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Abstract

We solve a recent open problem about a new transformation mapping the set of copulas into
itself. The obtained mapping is characterized in algebraic terms and some limit results are
proved.
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1 Introduction
Nowadays, the “copula industry” is actively producing a large number of methods in order to
enlarge well–known families and/or construct novel copulas. Such investigations are usually
motivated by the need to introduce more flexible stochastic models that go beyond traditional
(and often unrealistic) assumptions related to the distribution of a multivariate random vector.

A large class of these methods is provided by transformations of copulas, i.e. mappings
from the space of copulas (or some of its subsets) into itself that are usually employed to add
parameters to some known families. Such mappings include, for instance, the distortions of
copulas (see, e.g., [4, 9, 12, 16, 18, 22]), which represents one of the most extensively studied
transformations, as well as other different constructions (see, e.g., [1, 5, 13, 14]).

In the current paper we are interested in the mapping transforming a function C : [0, 1]2 →
[0, 1] into another function Cλ defined on [0, 1]2 by

Cλ(x, y) =
C(x, y)

1 + λ− λC∗(x, y)
, (1.1)
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where C∗ is the so–called dual of C, C∗(x, y) = x + y − C(x, y), and λ ∈ (0, 1] (λ = 0
corresponds to the identity transformation). Analogously, Eq. (1.1) can be rewritten in the form

Cλ(x, y) =
C(x, y)

1 + λC(x, y)
, (1.2)

where C(x, y) = 1− x− y + C(x, y) is the survival function associated with C:
As noted in [15], if C coincides with one of the Frechét–Hoeffding bounds M(x, y) =

min(x, y) and W (x, y) = max(x + y − 1, 0) then Cλ of (1.1) is a copula. Moreover, if
C(x, y) = Π(x, y) = xy is the independence copula, then Cλ corresponds to the Ali–Mikhail–
Haq family of copula with parameter λ ∈ [−1, 0). The seemingly natural question is, therefore,
whether Eq. (1.1) defines a copula for any initial copula C (see [15, Problem 4.2] and also [5,
section 4]). The answer to this question is affirmative as we show below, and the proof is based
on a density argument in the space of copulas. Additionally, the new transformation is charac-
terized in algebraic terms and some results concerning the limit behavior of the transformation
(and a related transformation) are presented.

2 The main result
We start by considering how Eq. (1.1) acts in the class of quasi–copulas (for a definition, see
[11]). Quasi–copulas are generalizations of copulas that are used, e.g., in finding bounds for
several sub–classes of copulas [2, 20, 21]. The following result holds.

Proposition 2.1. If Q is a quasi–copula, then Qλ given by (1.1) is a quasi–copula for every
λ ∈ (0, 1].

Proof. First, notice that Qλ is well-defined since the denominator of Eq. (1.1) is bounded from
below by 1 because every quasi–copula is bounded below by W . Moreover, Qλ satisfies the
boundary conditions for a quasi–copula, i.e.

Qλ(x, 1) = Qλ(1, x) = x

for all x ∈ [0, 1]. It can be easily checked that Qλ is increasing in each variable (keeping the other
fixed). Finally, in order to show that Qλ is 1–Lipschitz continuous, consider x, y, y + h ∈ [0, 1].
Then we have

Qλ(x, y + h)−Qλ(x, y) =
λhQ(x, y) + (Q(x, y + h)−Q(x, y))(1 + λ(1− x− y))

(1 + λ(1− x− y − h+Q(x, y + h)))(1 + λ(1− x− y +Q(x, y)))

≤ h

(1 + λ(1− x− y − h+Q(x, y + h)))
≤ h,

from which the assertion follows.

Now, in order to prove that the transformation of Eq. (1.1) also maps copulas into copulas we
need to show that it preserves the 2–increasing property, as is shown below by density arguments.
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Proposition 2.2. If C is a copula, then Cλ given by (1.1) is a copula for every λ ∈ (0, 1].

Proof. Suppose that C is an absolutely continuous copula that admits continuous mixed partial
derivatives and set Σ(x, y) = x + y. Then the first derivative of Cλ with respect to first variable
is given by

D1Cλ =
λC(1−D1C)

(1 + λ− λ(Σ− C))2
+

D1C

1 + λ− λ(Σ− C)
.

Thus, the mixed second partial derivative of Cλ is given by

D12Cλ =
2λ2C(1−D1C)(1−D2C)

(1 + λ− λ(Σ− C))3
+

λD2C(1−D1C)− λCD12C

(1 + λ− λ(Σ− C))2

+
λ(1−D2C)D1C

(1 + λ− λ(Σ− C))2
+

D12C

1 + λ− λ(Σ− C)

=
2λ2C(1−D1C)(1−D2C)

(1 + λ− λ(Σ− C))3
+

λD2C(1−D1C) + λD1C(1−D2C)

(1 + λ− λ(Σ− C))2

+
D12C(1 + λ− λΣ)

(1 + λ− λ(Σ− C))2
,

which is non-negative since the first partial derivatives of a copula are bounded above by 1 wher-
ever they exist. Now, the transformation of type (1.1) maps quasi–copulas into quasi–copulas and
it is continuous with respect to the L∞ norm. Taking into account that copulas with continuous
mixed partial derivative are dense in C with respect to the same norm (consider, for instance,
Bernstein copulas [17]) and that we have shown Cλ ∈ C for every such copula, the assertion
now follows.

As a consequence, equality (1.1) defines, for every λ ∈ (0, 1], a mapping Tλ : C → C , where
C is the class of bivariate copulas. In particular, for any λ, if µC denotes the measure induced by
C ∈ C , we have

Tλ(C)(x, y) =
µC([0, x]× [0, y])

1 + λµC([x, 1]× [y, 1])
(2.1)

For a fixed λ, the transformation Tλ is injective, since Tλ(C1) = Tλ(C2) implies C1 = C2.

Remark 2.1. It is immediate that, for the copula W , Tλ(W ) = W holds for any λ ∈ (0, 1].
Moreover, W is the only fixed point of Tλ. In fact, if C = Cλ for some λ ∈ (0, 1], then, for every
(x, y) ∈ [0, 1]2, we must have

λC(x, y)(1− x− y + C(x, y)) = 0,

from which it follows that C = W . Notice that, here, a key role is played by the pointwise bounds
in the space of (quasi–)copulas. In fact, consider the semi–copula S defined by S(x, y) = 0 on
(0, 1)2, and S(x, y) = min(x, y), otherwise. Then S = Sλ for every λ ∈ (0, 1].

Moreover, since W is invariant under Tλ, it also follows that, if C is a patchwork copula
with basis copula given by W , then Tλ(C) is also a copula of this type (see [8] for definition of
patchwork).
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The transformation of (1.1) preserves the concordance order between copulas. In fact, it can
be easily checked that C1 ≤ C2 pointwise implies Tλ(C1) ≤ Tλ(C2), from which we directly get
the following consequences:

– the range of the transformation Tλ goes from Tλ(W ) = W to Tλ(M) < M . In other words,
the Tλ–image of any family of copulas cannot describe perfect positive dependence.

– If ν denotes a measure of concordance (see [19]) between two random variables with
copula C, then

ν(Tλ(W )) = −1 ≤ ν(Tλ(C)) ≤ ν(Tλ(M)) (2.2)

for every λ ∈ (0, 1]

The upper bound in (2.2) can be calculated explicitly for concordance measures like Kendall’s
τ and Spearman’s ρ. In fact, consider that, for any λ ∈ (0, 1] the transformation of the comono-
tonicity copula M can be written as

Tλ(M)(x, y) =
min(x, y)

1 + λ− λmax(x, y)
, (2.3)

from which it is apparent that it is a semilinear copula [6, 10] generated by fλ(t) = 1/(1+λ−λt).
Moreover, formulas for measures of association of semilinear copulas are given in [6, Theorem
4]. By using them and by doing little algebra, the following result follows.

Proposition 2.3. Let λ ∈ (0, 1]. Then the following inequalities hold:

−1 ≤ τ(Cλ) ≤
4λ− λ2 − 4 ln(1 + λ)

λ2
,

−1 ≤ ρ(Cλ) ≤
−12λ− 18λ2 − 3λ3 + 12(1 + λ)2 ln(1 + λ)

λ3
.

In particular, τ(C1) ≤ 0.228, while ρ(C1) ≤ 0.272.

Remark 2.2. In the case of Eq. (2.3), Tλ has transformed a copula which is purely singular into
a copula with a singular component and an absolutely continuous component. See Figure 1.

Remark 2.3. It should be mentioned that the mapping Tλ(C) is decreasing with respect to λ and
the pointwise ordering between copulas. Thus, since T0(C) = C, it follows that, for λ ∈ (0, 1],
Tλ(C) ≤ C, so Tλ(C) is at most as positively quadrant dependent as C.

Remark 2.4. The transformation of eq. (1.1) maps the diagonal section of C, δC , into the diag-
onal section δC(t)/(1 + λ− λ(2t− δC(t))). As such, it changes the tail dependence coefficients
of the corresponding copulas, where they exist (see, e.g., [7]). In particular, UTDC(Cλ) =
(1− λ)UTDC(C), while LTDC(Cλ) = LTDC(C)/(1 + λ), where UTDC and LTDC denote
the upper and lower tail dependence coefficients, respectively.
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Figure 1: Sample of size 10.000 from (X,Y ) ∼ Tλ(M) for λ = 1/2, its two dimensional
histogram and the corresponding marginal histograms.

Now, following the idea of linear constructions of copulas [13], we would like to characterize
the transformation of type (1.1) in algebraic terms.

Proposition 2.4. Let F : C → C be a mapping given by

F (C)(x, y) =
a0 + a1x+ a2y + a3C(x, y)

b0 + b1x+ b2y + b3C(x, y)
,

with ai, bi ∈ R for (i = 0, . . . , 3). Then F is given by (1.1).

Proof. Since F (C) must be a copula, the boundary conditions imply that for every (x, y) ∈
[0, 1]2 we have

a0 + (a1 + a3)x+ a2
b0 + (b1 + b3)x+ b2

= x,
a0 + (a2 + a3)y + a1
b0 + (b2 + b3)y + b1

= y,

from which it is easily derived that

a0 + a2 = a0 + a1 = 0, b1 + b3 = b2 + b3 = 0.
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In particular, since C(0, 0) = 0, a0 = 0, which, together with C(1, 1) = 1 and previous con-
straints, implies a1 = a2 = 0, and a3 = b0 + b1. Thus, F is given by the formula

F (C)(x, y) =
(b0 + b1)C(x, y)

b0 + b1x+ b1y − b1C(x, y)
,

and the assertion follows by dividing numerator and denominator by b0 + b1 ̸= 0.

In other words, transformations of type (1.1) are the only transformations that can be ex-
pressed as ratio of two linear functions involving the variables x, y ∈ [0, 1] as well as z =
C(x, y).

3 The induced transformation and its iterations
The transformation of (1.1) induces a mapping Tλ in C . It would be hence of interest to see what
happens when the transformation is iterated. Interestingly, the iterations converge to the fixed
point of Tλ, which is the countermonotonicity copula. Here, T 2

λ := Tλ ◦Tλ and, by recursion, for
each n ≥ 3, T n

λ := Tλ ◦ T n−1
λ .

Proposition 3.1. Let λ ∈ (0, 1]. For every C ∈ C we have limn→∞ d∞(T n
λC,W ) = 0.

Proof. First, we prove that

d∞(TλC,W ) ≤ d∞(C,W )

1 + λd∞(C,W )
(3.1)

and distinguish two cases: (i) If x+ y − 1 ≤ 0 then we have W (x, y) = 0 so we get

TλC(x, y)−W (x, y) = TλC(x, y) =
C(x, y)−W (x, y)

1 + λ(1− x− y + C(x, y)−W (x, y))

≤ C(x, y)−W (x, y)

1 + λ(C(x, y)−W (x, y))
≤ d∞(C,W )

1 + λd∞(C,W )
.

(ii) If x+ y − 1 > 0 then we have W (x, y) = x+ y − 1 so we get

TλC(x, y)−W (x, y) =
C(x, y)

1 + λ(1− x− y + C(x, y))
−W (x, y) =

=
(C(x, y)−W (x, y))(1− λW (x, y))

1 + λ(C(x, y)−W (x, y))
≤ d∞(C,W )

1 + λd∞(C,W )
.

Finally, we simply iterate Eq. (3.1) to get

d∞(T n
λC,W ) ≤ d∞(T n−1

λ C,W )

1 + λd∞(T n−1
λ C,W )

≤
d∞(Tn−2

λ C,W )

1+λd∞(Tn−2
λ C,W )

1 + λ
d∞(Tn−2

λ C,W )

1+λd∞(Tn−2
λ C,W )

=
d∞(T n−2

λ C,W )

1 + 2λd∞(T n−2
λ C,W )

≤ · · · ≤ d∞(T n−3
λ C,W )

1 + 3λd∞(T n−3
λ C,W )

≤ · · · ≤ d∞(C,W )

1 + nλd∞(C,W )
,

from which we directly deduce the desired result.
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Figure 2: Image plot of T n
λ (M) for n ∈ {0, 1, 5, 20}, whereby λ = 1/2.

There is another analytically very simple transformation Sλ : C → C that fulfills the anal-
ogous limit result with W replaced by M , i.e. limn→∞ d∞(Sn

λC,M) = 0 for every C ∈ C . In
fact, defining

SλC(x, y) =
C(x, y)(1− λx) + λxy

1 + λ(y − C(x, y))
(3.2)

for every λ ∈ (0, 1], the following result holds.

Proposition 3.2. For every λ ∈ (0, 1], the transformation Sλ given by (3.2) maps C into C .
Moreover, it is bijective and continuous, has M as unique fixed point and fulfills

lim
n→∞

d∞(Sn
λC,M) = 0 for every C ∈ C .

Proof. We prove the result by expressing Sλ in terms of Tλ. To do so, first define the isometry Φ :
[0, 1]2 → [0, 1]2 by Φ(x, y) = (1− y, x). Obviously the push-forward µΦ

C of a doubly stochastic
measure µC via Φ is again doubly stochastic, so we can view Φ also as a transformation on C
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Figure 3: Image plot of Sn
λ (W ) for n ∈ {0, 1, 5, 20}, whereby λ = 1/2.

and write Φ(C) for the copula corresponding to µΦ
C . Actually, this transformation corresponds to

the flipping operation studied in [3].
It is straightforward to verify that Φ(C)(x, y) = y−C(y, 1−x) for all x, y ∈ [0, 1], Φ(M) =

W , and Φ : C → C is bijective and continuous. The inverse Φ−1 is given by Φ−1(C)(x, y) =
x− C(1− y, x). Now, it holds that

Φ−1 ◦ Tλ ◦ Φ(C)(x, y) = x− Tλ ◦ Φ(C)(1− y, x) = x− x− C(x, y)

1 + λ(y − C(x, y))
= SλC(x, y)

from which all the assertions follow immediately.

Figures 2 and 3 illustrate an example of iteration of the transformations Tλ and Sλ, respec-
tively.
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