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Silicon waveguides embedded in lateral p-n junctions show field-induced optical

nonlinearities. By properly polarizing the junction, these can be used to achieve

electro-optic modulation through the Direct Current Kerr effect. In addition, these

enable second-order nonlinear processes such as the electric-field-induced second

harmonic generation (EFISHG). In this work, we study in detail electro-optic effects

in integrated silicon microresonators and demonstrate experimentally a field-induced

resonance wavelength shift. This process is due to both the DC Kerr effect and the

plasma-dispersion effect. By means of finite element method simulations, these effects

are properly modeled and their contributions are accurately disentangled. The strength

of the equivalent second-order nonlinear coefficient that would have provided the same

electro-optic effect is about 16 pm/V. This result is comparable with that of materials

possessing an intrinsic second order nonlinearity, and is one order of magnitude stronger

than the most recent measurements of strain-induced Pockels effect in silicon.

Keywords: nonlinear optics, silicon photonics, Kerr effect, field-induced nonlineatiries, plasma-dispersion effect,

p-n junctions, microring resonator

1. INTRODUCTION

The study of nonlinear optical phenomena received raising interest in the last decades [1]. Most
of the applications are based on second order nonlinear processes, which are enabled by lower
optical power than the other higher order processes. Materials with large second order nonlinear
susceptibilities, χ (2), such as LithiumNiobate (LN), Potassium Titanyl Phosphate (KTP) or Barium
Borate (BBO) are widely used in Pockels cells and in frequency conversion [2–4]. Strong benefits
could derive from the possibility to integrate these phenomena on a photonic chip. Integration will
allow reducing the production cost and the power consumption, and to increase the nonlinear
interaction strength [5]. Although the promising results have been recently reported in the
integration of LN [6, 7], nowadays the technologies used to realize integrated devices with large-χ (2)

materials are less advanced than the one based on silicon. In fact, the Complementary-Metal-
Oxide-Semiconductor (CMOS) technology developed for microelectronics is well established,
and this enabled the realization of high quality silicon-based devices [8]. However, due to the
centrosymmetry of crystalline silicon,χ (2) processes are strongly inhibited [8]. Therefore, nonlinear
silicon photonics makes use of the third order nonlinear susceptibilities χ (3) of silicon, with which
different phenomena and a large variety of applications have been demonstrated [8]. However,
the possibility to induce a non-zero χ (2) in silicon has been widely investigated [9], because it
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would enable interesting phenomena like Pockels effect, Second
Harmonic Generation (SHG) or Spontaneous Parametric Down-
Conversion (SPDC) [1]. Most of these attempts have been based
on the deposition of a stressing silicon nitride cladding layer
to strain the silicon waveguide and, consequently, to break the
silicon centrosymmetry [10]. Even though positive results have
been reported [10, 11], very recent works demonstrate that most
of the reported measurements have been misinterpreted [12–15].
The χ (2) that can be induced in silicon by the strain is very low
[16, 17]. On the other hand, a recent work has demonstrated
an alternative way to enable effective χ (2) processes in silicon
by making use of silicon rib waveguides with lateral doping
forming a p-i-n junction [18]. In this way, a DC (direct current)
electric field is induced inside the waveguide. This enables the
so called Electric Field Induced SHG (EFISHG) in silicon, a
process where the silicon χ (3) is mixed with the DC field to yield
an effective χ (2). Making use of Mach-Zehnder interferometers,
the authors of Timurdogan et al. [18] also demonstrated the
DC Kerr effect, a χ (3) nonlinear process which can be used for
electro-optic modulation.

In this work, we study in detail the field-induced nonlinear
processes in integrated silicon microresonators with lateral
junctions. Doing so, we study both the plasma-dispersion effect
and the DC Kerr effect, which are processes that cause a variation
of the effective refractive index of the resonator mode. We
experimentally demonstrate the field-induced refractive index
variation and, by properlymodeling the system, we reproduce the
experimental data. Then, we quantify the electro-optic coefficient
for this system, comparing it with the most advanced studies
in strained silicon, as well as with the other materials most
commonly used for electro-optic modulation.

The work is organized as follows. In section 2, the geometry
and the fabrication technique of the resonators analyzed in this
work are described. In section 3, the main changes in the real
part of refractive index induced by the applied electric field
are introduced. Then, in section 4, the effect of the applied
field on the imaginary component of the refractive index is
studied in detail. First, a model capable to extract the absorption
coefficient from the resonator transmission spectrum is shown.
Then, the system is modeled using Finite ElementMethod (FEM)
simulations, providing a proper description of the phenomena. In
section 5, the effect of the applied field on the material refractive
index is quantified and compared with experimental data. Finally,
in section 6, the main conclusions and perspectives of this work
are reported.

2. MICRORING RESONATOR GEOMETRY

The top-view sketch of the microring resonator is shown in
Figure 1A. It consists of a 150 µm radius microring in the all-pass
configuration, realized by a silicon rib waveguide whose cross-
section is sketched in Figure 1B. The waveguides are defined by
a 365 nm UV lithography on a 6’ Silicon-On-Insulator (SOI)
wafer and realized by reactive ion etching. The slab height is
300 nm, while the waveguide’s full height is 490 nm and its
width is 550 nm. These values were chosen to obtain single

mode operation at the wavelength of 1550 nm. The bus and
the resonator waveguides have the same geometry, and are
point-coupled with a minimum separation of 600 nm. Lateral
doped regions are realized at a distance d from the waveguide
borders. Different values of d are proposed in the design,
respectively 200, 500, and 800 nm. The carrier concentration
is 1× 1018 cm−3 in both the n-type doped and in the p-type
doped regions, while the waveguide has a residual 1× 1015 cm−3

p-type doping as the original SOI device layer. A top oxide
cladding is deposited through Plasma-Enhanced Chemical Vapor
Deposition (PECVD) over the waveguides. Vias are created
through the oxide to polarize the junctions via aluminum pads.

3. FIELD-INDUCED OPTICAL CHANGES

In the microring resonator, both the material refractive index and
its absorption are affected by the junction.

Absorption (or power losses) are enhanced due to defects
introduced during the implantation of the dopants and/or to the
presence of free-carriers. In fact, variations 1Ne and 1Nh of the
electron and of the hole concentration induce a variation of the
absorption coefficient 1α given by [19]:

1α = a1Nb
e + c1Nd

h . (1)

The coefficients a, b, c, and d characterize each semiconductor,
and are wavelength dependent. For silicon at the wavelength
of 1550 nm, a ≈ 8.88× 10−21 cm2, b ≈ 1.167, c ≈

5.84× 10−20 cm2 and d ≈ 1.109 [19]. Variations of the material
absorption modify the resonator’s quality factor, and so they can
be measured by analyzing the spectral features of the resonator.
In the following, a reverse bias of the junction is considered.
This reduces the charge concentration inside the waveguide and
therefore also the free carrier losses.

The lateral p-n junctions affect also the material refractive
index due to both the plasma-dispersion effect and the DC Kerr
effect [18]. Plasma-dispersion is a linear optical effect caused
by the variation of the free-carrier concentration. The material
refractive index is modified by a quantity 1npd given by [19]:

1npd = −p1N
q
e − r1Ns

h, (2)

where for silicon at the wavelength of 1550 nm p ≈

5.4× 10−22 cm3, q ≈ 1.011, r ≈ 1.53× 10−18 cm3 and s ≈ 0.838
[19]. DC Kerr effect is a third order nonlinear effect [1] that
introduces a refractive index perturbation 1nk given by [20]:

1nk =
3χ (3)|EDC|

2

2n0
. (3)

Here n0 is the unperturbed refractive index and χ (3) is the third
order nonlinear susceptibility, which for silicon at the wavelength
of 1550 nm is 2.45× 10−19m2/V2 [21]. EDC is the applied DC
field. Both the DC Kerr effect and the plasma-dispersion cause a
variation of the material refractive index1n = 1npd+1nk. This
results in a variation 1neff of the resonator mode effective index,
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FIGURE 1 | Top-view (A) and cross-section (B) of the resonators described in this work.

which in turn determines a shift 1λ of the microring resonator
resonance wavelength given by [14, 22]:

1λ = η
λ

ng
1neff, (4)

being λ the resonance wavelength, ng the group index of the
propagating mode and η the fraction of the resonator perimeter
that undergoes the effective index variation (in this work η ∼ 0.9,
since the p-n junction is not present in the coupling region).

4. FIELD-INDUCED ABSORPTION

4.1. Modeling the System via Transfer
Matrix Methods
To extract losses from the resonator transmission spectra, a
model to fit them is introduced. This model describes the system
sketched in Figure 2A, consisting of a resonator in the all-pass
configuration. We define the input and output electric field at the
facet A (B) as EAin and EAout (E

B
in and EBout). The model considers

that light is coupled into the system via butt coupling [23].
Due to the strong refractive index difference between the silicon
waveguide and air, the coupling facets have a strong reflectance,
forming a Fabry-Perot cavity whose transmission spectrum is
superimposed to the resonator’s one. The behavior of the whole
system is described by the transfer matrix method:

(

EBout
EBin

)

= M

(

EAin
EAout

)

. (5)

M is a 2 × 2 transfer matrix defined as the product M =

MF,BML,BMrML,AMF,A. In particular, MF,A and MF,B are the
transfer matrices of the input and of the output facets, ML,A and
ML,B are the transfer matrices describing the propagation in the
bus waveguide between the coupling facets and the resonator,
whileMr is the transfer matrix of the microring resonator.

The transfer matrices describing the input and the output
facets can be written as [24]:

MF,A =
1

τA

[

1 −irA
irA 1

]

MF,B =
1

τB

[

1 irB
−irB 1

]

(6)

being τA and τB the transmission coefficients of the input/output
facets, while rA and rB are the corresponding reflection
coefficients. These quantities are related by r2A + τ 2A = 1 and
r2B + τ 2B = 1. The matrices MF,A and MF,B have opposite sign
on the anti-diagonal terms because of the opposite interfaces.

The transfer matrices describing the propagation in the bus
waveguides are [24]:

ML,A =

[

eiφA 0

0 e−iφA

]

ML,B =

[

eiφB 0

0 e−iφB

]

(7)

being φA and φB the phases acquired between the input/output
facets and the resonator. In general φj = (βj + iαj)Lj, being
βj = 2πneff,j/λ the propagation constant, αj the absorption
coefficient and Lj the waveguide length.

The transfer matrix of the resonator is given by [25]:

Mr =





t−γ eiφ

1−tγ eiφ
0

0 1−tγ eiφ

t−γ eiφ



 . (8)

Here, t is the transmission coefficient of the bus waveguide-
resonator coupler (related to the coupling coefficient κ by t2 =

1−κ2) and γ is the roundtrip loss coefficient (it relates the power
coupled into the resonator Pi with the power after one complete
roundtrip Po by Po = |γ |2Pi). The coefficient φ is the phase
acquired in a complete roundtrip, and is given by φ = βL, being L
the resonator length and β = 2πneff/λ the propagation constant
in the resonator waveguide. In Equation (8) the backreflection
fields connected to the coupling region and/or to the surface wall
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FIGURE 2 | (A) Sketch of the device described in this work, showing the main parameters of the model. (B) Experimental spectrum of the resonator (dots) and

corresponding fit (solid black lines). On the bottom, part of the fitted spectrum is enlarged. In the inset, the fit parameters are reported.

roughness are neglected (i.e., the off-diagonal elements are equal
to zero). The surface roughness is considered as a simple radiative
loss within the γ coefficient.

By multiplying the matrices, one can derive the system
transfer function T as:

T =

∣

∣

∣

∣

∣

EBout
EAin

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

detM

M2,2

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

M2,2

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

τAτB
1−tγ eiφ

t−γ eiφ
e−i(φA+φB) − rArB

t−γ eiφ

1−tγ eiφ
ei(φA+φB)

∣

∣

∣

∣

∣

∣

2

. (9)

This function can be used to fit the experimental transmission
spectrum. Neglecting the ring resonator (i.e., t = 1) Equation (9)

reduces to the response of a Fabry-Perot cavity: τAτBe
i(φA+φB)

1−rArBei2(φA+φB)
.

Similarly, neglecting the Fabry-Perot induced by the facets (i.e.,
τA = τB = 1, rA = rB = 0, φA = φB = 0) one obtains the

transmission amplitude of a single mode resonator: t−γ eiφ

1−tγ eiφ
. In

this case the transfer function is a set of symmetric Lorentzians
and, depending on t and γ , the different coupling regimes of
the microresonator can be identified: under-coupling (t > γ ),
critical-coupling (t = γ ) and over-coupling (t < γ ).

To simplify this model propagation losses are neglected in
the bus waveguide (i.e., αj = 0), as the bus waveguide is just
2mm long and so the dominant loss term is the reflectance of

the facets. Moreover, being the input/output waveguide cross-
section identical, we introduced r = rA = rB. Last, since the
effective indices of the bus and the resonator waveguide modes
are wavelength dependent, one can use the definition of the group
index to write the propagation constants as [22]:

β(λ) =
2π

λ
neff(λ) =

2π

λ
ng(λ0)+ 2π

∂n

∂λ

∣

∣

∣

∣

λ0

. (10)

Therefore, the propagation constants have a wavelength-
dependent term (related to the group index ng) and a constant
term. Since β(λ) enters in Equation (9) in periodic functions, the
fit can be used to uniquely determine the wavelength-dependent
terms (so ng), but not the constant terms. So, using this
simplified model, the fitting parameters are the bus waveguide
and the resonator group indices (ng,wg and ng,r), the input/output
waveguide reflectance r, the coupler transmission coefficient t
and the roundtrip loss γ .

Figure 2B shows the experimental transmission spectrum of
a microresonator without the p-n junction, divided by colors
in groups of two resonances. Each group is fitted according to
Equation (9), showing the fit result in black. The panel reports the
fit parameters. The fit results show that t < γ , and therefore the
resonator is in the over-coupling regime. The quality factor of all
the resonators analyzed in this work, defined as the ratio between
each resonant wavelength and its full-width at half-maximum, is
in the order of 104. Figure 2B reports also the propagation loss
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FIGURE 3 | (A) Transmission coefficient t as a function of the distance d between the waveguide border and the doped region. The label by “R” refers to a reference

resonator without doped regions. (B) Variation of the loss coefficient L with respect to the reference case. The experimental data are compared with simulations. (C)

Electron and hole distribution inside the waveguide for different d.

coefficient L, related to the loss coefficient γ and to the resonator
length L by:

L = −
1

L
10 log10 |γ |

2. (11)

4.2. The Effect of Doping on the
Microresonator Losses
Figure 3A shows the transmission coefficient t as a function of
the distance d between the waveguide border and the doped
regions extracted from the data with the method described in the
previous section. Each point is the average of 4 measurements
taken on nominally identical resonators. The measurement
labeled by “R” refers to a reference resonator where no doping
was present at the waveguide borders. As expected, t does not
depend on the presence of the junctions, and so the values
measured on resonators with different d are compatible.

This is not the case if one considers the roundtrip loss
coefficient γ or, equivalently, the loss coefficient L. To this
purpose, Figure 3B shows L as a function of d, normalized over
the value assumed by the reference resonator. The figure shows

that L decreases as d increases. This is attributed to the fact that,
when d is smaller, the optical mode overlaps with the doped
region, and so the losses are larger.

Tomake amore quantitative assesment of the effect of d on the
losses, the system is modeled using the Semiconductor Module
of the COMSOL Multiphysics R© software [26]. Some results of
this simulation are shown in Figure 3C, where the electron
and the hole distribution in the waveguide for different d are
reported. Using these maps and Equation (1), the corresponding
carrier-induced variation of the absorption coefficient 1α is
estimated. By inserting1α in theMode Analysis tool of theWave
Optics Module of the COMSOL Multiphysics R© software [26],
the corresponding variation of the loss coefficient L is evaluated.
This simulated value is reported as a function of d in Figure 3B,
reproducing the behavior of the experimental data.

4.3. Modeling the Junction Breakdown
Figure 4A shows the measured I-V curve of the three types of
devices analyzed in this work, referred to d = 200, 500, and 800
nm. They show the typical curve of a diode, with the expected
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FIGURE 4 | (A) Measured I-V curves of three devices analyzed in this work, referred to d = 200, 500, and 800 nm. (B) Simulated maximum field inside the waveguide

as a function of the bias voltage and for the three different d, compared to the breakdown field of silicon (black). (C) Electric field distribution inside the waveguide for

different values of d and for a reverse bias of 20V.

TABLE 1 | Experimental and simulated values of the breakdown voltage Vb for

the different values of d.

d [nm] Experimental Vb [V] Simulated Vb [V]

200 24± 2 24

500 40± 3 37

800 53± 4 47

behavior in both forward and reverse bias. The breakdown
voltage Vb is different for the three structures. As it is also shown
in Table 1, larger Vb values are measured for larger values of d.

Using the same simulation tool described before, the electric
field distribution inside the waveguide has been obtained for
different values of the applied bias. Figure 4C shows this
distribution for the three values of d analyzed in this work and
for a reverse bias of 20V. The figure shows that, as d increases,
the electric field inside the waveguide decreases. To relate this
to the breakdown, Figure 4B reports the maximum field inside
the waveguide Emax as a function of the bias voltage and for the
three different d. Breakdown is reached when Emax approaches
the breakdown field of silicon, which is about 40V/µm [27] and
is reported by the black line in the figure. So, by comparing
the breakdown field value and the results of the simulation, one
can guess the expected voltage which provides breakdown. The
values for the different d are reported in Table 1, showing good
agreement with the experiment.

4.4. The Effect of Bias on Microresonator
Losses
Figure 5A shows the variation of the loss coefficient L as a
function of the applied bias voltage. This factor is evaluated
from the fit of the resonances, and is normalized over the value

measured at zero bias. The loss variation is nonzero only for
d = 200 nm. This loss change can be attributed to a variation
of the carrier concentration inside the waveguide, which causes a
reduction of the optical absorption.

To model this, Figure 5B shows the simulated electron
concentration inside the waveguide in the configuration d =

200 nm for three different reverse bias voltages (0V, 2V and
20V). The simulation shows the bias dependence of the junction
depletion. Clearly, the change felt by the optical mode is larger if
d is small, and this can explain why L is more affected by the bias
for small d.

The carrier concentration map shown in Figure 5B can be
used together with Equation (1) to estimate the loss coefficient
variation 1α, and so to estimate the corresponding variation
of L. The results of the simulations are reported in Figure 5A

as a function of the applied bias. While for d = 500 nm and
d = 800 nm the simulation predicts a small variation which is in
agreement with the experiment, for d = 200 nm the loss variation
predicted by simulations is smaller than the experiment. This is
due to a difference between the nominal d and its actual value,
which is smaller due to the ion implantation process. Specifically,
as we discuss later, a mask shadow effect caused by the angled
implantation justifies a wider-than-expected doped region. To
this purpose, a simulation with a smaller d has been performed.
The dashed line of Figure 5A refers d = 120 nm, and provides a
good agreement with the experiment.

5. FIELD-INDUCED REFRACTIVE INDEX
VARIATION

In section 3 we introduced that the material refractive index
is expected to change due to both plasma-dispersion and
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FIGURE 5 | (A) Experimental (points) and simulated (solid lines) variation of the loss coefficient L as a function of the applied bias voltage for d = 200 nm, d = 500 nm
and d = 800 nm. In the case d = 800 nm the experimental values are not shown for clarity, because they are very similar to those for d = 500 nm. The dotted line refers

to d = 120 nm. (B) Simulated electron concentration inside the waveguide for d = 200 nm and different values of the applied bias voltage.

DC Kerr effect when applying a bias. This refractive index
change causes a shift of the resonance wavelength, as expressed
by Equation (4). To quantify this variation, we used the
same simulation tool described previously to model both the
electron and the hole densities as well as the electric field
distribution inside the waveguide. These quantities are then
used to quantify the refractive index variations due to plasma-
dispersion and Kerr effect according to Equations (2) and (3).
Once that these are known, a mode analysis simulation can
provide the effective refractive index variation 1neff. To this
purpose Figure 6A shows the applied voltage dependence of
the different contributions to 1neff. In the same plot on the
right hand axis, it is reported the resonant wavelength shift
1λ calculated from Equation (4). Both the plasma dispersion
and the DC Kerr effect contributions cause a red-shift of the
resonant wavelength. This simulation refers to the configuration
d = 200 nm.

Figure 6B reports the transmission spectra of the microring
resonator for the configuration d = 200 nm and for three
different values of the applied reverse bias. As expected, we
observe a resonance wavelength shift to the red. Moreover, the
shift is not linear with the applied bias, as predicted by the
simulation. It is worth noting that, in our case, the presence
of the p-n junction induces an increase of the extinction rate.
In fact, the junction boosts the linear losses which means
in our model a decrease of the coefficient γ . Therefore, the
resonator coupled to a bus waveguide moves from an over-
coupling regime toward an under-coupling one. The voltage
dependence of the resonance shift is reported in Figures 6C–E

for the values of d analyzed in this work. The experimental
results (squares) are compared with simulated results (solid
lines). It is observed that 1λ decreases with d for a given
voltage. However, the simulations predict resonance wavelength

variations smaller than the experimental ones. This is due to
the difference between the nominal and actual value of d.
For this purpose, new simulations have been performed aimed
at finding the best d value to reproduce the experimental
data. These simulations are shown as dashed lines. We find
that the actual d is smaller than the nominal one by almost
75 nm for the three devices. This value is the same as the
one reported in section 4.4 on the measured variation of the
absorption coefficient.

To understand this difference, one must consider the details
of the sample fabrication. Specifically, the ion implantation was
performed by using the typical angle θ = 7◦ with respect
to the normal to the sample surface, which allows a precise
definition of the implantation depth. So, the actual d is reduced
by 1d = −h tan θ , where h is the height of the photoresist
used to define the structures. Since in our case h = 650 nm,
1d is about −80 nm, in agreement with the results found from
the experiment.

Interestingly, we observe that the plasma dispersion and the
DC Kerr effect have similar relevance at low bias, while the
DC Kerr effect dominates at high bias. This is important for
electro-optic applications since the DC Kerr effect provides
a faster response than the slow modulation of the plasma
dispersion. Indeed plasma dispersion response time is limited by
the carrier mobility.

The most common material platforms used to induce
electro-optic effects are based on Pockels effect, a χ (2)

process providing a linear electro-optic variation of the
material refractive index with the applied voltage. For this
reason, it is interesting to estimate the effective second

order nonlinearity χ
(2)
eq that would have given the same

electro-optic refractive index variation as the here measured
DC Kerr effect. For the Pockels effect, the index variation
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FIGURE 6 | (A) Simulated effective index variation and corresponding resonance wavelength shift for d = 200 nm considering plasma-dispersion, DC Kerr effect and

both the effects. (B) Transmission spectrum of the resonator with d = 200 nm and for different values of the reverse bias. (C–E) Comparison between the experimental

and the simulated resonance wavelength shift for d = 200 nm, d = 500 nm, and d = 800 nm.

1neff caused by an applied electric field E is related to χ (2)

by [14]:

1neff =
χ (2)Eng

2n20
. (12)

Figure 6A shows that, in the case d = 200 nm, an effective
index variation of about 5× 10−5 is obtained due to DC
Kerr effect at a reverse bias of 23V. In this situation, FEM
simulations show that the average electric field inside the
waveguide is about 20V/µm. By using Equation (12) we estimate

an equivalent χ
(2)
eq of about 16 pm/V. This value is of the same

order of magnitude of that of LN, whose χ (2) is 39 pm/V [28],
and one order of magnitude stronger than the most recent
measurement of Pockels effect in strained-silicon, which is about
1.8 pm/V [16].

6. CONCLUSIONS

In this work we have confirmed that rib silicon waveguides
embedded in lateral p-n junction can be used to induce electro-
optic effects [18]. Making use of microring resonators, we
measured the effect that the doping and the applied bias have

on the refractive index and loss coefficient of the waveguides.
We used FEM simulations to reproduce the experimental data
and to evidence the contributions of both plasma-dispersion
and DC Kerr effect. We also quantified the strength of the

equivalent χ
(2)
eq that would have provided the same electro-

optic effect as the observed DC Kerr effects, finding a value
of about 16 pm/V. This large value is comparable to that of
LN and one order of magnitude stronger than the most recent
measurement of Pockels effect in strained-silicon. An efficient
engineering of the waveguide cross-section could provide even
larger electro-optic coefficients, which could benefit from the
use of smaller and thinner waveguides where the electric field
intensity is larger.
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