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Scene change detection plays an important role in a number of video applications, including video indexing, semantic features
extraction, and, in general, pre- and post-processing operations. This paper deals with the design and performance evaluation of a
dynamic scene change detector optimized for H.264/AVC encoded video sequences. The detector is based on a dynamic threshold
that adaptively tracks different features of the video sequence, to increase the whole scheme accuracy in correctly locating true scene
changes. The solution has been tested on suitable video sequences resembling real-world videos thanks to a number of different
motion features, and has provided good performance without requiring an increase in decoder complexity. This is a valuable issue,
considering the possible application of the proposed algorithm in post-processing operations, such as error concealment for video

decoding in typical error prone video transmission environments, such as wireless networks.

1. Introduction

Scene change detection is an issue easy to solve for humans,
but it becomes really complicated when it has to be
performed automatically by a device, which usually requires
complex algorithms and computations, involving a huge
amount of operations. The process of scene change detection
becomes more and more complex when other constraints
and specific limitations, due to the peculiar environment of
application, may be present. A scene in a movie, and, in
general, in a video sequence, can be defined as a succession
of individual shots semantically related, where a shot is
intended as an uninterrupted segment of the video sequence,
with static frames or continuous camera motion.

In the field of video processing, scene change detection
can be applied either in preprocessing and postprocessing
operations, according to the purposes that the detection
phase has to achieve, and with different features and
performance. As an example, in H.264/AVC video cod-
ing applications, scene change detection can be used in
preprocessing as a decisional algorithm, in order to force
Intraframe encoding (I) instead of temporal prediction (P),

when a scene change occurs, and to confirm predicted or bi-
predicted (B) coding for the remaining frames. As discussed
in [1], a dynamic threshold model for real time scene change
detection among consecutive frames may serve as a criterion
for the selection of the compression method, as well as for the
temporal prediction; it may also help to optimize rate control
mechanisms at the encoder.

In lossy video transmission environments, the effects
of the errors on the video presentation quality depend on
the coding scheme and the possible error resilience strategy
adopted at the encoder, on the network congestion status,
and on the error concealment scheme eventually present
at the decoder. In order to improve error resilience of the
transmitted video signal, and stop error propagation during
the decoding phase, Intra-picture refresh is usually adopted
at the encoder, even if it is an expensive process, in terms of
bit rate, as the temporal correlation among frames may not
be exploited. In such conditions, a predictive picture refresh
based on scene context reference picture, selected through
a scene change detector, may ensure bit rate savings, while
optimizing the choice of the refresh frames [2]. Scene cut
detection may be also exploited to improve video coding,



attention based adaptive bit allocation, as presented in [3].
Scene cut detection is applied to extract frames in the
vicinities of abrupt scene changes; visual saliency analysis
on those frames and a visual attention-based adaptive bit
allocation scheme are used to assign more bits to visually
salient blocks, and fewer bits to visually less important
blocks, thus improving the efficiency of the encoding process
and the final quality of the compressed video sequence.

As previously introduced, besides being adopted in
preprocessing operations, scene change detection may be
usefully exploited in video postprocessing algorithms, such
as in the context of error concealment of decoded video
sequences affected by errors and losses. It is reasonable to
expect that scene change detection at the decoder will have
to face different conditions, with respect to scene change
detection applied at the encoder. As an example, the input
video sequence for a decoder could be the result of a video
editing process, originating an encoded video stream with
a lot of independent scene changes, as frequently happens
in advertising videos. Moreover, the detector has to perform
decisions and computations based on the available data, that
may be missing or erroneous. H.264/AVC compressed video
information is very sensitive to channel errors appearing
during transmission. The adoption of Variable Length Cod-
ing (VLC) at the encoder side, together with more complex
techniques like Motion Compensation, can lead to dramatic
error propagation effects during decoding. Additionally,
lost or damaged data cannot be retransmitted in real-time
applications. As already discussed, error resilience techniques
for compression, enhancing the robustness of the bitstream
at the source coder, can be employed. They basically rely
on adding extra parameters or more synchronization points
at the encoder; however, this solution requires to change
the encoding scheme and in some situations this is not
possible, or not compatible with existing systems. Moreover,
even if the bitstream is resilient to errors, errors may still
occur. Hence, error concealment solutions at the decoder
are usually preferred in most practical applications. When
residual bit errors remain, error concealment approaches
can conceal the error blocks by exploiting spatial and/or
temporal correlation [4] of the correctly received data. Scene
change detection algorithms may improve the performance
of error concealment solutions, by allowing the selection of
the proper spatial or temporal strategy. At the same time,
the integration of a scene change detector in a real time
concealment solution at the decoder poses strict constraints
on complexity and computational time requirements. In
a real world video, it is reasonable to expect that errors
occurring at scene changes are less frequent than errors
occurring in other pictures of the video sequence, basically
because the number of scene change events is necessarily
smaller than the total amount of frames in the sequence.
However, besides being catastrophic for the decoding mech-
anism, errors at scene cuts can be really annoying to the
viewer: the temporal correlation among two frames in a
scene change is so insignificant that Intererror concealment
also generates very poor results, and macroblocks that do
not fit with the content of a frame can appear on the scene,
disturbing the viewer’s experience. As a consequence, errors
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at scene cuts should be avoided or compensated somehow,
but conventional temporal error concealment strategies are
inadequate for this case. Therefore, a suited scene change
detector designed for real-time decoding of video signals can
contribute to mitigate the effects of data losses at scene cuts,
and to improve the final quality of the video sequence.

Several solutions may be implemented to provide scene
change detection, differentiated on the basis of the target
application, and the corresponding computational require-
ments. In the context of video storage and retrieval, it
is reasonable to assume the possibility of performing an
offline processing of the video sequence, that may allow for
increased complexity and accuracy; in real time environ-
ments, strict requirements on available time and computing
resources must be satisfied, thus determining the need for
low-complexity solutions, anyway able to provide acceptable
performance.

The remainder of this paper is structured as follows: a
review of some previous works on real time scene change
detection algorithms is provided in Section 2. The proposed
detector is presented in Section 3, and its performance
is discussed, by means of experimental evaluations, in
Section 4. Finally, conclusions are given in Section 5.

2. Previous Work

Several solutions for scene change detection have been
proposed in the literature, to be applied either at the video
encoder or at the decoder.

Sastre et al. presented a low-complexity shot detection
method for real time and low-bit rate video coding, in [5].
As clearly stated by the authors, the method is basically aimed
at compression efficiency more than frame indexing or other
purposes. The algorithm is based on Intra/Inter decision for
each macroblock, during the encoding process, and on the
use of two thresholds, a fixed one and an adaptive one. If
the algorithm detects the first frame of a scene change, based
on the fact that the number of Intra macroblocks used when
encoding the frame as a P-frame overcomes the thresholds,
the algorithm stops the encoding as a P-frame, and forces the
Intraframe encoding. Shot changes represent the best choice
to insert key frames in the video sequence: the next frames of
the new shot may be then encoded via motion compensation
and prediction, based on the first I-frame. Inserting the key
frames in suited positions of the bitstream allows to obtain
the best quality in the decoded stream, and to optimize the
output bit rate.

The proposed algorithm relies on two basic thresholds
expressed as a percentage of the total number of macroblocks
in a coded picture. The fixed threshold is set to a high
value, to ensure that any frame in which the number of
Intra macroblocks (I-MB) exceeds the threshold is coded
as an I-frame, independently of the rest of the algorithm’s
conditions. The second, adaptive threshold depends on the
average number of I-MBs of all the pictures encoded since
the last I-frame, and forces a frame to be coded as an I-
frame if the number of I-MBs in it exceeds the average
number of intra MBs of the previous frames, in a given
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quantity. Several ideas implemented within this algorithm
have been exploited also by the one proposed in this paper,
that is described in the next Section. First of all, we use
two different thresholds, a fixed one, expressed in terms
of absolute number of macroblocks, and an adaptive one,
used to sharpen the shot detection. A limit is also placed
on the adaptive threshold, below the fixed one, to prevent
a frame from being encoded as a P-frame when almost all
of its macroblocks are Intracoded. A smoothing algorithm
with memory is used to determine the average of Intra
macroblocks of the previous frames within the shot, in order
to avoid tracking the number of Intra macroblocks too fast,
and to provide a stable value for the desired average. Finally,
a span parameter is used to avoid shot detections too close
in time: the span establishes a period of time after a shot
detection, during which only the fixed threshold is active,
and the adaptive threshold cannot cause the insertion of a
key frame in the bitstream.

In [6], a pixel based-algorithm for abrupt scene change
detection is presented. The algorithm requires a two-
stage processing of the frames, before passing them to the
H.264/AVC encoder. In the first stage, subsequent frames
are tested against a dissimilarity metric, the Mean Absolute
Frame Difference (MAFD):
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which measures the degree of dissimilarity at every frame
transition, with M and N being the width and height of the
frames, f,(i, j) the pixel intensity at position (i, j) of the nth
frame, and f,-;(i, j) the pixel intensity at the same position
of frame n — 1. Considering that most of the frames in a
video sequence do not belong to scene changes, a quick frame
skimming can be performed by such a metric. As a matter of
fact, abrupt scene transitions produce a peak value in MAFD
within a period of time, in contrast with normal motion of
objects and camera in the scene, that usually causes a large
MAFD signal over a period of time. In the second stage,
the set of frames not previously discarded are normalized
via a histogram equalization process, through a progressive
refinement based on MAFD and other three metrics, applied
on the normalized pixel values. The algorithm does not
perform motion estimation but it only works on frame
pixel values, thus avoiding high-computational costs. For this
reason, it may be suitable for real-time video segmentation
applications, and rate control. Experimental tests discussed
by the authors show that the algorithm is efficient and robust
in presence of abrupt scene changes, whereas it shows some
limitations when gradual changes (such as dissolve and fade)
or luminance variations (flickers) affect the video sequence.
A combination of different metrics should be applied in
those cases, in order to improve and refine the algorithm’s
detection capabilities.

A prominent reference for the scene change detector
proposed in this paper is the scheme presented in [1], by
Dimou et al.. The fundamental result is the definition of
a Dynamic Threshold Model (DTM) that can efficiently
trace scene changes, based on the use of an adaptive and

dynamic threshold which reacts to the sequence features,
and does not need to be calculated before the detection,
and after the whole sequence is obtained. The method is
based on the extraction of the Sum of Absolute Differences
(SAD) between consecutive frames from the H.264 codec,
that is then used to select the compression method and
the temporal prediction to apply. The SAD defines a
random variable, whose local statistical properties, such
as mean value and standard deviation, are used to define
a continuously updating automated threshold. Statistical
properties are extracted over a sliding window, whose size
is defined in terms of the number of frames over which the
random variable is observed. The algorithm also applies a
function-based lowering of the detection threshold, in order
to avoid false detections immediately after a scene change.
As a matter of fact, each time a scene change is detected, the
SAD value of this frame is assigned to the threshold; for the
following K frames, the threshold value is set according to an
exponentially decaying law, with a suitably chosen parameter
to control the speed of decaying.

Scene changes generate high SAD values that make them
detectable. Given the classical SAD definition for the n-th
frame,
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a random variable X; is defined, which models the SAD value
in frame i. A sliding window of length K, with respect to the
nth frame, is defined as the subset of frames whose index
lies in [n — (K + 1),n — 1]. Over the sliding window, the
empirical mean value m, and the standard deviation o, of
X; are computed as follows:

n—1
= S X 3)
i=n—K-1
Oy = ; . ni:l (Xz - mn)2 . (4)
K-1 i=n—K-1

Both (3) and (4), together with X,,_;, are used to define
threshold T'(n) as follows:

Tn)=a-X, 1+b-m,+c- oy, (5)

where n denotes the current frame, and g4, b,,and c are con-
stant coefficients. The algorithm’s performance is strongly
related to the proper selection of the values assigned to
constants a, b, and c¢: not only may they determine better
or worse detection rates, but they must also be tailored to
the application context, which means they will have different
values if used at the encoding or decoding stage. Constant
a rules the way threshold T'(n) follows the evolution of the
random variable X;: it is suggested to keep the value of a
small, as many factors different from true scene changes
can cause the rapid variation of Xj, and could consequently
affect the correct detection. Constant b, on its turn, gives
different weight to the average SAD computed over the



sliding window: if b takes high values, the threshold becomes
more rigid and does not approach the X; sequence. This
avoids wrong change detection in presence of intense motion
scenes, but, on the other hand, can also cause some missed
detections, in presence of difficult scene changes featuring
low SAD values. As o, is the standard deviation of variable X,
high values of constant ¢ prevent detecting intense motion
events as scene changes. From this brief discussion, it is
evident that the selection of g, b, and c is a hot point, and
only a good tradeoff according to the target application can
ensure proper functioning of the whole algorithm. Once a
scene change has been detected in the pth frame, threshold
T(n) assumes the value of the SAD computed over the last
frame. In order to avoid false detections immediately after a
scene change, the threshold to use for the successive frames is
forced to decay exponentially, according to the following law:

T,(n) = X, - exp*""=P), (6)

where parameter s controls the speed of decaying. In
experimental tests reported by the authors, constants a, b,
and ¢ were empirically chosen; the sliding window size was
set to 20 frames, and the decaying parameter equal to 0.02.
Remarkable improvements can be obtained by the algorithm,
when compared to a scene change detector based on an
optimal fixed threshold, chosen after having computed the
SAD over all the frames, and manually identified the true
scene changes.

3. The Proposed Scene Change
Detection Algorithm

The object of this paper is to present a robust scene
change detector, based on an improved version of the DTM
discussed in the previous Section, but aimed at being applied
in the different context of postprocessing applications, as in
the case of an error concealment framework for H.264/AVC
decoders. As a consequence, besides the strict requirements
on low-complexity and real-time capability, the algorithm
should be able to detect incorrelation between consecutive
frames, that is, scene changes, even when applied to a
corrupted bitstream, where the information needed to reveal
a scene cut may be missing or not complete, due to errors and
losses happened during video transmission. Besides that, the
algorithm cannot rely on information about future frames
to locate scene change events (as, on the contrary, it may
happen in applications addressing the encoder side), and,
considering the target application context of concealment at
the decoder, it is important to design a detector able to locate
changes affecting parts of the frame content, and not only the
whole scene.

In encoded video streams of the YUV color space, the
SAD computation may be performed on each single color
component. However, considering a YUV 4:2:0 stream,
it is obvious that the luminance component Y carries the
greatest amount of information, so that SAD computation
can be executed on the Y component only. Besides that, the
luminace component is the one the human visual system
is most sensitive to. In the proposed detector, a random
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variable X; is defined as the average number of pixels per
MB for which the SAD value is greater than 30. It is
important to note that, being the random variable defined
over frames affected by errors and losses, the average number
of pixels is computed with respect to all the correctly
received MBs shared (i.e. co-located) between consecutive
frames. The threshold value of 30 has been set empirically,
by observing that in case of a scene change, it is highly
probable that colocated pixels have an absolute difference
value greater than the threshold chosen. The dissimilarity
measure provided by X; seems more reasonable than a pure
SAD metric in a context of possibly missing information;
however, misbehaviours may still be present and are to be
faced by proper adjustments.

As a first condition to consider, given the fact that the
dissimilarity metric adopted is defined on the basis of the
Y component only, it is clear that it will show a marked
sensitivity to rapid variations in the luminance content of the
scene, even if not due to a real scene cut. Looking at Figure 1,
flashing lights produce a rapid increase in the luminance level
of consecutive frames, even if no scene change has happened
at all. In these situations, the metric previously defined could
reveal a false scene cut, so that a proper correcting action is
to be applied.

In order to avoid false scene cut detection, during the
decoding phase, and before computing the dissimilarity
metric value, a second parameter is computed, named AY,
defined as the difference between the average value of
the MB luminance of two consecutive frames. The MBs
included in the computation may be not the co-located ones
in the two frames, given the possible losses during video
signal transmission. The positive or negative AY value is
subtracted to the dissimilarity value obtained by the SAD-
based computation, to get the final metric. The curves
reported in Figure 2 show how this simple modification may
improve the reliability of the dissimilarity metric: peaks in
the average Y value per MB curve ((Y)) correspond to
flashing light events in the video sequence and are obviously
revealed by associated couples of peaks in the value assumed
by X; (there are 2 peaks in X; for each peak in (Y), as
a flashing light event affects two consecutive frames). The
modified metric curve maintains the correct location of peak
couples, but avoids a false scene cut detection, by properly
lowering the resulting dissimilarity measure, with respect to
the unmodified metric curve.

A second modification to the original scene cut detector
inspiring this work is motivated by the target application
context of error concealment solutions at the decoder. In
view of concealment operations possibly performed on the
same frames analyzed by the scene cut detector, it may be
useful to collect, through the application of the detector,
information related not only to global changes affecting the
whole frames, but also referred to parts of the frame, on
a local scale. This granular information may be possibly
exploited to identify parts of the frame where Intraconceal-
ment could be more suitable than Inter, because of local
changes, even if the frame under processing is temporally
related to the previous one, and so could claim for a global
Inter concealment. An example of this possible situation is
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FIGURE 1: Luminance variation between consecutive frames due to flashing lights, with no scene change event.
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FIGURE 2: Variations of the average Y per MB, unmodified

dissimilarity metric, and modified dissimilarity metric by AY
parameter, for a test video sequence, due to flashing light events.

shown in Figure 3: comparing the two consecutive frames, it
is clear that a scene cut does not take place, however, part
of the background changes substantially. If several MBs get
lost in the background area evidenced on the figure, an Inter
concealment algorithm based on temporal correlation would
fail in properly restoring the scene, whereas an Intra, spatial-
based concealment, could be effective. Availability of such an
information about local changes in the frame could enable an
adaptive concealment strategy, based on differentiating the
recovery technique on a group-of-MBs level.

In order to collect local scale information about the frame
content, each frame has been virtually divided into macro
areas, the number of which depends on the frame format;
for CIF frames, 20 areas are located. By this way, each area
includes 4 X 4 MBs, with the exception of the edge areas
where the number of MBs may be 4 X 5 or 5 X 5, as shown in
Figure 4. By such a virtual chessboard pattern, it is possible
to track useful local information about the frame, even if not
on a pixel basis, which would require unacceptable storage
resources. At the decoder, a memory buffer is defined, whose
elements are indexed according with the label associated to

each macro area; each buffer element, in its turn, stores the
average dissimilarity value evaluated over the specific macro
area identified by the element index.

Besides being useful in the case of subsequent conceal-
ment operations, the virtual frame partition may help in
correctly revealing a true scene cut, with respect to variations
in the content which could affect most of the frame, without
anyway representing a true scene change. As a matter of
fact, if a true scene cut takes place, evident variations in the
dissimilarity value will affect all the macro areas, and not only
a limited subset of them. According to such a reasoning, a
further decision step is included in the detector: once having
computed the average and median dissimilarity values over
the virtual partition buffer, if they both result in greater than
an empirically set value of 100, the dissimilarity measure is
increased by 20%; otherwise, if both the values are lower than
80, the dissimilarity metric Xj is reduced by the same percent
value. Figure 5 highlights the effects of such a modification
on the behaviour of the dissimilarity metric X;: possible
true scene cuts are emphasized by the modified metric, thus
permitting their correct detection, whereas possible false cuts
are minimized, to reduce the probability of an erroneous
detection.

Information collected by the virtual frame partition
process, as said before, may be exploited to analyze the local
dynamic evolution of a frame. As shown in Figure 6(b), the
average dissimilarity values for each macro area denote a
change in the central part of the frame, which, however, is not
due to a true scene cut, as many of the edge areas show a zero
value. In the specific case reported, the algorithm provides an
average value of 30.2, and a median value of 17: consequently,
by lowering the dissimilarity value by a 20% amount, the risk
of false cut detection is avoided.

The last modification added to the dynamic detector is
conceived to face the case of high-motion scenes, as, for
example, in the case of panning effects of the video camera.
These situations show a typical effect over the set of frames
included in the observation window (i.e., the sliding window
cited in previous section), which spreads over 5 frames in
the proposed scheme: given the threshold definition in (5),
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FIGURE 5: Performance of unmodified and modified dissimilarity
metric exploiting local scale information provided by virtual frame
partition.

high values of the parameter m, and low values of o, are
jointly observed. In such situations, the probability of a false
scene cut detection may be very high; consequently, the
dissimilarity value is forced to decrease by a 20% amount,
when m, > 80 and 0, < 10. These specific thresholds have

been derived by extensive empirical tests over different video
sequences. Figure 7 shows the behaviour of the modified
dissimilarity metric in presence of a high-motion video
sequence. It is important to notice that the motion degree
of a video sequence, besides being an intrinsic property of
the sequence itself, is also influenced by the frame rate set
at the encoder. If a YUV sequence encoded at 25 + 30 fps
is decimated by a coefficient of 2 or 3, the final effect is to
increase the motion degree of the decimated video sequence;
this is an issue to take into account, as frame decimation is
a typical operation performed on video sequences in order
to reduce their bit rate and allow transmissions over limited
bandwidth channels (i.e., wireless systems).

Further tuning operations in the detection algorithm
involve the a, b, and ¢ coefficients defining the detection
threshold (5). Imposing an adaptive and dynamic variation
of these coefficients adds flexibility to the detection thresh-
old, thus maintaining its effectiveness for a correct scene
cut detection. Variations applied on coefficients a, b, and c,
and extracted by empirical observations over many different
video sequences are summarized in Table 1. Besides that, in
order to avoid false detections, as soon as the dissimilarity
value obtained for a true scene cut goes out from the sliding
window, a correcting action, named lowering condition, is
applied, by comparing the value of X; to the value given by
(my + 0, + Xi/2) and taking the lowest one, as the new value
for scene cut detection.

Figure 8 shows the behaviour of the dissimilarity measure
X;, and of the threshold T(n) used for scene cut detection,
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Figure 8: Threshold T(n) and dissimilarity metric X; variations
over a whole 12.5 fps video sequence with no losses.

over a test video sequence of 12.5 fps frame rate, with no
losses. The dynamics obtained by modifying the detection
algorithm, according to the solutions described above, allow
to adaptively change the detection threshold in order to
increase the correct detection rate and reduce the false or
missed detections.

Before moving to the experimental evaluation of the
proposed detector, as discussed in the next Section, Figure 9
summarizes the detector main components and the data
processing flow in a block diagram fashion.

4. Experimental Evaluation and Results

As a preliminary evaluation, the proposed algorithm has
been compared to other scene cut detection solutions, by
the application of the MSU Video Quality Measurement
Tool [7], which is able to implement four different similarity
metrics, defined as follows:

(1) Pixel-Level Comparison: the similarity measure of two
frames is the SAD computed over the intensity values
of corresponding pixels;

(2) Global Histogram: the histogram is obtained by
counting the number of pixels in the frame, with
specified luminance level. The difference between two
histograms is then determined by calculating the SAD
over the pixels having the same luminance level;

(3) Block-Based Histogram: each frame is divided into
16 x 16 pixels blocks. For each block, a luminance
distribution histogram is constructed, the similarity
measure for each block is obtained, and the average
value of these measures is accepted as the frame
similarity measure as the frame similarity measure;

(4) Motion-Based Similarity Measure: a Motion Estima-
tion algorithm with block size 16 x 16 pixels is applied
on adjacent frames. The average value of the Motion
Vector errors is accepted as the similarity value.

The MSU tool has been applied offline, and comparisons
with the proposed detector were performed on a 12.5 fps
CIF video sequence in YUV format, not affected by losses,
showing 38 true scene changes located by visual inspection.
The test video sequence has been generated by composition
of 29 subsequences collected from the Video Quality Expert
Group repository, in order to include as many different
effects as possible, such has low and high motion, panning,
zooming, light variations, scene changes, and so on.

Results presented in Table 2 confirm the effectiveness of
the proposed detector: besides being able to provide a local-
scale information about the sequence dynamics, which is not
provided by the MSU software tool, the proposed detector
has been designed to process sequences affected by losses, as
reported in the following discussion.

In order to evaluate the performance of the proposed
scene cut detection algorithm in presence of losses, tests
have been executed on H.264/AVC encoded video sequences,
encapsulated according to the Real Time Protocol (RTP)
packet format. Before applying the H.264/AVC reference
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FIGURE 9: The scene change detector main components and processing flow.
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FIGURE 10: False scene change detection caused by lost MBs in the 12.5 fps sequence, for a 4% packet loss rate.

decoder properly modified to include the detector, H.264
encoded bitstreams have been subjected to a packet erasure
process, in such a way as to simulate different packet loss
rates, of 1%, 2%, 4%, and 10%, which may be considered
representative of realistic environments, such as video trans-
mission over packet-based wireless networks. For each packet
loss rate value, 5 simulations over the same video bitstream
have been executed, and the average result was considered,
in order to account for different error patterns randomly

generated. Simulations have been performed over sequences
encoded at 25fps, and over their decimated versions at
12.5 fps, in order to test the detector behaviour with respect
to frame rate. Other main encoder parameters have been set
as follows: the selected H.264 profile is Baseline, with a CIF,
YUV 4:2:0 format, QPISlice = 28 and QPPSlice = 28.

The detector performance is defined with respect to
two parameters, namely, the Recall (Re) and Precision (Pr)
rates, that, in their turn, depend on the number of fake
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TaBLE 2: Performance comparison of the proposed detector and
four different detection algorithms implemented by the MSU
software tool, for a 12.5 fps CIF sequence with no losses.

Detection Algorithm no. Correct Detections no. False Detections

Proposed detector 38 0
MSU - 1 38 5
MSU -2 37 13
MSU -3 38

MSU - 4 38 3

TaBLE 3: Recall and Precision average performance of the detector,
for the same video sequence at 25 and 12.5 fps, and different packet
loss rates.

Packet Loss Rate 25fps 12:5fps
Recall Precision Recall Precision

No loss 1 1 1 1

1% 1 1 0.994 0.994

2% 0.994 1 0.976 1

4% 0.988 1 0.964 0.988

10% 0.982 0.994 0.952 0.966

detections (FD), the number of missed detections (MD), and
the number of correct detections (CD) over a given sequence,
as follows:

Re— D

" CD+MD’
(7)

pro_ CD

~ CD+FD’

The test sequence adopted shows 38 true scene changes,
revealed through visual inspection. Table 3 reports the Recall
and Precision performance of the detector, for the same
sequence at 25 fps and 12.5 fps, and for different packet loss
rates; the values in the Table refer to average performance
evaluated over 5 decoding iterations for each packet loss rate.

Results show a very satisfactory behaviour of the pro-
posed detector, either at 25 and 12.5fps, even if with a
very small degradation in the latter case, with a Recall and
a Precision figure always greater than 0.95. As reasonable
and expected, performances degrade as the packet loss rate
increases, according to the frame areas affected by data losses
that may cause a false detection, or a missed one. Figure 10
shows a peculiar case for the 12.5 fps sequence at a 4%
packet loss rate: missing MBs in the frame (represented as
green MBs), due to packet losses, cause a variation in the
dissimilarity metric which determines a false scene change
detection. If losses do not occur, the detector correctly does
not reveal any scene change, despite the evident variation of
the frame in its bottom areas.

5. Conclusion

This paper presented an optimized scene change detector for
H.264/AVC video sequences, based on a dynamic threshold
model properly designed to be applied at the decoder

side, even in presence of losses and errors in the received
bitstreams. On the contrary, most of the detection algorithms
presented in the previous literature are conceived for appli-
cation at the encoder side, and cannot deal with data losses
in the video bitstreams. The proposed detector, as discussed
in the paper, besides performing better than the most
popular detection solutions over error-free video sequences,
also shows remarkable results when dealing with missing
information. Given its effectiveness and joining its low-
complexity and limited resource requirements, the proposed
detector could be effectively included in error concealment
strategies applied at the decoder, in order to improve the
final video quality delivered to the user and compensate for
quality degradation due to error-prone transmissions.
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