group collide against members of the SO group to improve
their position and push stationary objects towards better
positions. In particular, the colliding pairs are established
according to the ascending order with respect to the objective
function. Hence, for instance, the best moving particle col-
lides with the best stationary one. Bodies’ velocities before
the collision are assigned as follows:

Stationary bodies : vi = 0, i = 1,⋯,
n
2
, ð3Þ

Moving bodies : vi = xi− n/2ð Þ − xi, i =
n
2
+ 1,⋯, n: ð4Þ

As many other metaheuristic algorithms, velocities are
not defined as the derivative of the position with respect to
time, but they are expressed as displacements in the search
space. According to the colliding bodies’ theory, velocities
after the collision are calculated as follows:

Stationary bodies : vi′=
mi+ n/2ð Þ + εmi+ n/2ð Þ

� �
vi+ n/2ð Þ

mi +mi+ n/2ð Þ
,

 i = 1,⋯,
n
2
,

ð5Þ

Moving bodies : vi′=
mi − εmi− n/2ð Þ

� �
vi

mi +mi− n/2ð Þ
, i =

n
2
+ 1,⋯, n,

ð6Þ
where ε is the Coefficient of Restitution, defined as the ratio of
the relative velocity between two bodies after and before the
collision:

ε =
vi+1′ − vi′
�� ��
vi+1 − vij j : ð7Þ

This coefficient is assumed varying linearly between 1
and 0 during the optimization process, in order to ensure
the balance between exploration and exploitation. After
the calculation of the displacement, it is possible to deter-
mine new positions of the stationary and moving bodies as
follows:

Stationary bodies : xnewi = xi + rand ⋅ vi′, i = 1,⋯,
n
2
, ð8Þ

Moving bodies : xnewi = xi− n/2ð Þ + rand ⋅ vi′, i =
n
2
+ 1,⋯, n,

ð9Þ
where rand is a uniformly distributed random vector in
the range [-1,1]. This iterative scheme, performed on all
the particles at each iteration, is repeated until a given
stopping criterion is fulfilled. A Pseudocode 1 of CBO is
reported.

2.2. Enhanced CBO Formulation. The structure of the
enhanced CBO (ECBO) algorithm is essentially the same
as the basic CBO [12], with the difference that a Colliding
Memory (CM) is introduced to save the best CBs’ posi-
tions obtained so far. In fact, the positions stored in the
Colliding Memory substitute the worst positions occupied
by the current bodies. In this way, the best positions are
remembered and there is no global worsening of the
objective function from one iteration to another. The
number of the best CBs’ positions that are preserved,
therefore the dimension of the Colliding Memory, is set
by the user. Moreover, after the update of the CBs’
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positions, the ECBO executes the following crossover
instruction:

if rani < PRO,

xij = xj,min + rand xj,max − xj,min
� �

,

otherwise,

xij = xij,

8>>>>><
>>>>>:

ð10Þ

where xij is the jth variable of the ith CB, randomly
selected; xj,min, xj,max are the lower and the upper bounds
of the jth variable; PRO is the crossover probability that
must be set by the user between [0,1]; rani is a random
number uniformly distributed within [0,1], automatically
generated for each particle, as well as rand. If rani is less
than PRO, a crossover occurs. As PRO increases, the prob-
ability to perform a crossover increases. The Pseudocode 2
of the ECBO is reported.

3. Numerical Simulations: Indirect Methods

In order to analyze the performances of this optimization
algorithm, a total of five study cases will be presented. Two
of them are solved by using an indirect strategy, while the
remaining three cases adopt a direct approach.

3.1. Optimal Earth to Mars Orbital Transfer. The problem is
to reach the orbit of Mars departing from the Earth’s orbit
with the minimum transfer time by using a low thrust engine.
This case has already been studied in literature with different
techniques [7, 14, 15]. In this paper, the best trajectory is

obtained by using the ECBO. As in the cited papers, the
following hypotheses are established:

(1) The orbits of the planets are coplanar and circular

(2) The only attracting body is the Sun

(3) The spacecraft’s initial position and velocity are the
same as the Earth’s

(4) The thrust magnitude of the spacecraft is constant

The spacecraft’s equations of motion are written in polar
coordinates:

_r = vr ,

_vr = −
μs − rv2θ

r2
+

T
m

sin α,

_vθ = −
vr vθ
r

+
T
m

cos α,

8>>>>><
>>>>>:

ð11Þ

where r is the position vector; vr and vθ are, respectively, the
radial and the horizontal velocity of the spacecraft, μs is the
Sun’s gravitational parameter, T is the thrust magnitude; m
is the spacecraft mass, and α is the thrust pointing angle rel-
ative to the local horizontal (Figure 1).

The control vector is uðtÞ = α. The thrust-to-mass ratio is
as follows [7]:

T
m

=
T

m0 − T/cð Þ t − t0ð Þ =
cn0

c − n0 t − t0ð Þ , ð12Þ

1. Initialize the CBO population in the search space (Equation (1))
2. Evaluate the objective functions and define the masses as in Equation (2)
3. Sort the population in order to identify stationary and moving groups and calculate the velocities as in Equations (3) and (4)
4. Calculate the velocity after the collisions by means of Equations (5) and (6)
5. The new positions can be determined by Equations (8) and (9)
6. If the terminating criterion is fulfilled, proceed to step 7; otherwise, go to step 2
7. Report the best solution found by the algorithm
8. END

Pseudocode 1

1. Initialize the CBO population in the search space (Equation (1))
2. Evaluate the objective functions and define the masses as in Equation (2)
3. Update the Colliding Memory (CM) and population
4. Sort the population in order to identify stationary and moving groups and calculate the velocities as in Equations (3) and (4)
5. Calculate the velocity after the collisions by means of Equations (5) and (6)
6. The new positions can be determined by Equations (8), (9), and (10)
7. If the terminating criterion is fulfilled, proceed to step 8; otherwise, go to step 2
8. Report the best solution found by the algorithm
9. END

Pseudocode 2
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where m0 is the initial spacecraft mass, c = 55:894 km/s is the
exhaust velocity, and n0 = 8:342 × 10−4m/s2 is the thrust-to-
mass ratio at the initial time t0. A normalized set of units is
as follows:

(i) Distance unitDU = 149:5 ⋅ 106 km is the mean radius
of the Earth’s orbit

(ii) Time unit TU = 5:018 ⋅ 106 s, such that μs = DU3/
TU2

The objective function to minimize is J = t f . The
desired terminal conditions are expressed by the vector ω
as follows:

ω =

Δr

Δvr

Δvθ

8>><
>>:

9>>=
>>; =

r t f
� �

− RMars

vr t f
� �

vθ t f
� �

−
ffiffiffiffiffiffiffiffiffiffi
μs

RMars

r
8>>>><
>>>>:

9>>>>=
>>>>;

=

0

0

0

8>><
>>:

9>>=
>>;: ð13Þ

To write the necessary conditions for optimality, the
Hamiltonian function has to be defined:

H = prvr + pvr −
μs − rvθ

2

r2
+

T
m

sin u
� 	

+ pvθ −
vr vθ
r

+
T
m

cos u
� 	

,
ð14Þ

where the time-dependent set of costate variables ½pr , pvr , pvθ �
has been introduced. Furthermore, the costate differential
equations are expressed as follows:

_pr =
v2θ pvr − vr vθ pvθ

r2
−
2μs pvr
r3

,

_pvr = −pr +
vθ pvθ
r

,

_pvθ =
−2vθ pvr + vr pvθ

r
:

8>>>>>>><
>>>>>>>:

ð15Þ

From the Pontryagin principle, the optimal control law is
as follows:

cos uopt = −
pvθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2vθ + p2vr

q ,

sin uopt = −
pvrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2vθ + p2vr

q :

8>>>>><
>>>>>:

ð16Þ

The set of necessary conditions for optimality can be
completed with the transversality condition referred to the
final time:

H tf
� �

= −
∂J
∂t f

− λ ⋅ ∂ω
∂t f

, ð17Þ

where λ is another set of adjoint variables concerning the
terminal conditions; hence, it has the same dimensions as ω.
Rearranging Equation (17), the following condition is
obtained:

cn0
c − n0t f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pvr t f

� �2 + pvθ t f
� �2q

− 1 = 0: ð18Þ

In order tofind theoptimal trajectory that satisfies thenec-
essary conditions, the problem reduces to the determination
of four parameters: ½prð0Þ, pvr ð0Þ, pvθð0Þ, t f �. The CBO algo-
rithm must find the solution exploring the following search
space:

1 TU ≤ t f ≤ 10 TU,

−1 ≤ pr 0ð Þ, pvr 0ð Þ, pvθ 0ð Þ ≤ 1:
ð19Þ

It is necessary to introduce a cost function that links the
optimization algorithm to the problem. This function always
includes the quantity that must be minimized, and if there is
any constraint to respect, the most popular approach is to
include them in the cost function. Then, the objective function
is defined here as follows:

J = t f + 100 ⋅ Δr + 100 ⋅ Δvr + 100 ⋅ Δvθ: ð20Þ

In the cost function, all the quantities (transfer duration
and errors at final time) are dimensionless and the weights
are chosen to scale them properly, in order to keep the balance
between all terms throughout the simulation. The ECBO
population is composed of 50 particles. The dimension of
the Colliding Memory is set to 1 and crossover is not per-
formed. The algorithm has to find the optimal set of costate
initial values. The transversality condition can be neglected
by the CBO, due to the homogeneity of the costate equations
(Equation (15)). For this reason, if theCBOfinds a set of initial
costate variables that is proportional to the optimal one

(p
!ð0Þ = b p

!ð0Þopt), the same proportionality holds at any
time. By writing the control as a function of the proportional
set, it is possible to demonstrate that it coincides with the

Sun

S/C

T
r

𝛼
𝜃
‸

‸

x
‸

 
y
‸

Figure 1: Thrust pointing angle α.
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optimal control (Equation (16)). This means that the mini-
mum time trajectory can be obtained also with an initial cost-
ate proportional to the optimal set. Nevertheless, the
transversality condition will be violated, and by substituting
the proportional set in Equation (18), it can be easily proved
that Hðt f optÞ = −b. In order not to increase the number of

equality constraints in the cost function, the transversality
condition is verified at the end of the optimization process,
to guarantee the optimality of the trajectory.

The optimal solution found by the CBO consists in a
192.6 days transfer (Figure 2).

Figure 3 shows the optimal thrust pointing angle αðtÞ and
the costate evolution during the transfer trajectory. These
results are in accordance with those in literature by using
PSO [7] and are obtained quickly and easily thanks to the
simplicity of the algorithm.

3.2. Optimal Earth to Mercury Orbital Transfer. A minimum
time transfer between the orbits of the Earth and Mercury is
studied by means of a solar sail. The problem consists in
determining the optimal steering law αðtÞ that minimizes
the time of flight to reach Mercury’s orbit [16].

As in the cited papers, a series of simplifying assumptions
are made:

(1) The relative orbital inclination of Mercury and Earth
is neglected, and the orbits are considered circular

(2) The spacecraft’s initial position and velocity are the
same as the Earth’s

(3) The only attracting body is the Sun

A polar inertial reference frame is used, and the equations
of motion for the solar sail are as follows:

–1.5 –1 –0.5 0 0.5 1.51
(DU)

–1.5

–1

–0.5

0

0.5

1

1.5

(D
U

)

Earth orbit
Mars orbit
Spacecraft trajectory

Figure 2: Earth-Mars optimal transfer trajectory.

_r = vr ,

_θ =
vθ
r
,

_vr =
v2θ
r
−
μs
r2

+
ac

b1 + b2 + b3

REarth
r

� 	2
⋅ cos α b1 + b2 cos2α + b3 cos α

� �
,

_vθ = −
vr vθ
r

+ ac
b1 + b2 + b3

REarth
r

� 	2
⋅ sin α cos α b2 cos α + b3ð Þ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ
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where r is the position vector and θ is the polar angle mea-
sured anticlockwise from the axis that connects the Sun to
the Earth at the initial instant. vr and vθ are, respectively,
the radial and the tangential velocity. α is the angle between
the direction that connects the Sun to the solar sail and
the thrust direction (Figure 4); ac is the characteristic
acceleration of the sail, and the terms b1, b2, and b3 are

the coefficients that represent the optical properties of
the sail. A sail with an aluminium-coated front side and
a chromium-coated back side with b1 = 0:1728, b2 =
1:6544, and b3 = −0:0109 is considered [16].

The minimum time trajectory is obtained with an indi-
rect approach. The Hamiltonian function is as follows:

H = prvr +
vθ pθ − pvθvr

� �
r

+ pvr
vθ

2

r
−
μs
r2

� 	

+
ac cos α REarth/rð Þ2

b1 + b2 + b3

h
pvr b1 + b2 cos2α + b3 cos α

� �
+ pvθ sin α b2 cos α + b3ð Þ

i
,

ð22Þ

where ½pr , pθ, pvr , pvθ � are the time-dependent costate vari-
ables. The Euler-Lagrange equations are as follows:

0 1 2 3 4
t (TU)

–0.35

–0.3

–0.25

–0.2

–0.15

P r
0 1 2 3 4

t (TU)

–0.2

–0.1

0

0.1

0.2

P v
r

P v
t

𝛼
 (d

eg
)

0 1 2 3 4
t (TU)

–0.4

–0.3

–0.2

–0.1

0

0 1 2 3 4
t (TU)

0

100

200

300

Figure 3: Optimal costate and control evolution in the Earth-Mars transfer.

_pr =
pθ vθ
r2

+ pvr
vθ

2

r2
−
2μs
r3

+
2ac REarth

2

r3 b1 + b2 + b3ð Þ cos α b1 + b2 cos2α + b3 cos α
� �
 �

− pvθ
vr vθ
r2

−
2ac REarth

2

r3 b1 + b2 + b3ð Þ sin α cos α b2 cos α + b3ð Þ

 �

,

_pθ = 0,

_pvr = −pr +
vθ pvθ
r

,

_pvθ =
−2vθ pvr + vr pvθ − pθ

r
:

8>>>>>>>>>><
>>>>>>>>>>:

ð23Þ

Sun

T
r𝛼

𝜃
‸

𝜃

‸

x
‸

y
‸

Figure 4: Thrust pointing angle α.

6 International Journal of Aerospace Engineering



The optimal control will be obtained in the form α =
αðpvr , pvθÞ, but it is not possible to find an explicit solution
in this form. The optimal steering law can be approxi-
mated by [17]:

α =
sign pvθ

� �
~α if αp < α∗p ,

sign pvθ

� � π

2

� �
 if αp ≥ α∗p ,

8><
>: ð24Þ

where

cos αp
� �

=
pvrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2vθ + p2vr

q with αp ∈ 0, π½ �,

α∗p ≅ 2:5392 rad,

~α ≅ 0:008109α6p − 0:05474α5p + 0:1356α4p
− 0:1266α3p + 0:08266α2p + 0:3038αp

+ 0:0008666with αp ∈ 0, α∗p
h i

:

ð25Þ

The equations of motion have the following boundary
conditions:

r t0ð Þ = REarth, θ t0ð Þ = vr t0ð Þ = 0, vθ t0ð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
μs

REarth

r
: ð26Þ

There are four unknown parameters: ½prð0Þ, pvr ð0Þ,
pvθð0Þ, t f �, and the optimal values are found in the following
search space:

1 TU ≤ t f ≤ 20 TU,

−1 ≤ pr 0ð Þ pvr 0ð Þ pvθ 0ð Þ ≤ 1:
ð27Þ

To investigate the domain, a population of 50 particles is
considered. As in the previous case, an ECBO that preserves
the best position in the population at each iteration is
employed. Therefore, the selected dimension of the Colliding
Memory is 1 and the crossover is not considered. The cost
function is written, as in the previous case:

J = 0:01 ⋅ t f + 100 ⋅ Δr + 40 ⋅ Δvr + 40 ⋅ Δvθ: ð28Þ
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Figure 5: Optimal costate and control angle (alpha) for the Earth-Mercury transfer.
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Although the cost function has the same form as the
previous one, coefficients must be chosen carefully and
they are different for each problem. The characteristic
acceleration is set to 0:25mm/s2 and the resulting transfer
lasts 2.8 years, in agreement with the results obtained in
[16]. The optimal costate and α time history are shown
in Figure 5. The CBO, also in this case, demonstrates a
great ability in finding the optimal initial costate values
within 6500 function evaluations with no parameter tun-
ing at all.

4. Numerical Simulation: Direct Methods

In this case, the test cases proposed are minimum time ren-
dezvous with three different celestial bodies: an outer planet,
an inner planet, and a very inclined asteroid. The transfer is
considered heliocentric and the mathematical model consists
in a three-dimensional restricted two body problem, with the
Sun as the attractor and the spacecraft with negligible mass.
The equations of motion are as follows:

_x = vx

_y = vy

_z = vz

_vx = −
μs
r3
rx +

Tx

m

_vy = −
μs
r3
ry +

Ty

m

_vz = −
μs
r3
rz +

Tz

m

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð29Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 + y2 + z2Þp

is the position vector of the space-
craft and T is the thrust vector. The mass of the spacecraft is
indicated as m and its time varying law is m =m0 − _m ⋅ t,
wherem0 is the initial spacecraft mass and _m is the mass flow
ratio. This set of equations is conveniently normalized using
this set of units:

(i) Distance unitDU = 149:5 ⋅ 106km is the mean radius
of the Earth’s orbit

(ii) Time unit TU = 5:018 ⋅ 106 s, such that μs = DU3/
TU2

(iii) Mass unit MU=m0

A direct single shooting technique, with constant thrust
magnitude, is proposed due to its simplicity and effectiveness
[18]. The trajectory is divided into a finite number of arcsNA
with variable duration Δtk, with k = 1,⋯, NA. During each
arc, the angles αk and ψk represent the thrust vector direction

in the local reference frame ðr̂, bθ , ĥÞ with respect to the iner-
tial reference frame J2000 (Figure 6).

In a rendezvous problem, the departure time is another
variable to compute during the optimization process. The
number of arcs NA is selected after a preliminary study and
chosen to reduce as much as possible the computational
effort [19]. Globally, there will be three variables for each
arc plus the departure time. The ephemerides of the planets
are DE430 (provided by the NASA SPICE tool [20]). With
the transfer time t f , we need to minimize the following
arrival errors as well:

Δx = xs t f
� �

− xt t f
� �

,

Δy = ys t f
� �

− yt t f
� �

,

Δz = zs t f
� �

− zt t f
� �

,

Δvx = vxs t f
� �

− vxt t f
� �

,

Δvy = vys t f
� �

− vyt t f
� �

,

Δvz = vzs t f
� �

− vzt t f
� �

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð30Þ

where subscript s indicates the spacecraft state and t repre-
sents the target body. The desired final condition, hence, is
that the arrival errors (Equation (30)) are zero.

The objective function is defined as follows:

J = 1000 ⋅ Ctt f + Cd ⋅ Δx + Δy + Δzð Þ + Cv Δvx + Δvy + Δvz
� �� �

:

ð31Þ

The coefficients Ct , Cd and Cv (that weight of the differ-
ent dimensionless contributes in the cost function) are

𝛼

𝜓 𝜃

𝜃h h

T

r

r

X

Z
J2000

O Y

Figure 6: Thrust vector control direction in the local reference frame and its orientation with respect to J2000.

Table 1: Mars rendezvous results.

%succ t fmin
daysð Þ t fmean

σt f
77.8 288 302.08 8.418
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chosen after a preliminary study to properly balance the dif-
ferent terms, and their values will be presented for each test
case. In the next section, three rendezvous missions will be
discussed and the selected celestial bodies are Mars, Venus,
and Pallas. The stopping criterion is composed of two condi-
tions. The first one concerns the accuracy of the mission:

each transfer will be considered successful, and hence, the
relative simulation will stop, if the errors on position and
velocity, described in Equation (30), go, respectively, below
the mean radius of the target body and the threshold velocity
of 20m/s. The second term of the stopping criterion is a com-
putational condition that imposes a maximum number of
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Figure 7: Cost function behavior for the Earth-Mars transfer.
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Figure 8: Optimal trajectory for the Earth-Mars transfer.
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cost function evaluations Feval. Each simulation will stop if
Feval exceeds the threshold value set for the specific mission.
If this threshold is reached, the algorithm automatically rein-
itializes itself with a different initial distribution of particles.
Both versions of the CBO will be used. In order to perform
a more trustworthy analysis, one thousand runs will be
executed for each case. Each run departs from different
initial distributions of particles in the search space because
of the randomness of the initialization of the positions
(Equation (1)). This is done to evaluate the average perfor-
mances of the algorithm. The first performance index con-
sidered is the percentage of success ð%succÞ. A success
occurs when the accuracy condition of the stopping crite-
rion is met. Other performance indices are minimum and
average values of transfer time ðt f Þ and number of func-
tion evaluations ðFevalÞ. In addition, the dispersion around
the mean value of transfer time σt f will be shown.

4.1. Rendezvous with Mars. Here, the outer planet Mars has
to be encountered by a spacecraft with the following
characteristics:

(i) Thrust T = 300mN

(ii) Specific impulse Isp = 3000 s

(iii) Initial mass m0 = 1000 kg

The search space, in terms of angles, arc duration, and
departure time, must be chosen to let the optimization pro-
cess start. The optimizer will look for the best solution out
of the bounds here empirically defined:

(1) αk ∈ ½0°, 180°�
(2) ψk ∈ ½−90°, 90°�
(3) Δtk ∈ ½10, 100� days
(4) tdep ∈ ½01/07/2019 − 01/07/2020�
The number of arcs chosen isNA = 4; therefore, there are

13 variables. The coefficients of the cost function are so estab-
lished: Ct = 0:01, Cd = 10, Cv = 10. The maximum number of
function evaluations selected for this problem is 20000. It is
used a basic version of the CBO by employing 50 particles
to investigate the search space.
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Figure 9: Optimal control law for the Earth-Mars transfer.

Table 2: Venus rendezvous results.

%succ t fmin
daysð Þ t fmean

σt f
38.8 232.8 241 5.82
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As can be seen from Table 1, the minimum time
transfer, on average, lasts 302 days with a minimum of
288 days. The standard deviation is small; therefore,
although the search space is wide, the CBO finds similar
trajectories and this demonstrates the capability of the
algorithm to explore effectively the search space. In
Figure 7, the behavior of the cost function is plotted for

all the successful runs (77.8%). It can be seen that the cost
function decreases similarly for each run, which can be
interpreted as a sign of robustness of the algorithm at
changes in the initial conditions.

The best trajectory found so far carries the spacecraft to
Mars in 288 days with a final mass of 746.35 kg (Figure 8).
Finally, the control law is plotted in Figure 9.
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Figure 10: Cost function behavior for the Earth-Venus transfer.
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Figure 11: Optimal control law for the Earth-Venus transfer.
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4.2. Rendezvous with Venus. Here, the inner planet Venus
must be encountered by a spacecraft with the same character-
istics as the previous one.

The search space, in terms of angles, arc duration, and
departure time, is defined as follows:

(1) αk ∈ ½−180°, 0°�
(2) ψk ∈ ½−90°, 90°�
(3) Δtk ∈ ½1, 90� days
(4) tdep ∈ ½09/01/2019 − 09/01/2020�
The number of arcs chosen isNA = 5; therefore, there are

16 variables. After some preliminary tests, the coefficients of
the cost function are so established: Ct = 0:01, Cd = 100,
Cv = 50. In this problem, the number of maximum func-
tion evaluations is set to 50000. It is employed a basic
CBO with 80 particles. The results are shown in Table 2.
The ability of the CBO to both explore and exploit is con-
firmed here by the small dispersion of the duration trans-
fer around the mean value.

The balance between exploration and exploitation
phase can also be deduced by the almost linear slope of
the cost function trend, plotted in Figure 10. The optimal
control law and the optimal trajectory are shown in
Figures 11 and 12.

4.3. Rendezvous with Pallas. Pallas is an asteroid belonging to
the asteroid belt that describes a very inclined orbit around
the Sun (34.8°) with an eccentricity of 0.2305, making it a dif-
ficult body to reach. The probe chosen for this mission has
the following characteristics:

(i) Thrust T = 80mN

(ii) Specific impulse Isp = 3000 s

(iii) Initial mass m0 = 600 kg

The search space is as follows:

(1) αk ∈ ½0°, 180°�
(2) ψk ∈ ½−90°, 90°�
(3) Δtk ∈ ½5, 250� days
(4) tdep ∈ ½01/01/2019 − 01/01/2021�

The number of arcs chosen is NA = 11 resulting in 34
variables. The coefficients are Ct = 0:01, Cd = 50, Cv = 100.
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Figure 12: Optimal trajectory for the Earth-Venus transfer.

Table 3: Pallas rendezvous results.

%succ t fmin
daysð Þ t fmean

σt f
23 1429.3 1510.1 47.02
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The maximum number of function evaluations allowed for
this problem is 100000. It is employed an ECBO with one
particle in the Colliding Memory without considering the
crossover. The number of particles is 120. Despite the biggest
energetic difference between the Earth and target orbits, the

strictest arrival tolerances, the least powerful thruster, and
the highest number of variables, the CBO can find optimal
solutions for this rendezvous. The success percentage of
23% (Table 3) can be addressed to the concepts just men-
tioned, yet the value of standard deviations of tmin is very
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Figure 13: Optimal control law for the Earth-Pallas transfer.
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small (3% of the mean transfer time), revealing that the dis-
covered trajectories are very close to one another. This can
be interpreted as a sign of the reliability of the algorithm.
Figure 13, Figure 14, and Figure 15 represent, respectively,
the optimal control law, the cost function behavior, and the
optimal trajectory.

4.4. Discussion of the Results. It is worth mentioning that the
direct approach, utilized in the last three cases, does not con-
template optimality conditions; therefore, there is not a defi-
nite optimal trajectory. Since there is no reference solution, a
large number of simulations is needed to characterize the
behavior of the algorithm. Due to the many degrees of free-
dom offered, the developed strategies allow many solutions
to satisfy the arrival constraints. Although the range of possi-
ble transfer times is wide, the solutions found by the CBO are
not equally distributed on all the possible values of t f . In
Figures 16, 17, and 18, the transfer durations of the successful
trajectories are grouped into histograms. For all the cases
tested above, they are centered around a mean value, biased
towards the minimum time transfer, with very small stan-
dard deviation values (equal or less than 3% of the mean
value), reported in Tables 1, 2, and 3.

5. Conclusions

The study conducted in this paper reveals that the CBO is a
valid algorithm, capable of solving a broad range of trajectory
optimization problems. In the indirect cases, the CBO finds
the optimal set of costate variables, discovering the optimal
trajectory in a straightforward way. The direct cases were
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made challenging on purpose, to test the effectiveness of the
CBO thoroughly. Despite the increasing number of variables,
the large domains, and the strict arrival tolerances, the algo-
rithm succeeded in achieving satisfying trajectories for all
the problems presented, exhibiting also a small dispersion

around the suboptimal solution. Concerning the CBO per-
formances, it is possible to state that, although it is straight-
forward in terms of computational effort and parameter
settings, it shows great reliability and effectiveness in solving
these kinds of problems. The remarkable advantage of CBO
is that it is ready to use and it does not need an initial guess
of the solution or insights of the problem. In addition, CBO
has just one parameter to adjust (Elitism scheme); therefore,
it does not need the fine-tuning preliminary operations
required by metaheuristics in general.
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