
Self-Protection Mechanisms for Web Applications
A Case Study

Claudia Raibulet, Alberto Leporati and Andrea Metelli
Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, Milan, Italy

Keywords: Self-protection, Security, Adaptive Systems, Home Banking Case Study.

Abstract: Self-protection mechanisms aim to improve security of software systems at runtime. They are able to
automatically prevent and/or react to security threats by observing the state of a system and its execution
environment, by reasoning on the observed state, and by applying enhanced security strategies appropriate
for the current threat. Self-protection mechanisms complement traditional security solutions which are
mostly static and focus on the boundaries of a system, missing in this way the overall picture of a system's
security. This paper presents several self-protection mechanisms which have been developed in the context
of a case study concerning a home banking system. Essentially, the mechanisms described in this paper aim
to improve the security of the system in the following two scenarios: users' login and bank operations.
Furthermore, the proposed self-protection mechanisms are presented through the taxonomy proposed in
(Yuan, 2014).

1 INTRODUCTION

Many modern software systems are delivered in the
form of Web applications, due to the many
advantages of such a solution in terms of using,
updating, and maintaining the applications. Also
some applications for mobile devices sometimes use
the so called Web views to connect to a Web site
and show relevant information to the user, thus
essentially behaving like a Web browser. It is thus
clear that ensuring a trusted and secure operation of
Web applications is of primary importance, and it is
even more relevant for Web applications dealing
with users' identities or with their money, such as a
home banking application.

Traditional security solutions (Anderson, 2008;
Peeger, 2006; Stallings, 2013) are mostly static, and
protect the system at its boundaries, usually by
means of appliances operating at the network level,
comprising firewalls, intrusion detection systems,
and multi-factor authentication servers. However,
these solutions cannot observe the behavior of the
application, and thus fail to recognize attacks
coming, for example, from attackers that succeed to
impersonate legitimate users.

Self-protecting software systems are a class of
autonomic systems capable of detecting and
mitigating security threats at runtime (Schmerl,

2014; Yuan, 2014; Yuan, 2013). They are able to
prevent and/or react to security threats by observing
the state of a system and its execution environment,
by reasoning on the observed state, and by applying
enhanced security strategies appropriate for the
current threat. All these steps are performed
automatically, without human intervention. Self-
protection mechanisms complement the traditional
security solutions which operate at the network
level, thus allowing to obtain a global protection of
the software system.

In this paper we present several self-protection
mechanisms which have been developed in the
context of a case study concerning a home banking
system, named UNIBANK. In particular, the proposed
mechanisms aim to improve the security of the
system during the access (login) of users to the
application, and the execution of bank operations
(by authenticated users) involving the movement of
money to or from bank accounts.

The proposed self-protection solution follows the
MAPE-K (Monitor, Analyze, Plan, Execute,
Knowledge) control feedback loop (Cheng, 2009; de
Lemos, 2013), and it is composed of three main
parts: sensors (called Monitors), which observe the
behavior of the application and of its environment,
an analysis and planning module, which identifies
security issues and decides what security strategies

Raibulet, C., Leporati, A. and Metelli, A.
Self-Protection Mechanisms for Web Applications - A Case Study.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 181-188
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

181

to apply for the requested operation, and actuators
(coordinated by an Executor), which activate or
deactivate the security countermeasures as needed
and indicated by the analysis and planning module.

We tried to make our solution as general as
possible, so that it can be applied to other
application domains without modifications. Indeed,
the proposed solution can be applied not only to new
Web applications but also to already existing ones,
provided that some mechanisms are implemented to
allow the self-protection system observe the events
occurred and the operations performed at both the
application and the network level. Writing all
relevant events and operations on log files should
suffice; such files are then read in a continuous way
by the self-protection mechanisms. From the
architectural point of view, the Web application to
which the self-protection mechanisms is applied
should be written in a modular way, so that each
security countermeasure can be activated or
deactivated at runtime.

The remainder of this paper is structured as
follows. Section 2 introduces the architecture of our
solution and the main self-protection mechanisms.
Section 3 illustrates two of the self-protection
security scenarios implemented in our case study.
Section 4 presents the proposed self-protection
mechanisms in the context of the taxonomy
described in (Yuan, 2014; Yuan, 2012). Conclusions
and directions for future work are given in Section 5.

2 OUR SOLUTION

Fig. 1 provides a coarse grain view of the system's
architecture, and shows how the self-protection
mechanisms interface with the rest of the system.
We assume that the Web application has a client-
server architecture, and that it can be accessed
remotely through a Web browser. There are two
main locations where the self-protection
mechanisms may be exploited: (1) outside the
application, avoiding intruders to access it, through
firewall/network level self-protection, and (2) inside
the application, after an intruder managed to access
as an authorized user, through application-level self-
protection mechanisms.

2.1 MAPE-K Control Feedback Loop

The proposed solution is based on the MAPE-K
control feedback loop (Cheng, 2009; de Lemos,
2013), which is composed of five elements:
• M - Monitor, which gathers information from

Figure 1: The Overall Architecture of our Solution.

the software system and its execution
environment (i.e., the network);

• A - Analyzer, which examines the information
gathered by the Monitor and identifies if
variations relevant for self-protection occurred;

• P - Planner, which establishes which changes
should be made in the system to address the
variations discovered by the Analyzer; it
identifies the set of operations, i.e., the
strategy, to be applied in the system;

• E - Executor, which applies the changes
identified by the Planner in the system (either
in the application or in the firewall
configuration, as shown in Fig. 1);

• K - Knowledge Base, which contains
information relevant for self-protection such as
filtered data coming from the Monitors,
statistical information, and self-protection
solutions adopted in previous cases.

Our solution considers two Monitors for gathering
information, one for the network (whose events are
observed by the "Firewall" in Fig. 1) and one for the
application (the "Application" in Fig. 1). This choice
has been made due to the different nature of the
observed data in the two cases, and to the different
mechanisms required to access them and to distill
the meaningful information.

The Analyzer and Planner work together closely
and need to rapidly exchange security-related
information; hence they can be merged together, as
shown in Fig. 1, to increase the overall performance
of the self-protection system. They implement the

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

182

intelligent behavior of the self-protection solution.
The Executor is in charge of applying the self-

protection strategies concerning both the firewall
and the application.

The Knowledge Base contains distilled
information, concerning both the network and the
application. The Analyzer and Planner module
exploits both types of information when identifying
the variations and the most appropriate self-
protection strategy to be applied. This is due to the
fact that the self-protection process exploits both
types of information to improve the security of the
system, as shown in Section 3 through examples.

2.2 Quality Attributes of our Solution

Fig. 1 shows that the application (the home banking
system, in this case study) is separate from the self-
protection mechanisms. This leads to several
advantages: first, the separation of concerns
principle is met because the business logic is
independent of the self-protection logic; second,
several aspects of our solution are reusable. The
design knowledge can be reused in other case
studies from different application domains. Further,
the solution may be applied either to a new or to an
existing Web application, provided that it can
communicate in real time (for example, through a
log file) to the application Monitor all the events and
the application-related operations that occur, and
that the security mechanisms already embedded in
the application are divided into modules, each of
which can be either activated or deactivated at
runtime. A third advantage of our solution is that the
modularity of the system is insured. Fourth, the
maintainability of the system is easier to perform, as
it is easier to identify whether a problem occurred in
the business logic or in the self-protection part.

2.3 Risk Levels

Our solution considers that one of three qualitative
levels of risk may be associated to each user as well
as to the overall system: LOW, MEDIUM, and HIGH. A
LOW level of risk indicates that a basic self-
protection strategy suffices: for example, it is safe
enough to close and lock the door when a person is
at home. A MEDIUM level of risk indicates that
additional self-protection strategies are needed: for
example, a person may use the external alarm
system in addition to the closed and locked door
when at home. A HIGH level of risk indicates that
exceptional self-protection strategies should be
adopted: for example, use an alarm system directly

connected to a security company when at home, or
hire a guard.

In our solution each user, as well as the system,
has an associated risk level. The final risk level
associated to a given functionality delivered by the
system is computed from the risk level of the user
requiring such functionality and the current risk
level of the entire system. For example, the overall
risk level of a home is given by its owner risk level
and by the risk level of its building/neighborhood/
city/country.

Table 1 shows an example of risk levels. The
user Max Fox has associated a LOW risk level, while
John Smith has a HIGH risk level. The current risk
level of the system, called ALL in the table, is
MEDIUM. In our current implementation, we have
decided to compute the resulting risk level as the
maximum among the user and the system risk levels.
Based on this information, Fox's risk level for the
current bank operations is max{Max Fox's risk level;
ALL risk level} = MEDIUM, whereas the risk level of
the operations performed by John Smith is
max{John Smith's risk level; ALL risk level} = HIGH.

Table 1: Examples of risk levels for the system (User
Name: ALL) and for users Max Fox and John Smith.

2.4 Security Map

The proposed solution uses a Security Map, which
indicates the security information required for each
risk level and for each functionality offered by the
application. The Security Map plays an important
role in the system because it constitutes a centralized
mechanism which indicates the security strategies to
be activated for the current functionality offered by
the application to a user. It is stored in the
Knowledge Base, and it is used by the Executor to
activate the various security strategies and modules.
This is made possible by the previous assumption
that the security mechanisms embedded in the
application are divided into modules, each of which
can be either activated or deactivated at runtime.

Table 2 shows an example of Security Map. For
example, for a login operation, a user having an
associated LOW risk is required to insert his user
name and password and the answer to a secret
question, while a HIGH risk level requires in addition
an OTP (One Time Password) generated by a
security token (a physical device provided by the

Self-Protection Mechanisms for Web Applications - A Case Study

183

bank to its users, that generates pseudo-random
numbers at a fixed rate, typically every 30 or 60
seconds), and a captcha.

The Security Map is an important element of the
system, also from the usability and user experience
point of view. In fact, a system which always
operates assuming a HIGH risk level will certainly be
secure, but in terms of usability it will be annoying
to use; as a consequence, the users will tend to leave
from it after a short time. The Security Map thus
provides a reasonable trade-off among security and
usability, configurable at runtime.

Table 2: An Example of a Security Map.

3 SECURITY SCENARIOUS
USING SELF-PROTECTION

This section presents two of the self-protection
scenarios we have currently implemented in our
home banking case study called UNIBANK. The first
scenario concerns the self-protection mechanisms
for the login of individual users to their home
banking account. The second concerns the protection
of bank operations involving money transfers. These
scenarios aim to improve the security of the overall
system by dynamically changing the security
strategies applied, based on the current risk level of
a user and of the system.

3.1 Premises

Before describing the above mentioned scenarios,
some premises should be introduced. Initially,
UNIBANK has been developed without self-
protection mechanisms, hence we have added the
self-protection mechanisms without significantly
changing the existing application. To enable the
activation and deactivation of security modules
dynamically at runtime, the security requirements
have been implemented in separate modules. Each
module has an attribute which indicates if it should
be currently active or not for the current user

request. This approach also enables us to easily
extend the solution with further security
mechanisms, if needed. Further, it allows us to apply
this solution both to existent and to new systems.

Another important aspect pertains the separation
of concerns. Ideally, self-adaptive systems aim to
maintain the functional part independent of the
adaptive part of a system. In other words, the
functional part should not be aware of the existence
of the adaptive part. Only the adaptive part should
monitor and apply the identified changes in the
functional part. To implement this communication
between UNIBANK and the self-protection
mechanisms we introduced two log files where
UNIBANK and the firewall trace all the events
occurred in the application and in the network,
respectively (in the following subsections we
mention only the trace of the failures; however, both
successes and failures are traced in the log files).
These log files are continuously parsed dynamically
by the self-protection part, which extracts only the
information which is relevant from the self-
protection point of view. The extracted information
is then stored in the Knowledge Base, and used at
runtime to dynamically change the security
strategies. Further, from this information the self-
protection part creates statistics about users' habits.

3.2 Self-protection for Users' Login

This scenario aims to protect the login to a user
account by changing the strategies for the access to
the application based on the current risk level of the
user and of the entire system (see Section 2).

The login to a user account is performed in two
steps, through a two-factor authentication. First, a
user is required to provide some basic authentication
information (e.g., the account number, a password,
the birth date of the user), which is always used at
each bank account access. The application retrieves
this information and verifies its correctness.

In the meantime, the Analyzer and Planner
module retrieves the risk level currently associated
to the user and to the system from the Security Map
available in the Knowledge Base, to establish the
risk level for the current access to the user's account.
In parallel, the Network Monitor retrieves the
Internet Protocol (IP) address of the device used by
the user to access the bank account. The Analyzer
and Planner module verifies if the IP address is not
one of the IPs usually used by the user (as these IPs
are available in the Knowledge Base) and, in the
affirmative case, it raises the risk level associated to
the user, meaning that a two-factor authentication is

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

184

required; the user is thus requested to provide
additional information to login to the bank account.
The rationale behind this behaviour is that usually,
when an attacker tries to access online bank
accounts, he uses services offered by proxy servers,
or makes IP spoofing operations, or uses some
anonymization network such as Tor (Tor Project,
2015) to continuously change the IP address, to
avoid being traced. Of course, it is possible that the
user is travelling and hence is using different IP
addresses; however, the self-protection system also
verifies this situation. In fact, the Analyzer and
Planner is able to identify the location of an IP
address; based on this information, it computes the
time needed to reach the current location starting
from the location of the previous user's login
attempt. If the location change is compatible with
the elapsed time, the risk level of the user becomes
MEDIUM, otherwise it becomes HIGH (and the user
account is possibly blocked, depending on the
system's security configuration).

The Analyzer and Planner module considers the
two risk levels, i.e., the one retrieved from the
Security Map and the one influenced by the IP
address, and identifies the self-protection strategy to
be applied to the user for his current login operation.
The newly obtained risk level is also stored in the

Knowledge Base. If the new risk level is LOW, the
user should just provide the answer to a secret
question. Otherwise, if the new risk level is different
from LOW, further authentication information is
asked to the user to complete the login operation,
such as an OTP (One Time Password) generated by
a security token device or sent via an SMS (Keybank
and OTP in Table 2), and a captcha.

When the system retrieves the authentication
information provided by the user, it verifies its
correctness. If the information is correct, then the
system allows the user to access his bank account;
on the contrary, if the information is not correct then
access is denied and the system increments the
number of consecutive failed accesses for the current
user. When the number of failures becomes greater
than a predefined threshold (e.g., three attempts) the
user is notified that the access to the system has been
blocked, and that he should contact the bank to solve
the problem.

The risk level associated to a user decreases
when he performs a successful login. In addition, a
user may indicate if he wants to maintain a MEDIUM
or a HIGH risk level for his account during a given
period of time (e.g., when abroad), after which the
risk level is (possibly) decreased. This change is
performed automatically and asynchronously from

Figure 2: The Activity Diagram for Bank Operations.

Self-Protection Mechanisms for Web Applications - A Case Study

185

other functionalities by the self-protection part.

3.3 Self-protection for Bank
Operations

This scenario aims to protect the bank operations
(e.g., wire transfers) performed by the users after
they have been authenticated, based on their risk
levels and on the risk level associated to the system.
Fig. 2 shows the activity diagram for this scenario.

In this case the self-protection part monitors over
time the users' habits, i.e., the number of bank
operations performed by a user each month, the
average amount of money transferred from each
account, and the average amount of money for each
wire transfer and each user. In addition, the self-
protection part computes statistics on the number of
the overall bank operations in a given time slot (e.g.,
each hour of a day for an entire week or month) and
the amount of money involved in the bank
operations (e.g., wire transfers) in a given time slot.
This information is exploited and updated during the
bank operations. For example, through this
information the self-protection part becomes aware
if a thief tries to withdraw from one or more
accounts an important amount of money (an
operation which is unusual for the owner), or if he
tries to withdraw a small amount of money from as
many accounts as possible (increasing significantly
the number of operations in a short time).

As in the previous scenario, also this one is based
on two steps. First, a user specifies all the required
information concerning the bank operation (e.g., in
case of a wire transfer, the receiver, the motivation
of the transfer, the receiver's bank account number)
and some basic security information (which should
be different from the one used to verify the user's
identity during authentication, e.g., an OTP sent by
the system to the user's mobile phone). The business
logic verifies the introduced information and the
availability of the money amount involved in the
operation in the bank account.

In the meantime, the self-protection part retrieves
the current user risk level and the system risk level
from the Knowledge Base. Further, it retrieves also
the information concerning the statistics on the user's
habits. It also increments the number of bank
operation requests. Based on this information, it
computes a new risk level for the current user and
identifies the bank operation strategy to be applied,
depending upon this new user risk level.

If the information concerning the bank operation
is correct and the money amount is available in the
bank account, the bank operation proceeds. If the

user risk level is LOW then the business logic
executes the bank operation, updates the available
money in the bank account, and notifies the user that
the operation has been successfully performed. On
the other hand, if the user risk level is MEDIUM or
HIGH, a second security step is executed, similar to
the two-factor authentication, and the system thus
requests additional security information to the user.
If the information provided by the user (e.g., an OTP
sent via SMS or the answer to a secret question) is
correct, then the business logic executes the bank
operation and updates the available amount of
money for the current user. In this case, the business
logic notifies the user of the successful operation.

On the other hand, if the user fails to provide
correct basic or additional security information, the
operation is denied and the business logic traces this
failure in the log file. The self-protection part
updates the information of the current user in the
Knowledge Base by incrementing the number of
consecutive failed operations, and possibly also the
user and system risk levels.

In this way the system allows bank operations
which are not usually performed by the users (e.g.,
payment of a new car). In case of a security issue
(e.g., an attacker who aims to withdraw an amount
of money from as many bank accounts as possible),
the first bank operation will succeed, but the system
will identify and stop the thief by raising the risk
level and changing the security information required.

4 A TAXONOMY FOR OUR
SOLUTION

Yuan et al. (Yuan, 2014; Yuan, 2012) propose a
taxonomy for self-protection systems. The taxonomy
contains 14 dimensions (see Fig. 3) grouped in 3
categories: approach positioning, focused on the
objectives and intent of the self-protection, approach
characterization, focused on how self-protection is
achieved, and approach quality, focused on the
evaluation of the self-protection.

This taxonomy is also presented through a home
banking motivating example, which supposes five
scenarios where self-protection can significantly
improve the security of the system (Yuan, 2012).

For example, one of the scenarios detects an
illegal access and automatically disables the
connection from the source IP address. Our first
scenario (see Section 3.2) also takes into
consideration the IP addresses from which users
usually access their accounts. If an unusual situation
is identified, the system raises the risk level and

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

186

Figure 3: Yuan et al.'s Taxonomy Applied to Our Solution.

changes the self-protection strategies dynamically. If
necessary, our solution denies the access.

 Another example in (Yuan, 2012) considers a
built-in access control which may detect abnormal
usage patterns and disable users' accounts. Our 2nd
scenario (see Section 3.3) implements and extends
Yuan's et al.'s scenario with various risk levels and
dynamic strategies. Our solution can be considered
an enhanced solution of the ones in (Yuan, 2012).

Yuan and Malek have also collaborated with the
authors of the Rainbow framework to add self-
protection mechanisms (Yuan, 2013). Further,
Rainbow's authors have implemented denial-of-
service mechanisms in their framework (Schmerl,
2014). The Znn.com case study exploiting Rainbow
may be compared to our solution, being a Web
application which addresses security issues; the self-
protection scenarios we have considered are
complementary with respect to the ones
implemented in Znn.com.

In the rest of this section, the dimensions of the
three categories of the self-protection taxonomy are
applied to our case study (see Fig. 3). We present the
positioning and characterization together because, in

our opinion, there are dependencies between them.
The quality dimensions are separately addressed.

4.1 Approach Positioning and
Characterization

The Self-Protection Level dimension concerns the
sophistication level of the self-protection
mechanisms. In our case study all possible levels are
addressed. Our solution is able to Monitor the
system and Detect security issues. It implements
mechanisms to Respond and Protect the system
against the detected issues. It provides support to
Plan improvements and Prevent security problems,
because the system is able to exploit information
related to the current state of the system, as well as
previous information (e.g., statistics, historical data).

This leads to other two dimensions: Response
Timing and Theoretical Foundation. Response
Timing has as values Proactive, i.e., the system is
able to foresee and prevent problems based on
previous information, and Reactive, i.e., the system
is able to respond to occurred problems. Theoretical

Self-Protection Mechanisms for Web Applications - A Case Study

187

Foundation has the value Heuristic because our
home banking system exploits knowledge-based and
strategy-based mechanisms for self-protection.

The Depths-of-Defense dimension indicates the
layer where self-protection mechanisms operate. In
our case study, self-protection mechanisms are at the
Application layer. This dimension leads to the
Protection Goals, which in our case concern the
Confidentiality and Availability of the system: the
self-protection mechanisms aim to avoid illegal
access, impersonation, and Denial of Service.

Lifecycle Focus indicates whether the self-
protection mechanisms are used during the
development or the execution, at runtime. As most
of the self-protection mechanisms, security at
Runtime is exploited for our case study.

Meta-Level Separation focuses on the separation
of concern principle from the architectural point of
view: we have a Complete separation because the
self-protection mechanisms have been added to an
existing system, modifying it as few as possible.

Meta-Level Decision Making concerns the
decision making strategy. In our case it has a Multi-
Strategy value because we exploit information
coming from the firewall and the application, and we
exploit the overall information to adapt the system.

Control Topology is Global, because self-
protection concerns the entire application, and
Centralized, because one brain makes decisions.

The Enforcement Locale dimension indicates the
scope of the self-protection mechanisms, i.e., the
application, hence the System internal value.

Adaptation Patterns indicate the recurring
architectural patterns applied for the solution. We
have Protective Recomposition, to dynamically
change the security information needed for the
current functionality for a user, and Reconfiguration
on Reflex, to change the security level for a user and
for the entire system. We are currently implementing
the Software Rejuvenation pattern, which enables
the graceful termination of an application and
immediately restart it in a clean internal state.

4.2 Approach Quality

There are three dimensions for the evaluation of
self-protecting systems. The Validation Method
concerns the way in which the effectiveness of the
proposed approach is performed. We have simulated
a home banking system through a prototype.

From the Repeatability point of view, our home
banking is documented in a BsC thesis, available on
request. The software is available on GitHub at:
https://github.com/MetelliAndrea/Knabinu.

The Applicability dimension concerns the
specificity of the approach to an application domain
or case study. Our self-protection mechanisms can
be applied to other Web applications.

5 CONCLUSIONS

This paper has presented self-protection mechanisms
for new or existing Web applications which aim to
improve security at runtime. These mechanisms
exploit the users' and system's risk levels and
manage dynamically the security strategies.

Further work concerns the extension of the self-
protection mechanisms for further security issues
and case studies in different application domains.
We also plan to evaluate the efficiency overhead
introduced by the self-protection mechanisms in
UNIBANK, by comparing the running times of the
two currently available versions of this case study:
with and without the self-protection mechanisms.

REFERENCES

Anderson, R.J., 2008. Security Engineering: A Guide to
Building Dependable Distributed Systems, 2nd
Edition. Wiley.

Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J., 2009. Software Engineering or Self-
Adaptive Systems. LNCS 5525, Springer.

de Lemos, R., Giese, H., Muller, H., Shaw, M., 2013.
Software Engineering for Self-Adaptive Systems II.
LNCS 7475, Springer.

Pfleeger, C.P., Pfleeger, S.L, 2006. Security in Computing,
4th Edition Prentice Hall.

Schmerl, B., Camara, J., Gennari, J., Garlan, D.,
Casanova, P., Moreno, G. A., Glazier, T. J., Barnes, J.
M., 2014. Architecture-based self-protection:
composing and reasoning about denial-of-service
mitigations. In Proceedings of the 2014 Symposium
and Bootcamp on the Science of Security.

Stallings. W., 2013. Network Security Essentials:
Applications and Standards, 5th ed. Pearson, 2013.

Tor Project, 2015. www.torproject.org.
Yuan, E., Esfahani, N., Malek, S.,2014. A Systematic

Survey of Self-Protecting Software Systems. In ACM
Transactions on Autonomous and Adaptive Systems,
Vol. 8, Issue 4, Article No. 17.

Yuan, E., Malek, S., 2012. A Taxonomy and Survey of
Self-Protecting Software Systems. In Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, pp. 109-118.

Yuan, E., Malek, S., Schmerl, B., Garlan, D., Gennari, J.,
2013. Architecture-based self-protecting software
systems. In 9th International ACM Sigsoft Conference
on Quality of Software Architectures, pp. 33-42.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

188

