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Introduction

Titanium and its alloys are considered the gold standard 
for hard-tissue implant technology thanks to their biocom-
patibility and stable mechanical properties.1–3 Host tissue 
response to inert titanium, however, is not always desira-
ble and can often be prone to fibrous tissue encapsulation.4 
Surface treatments introducing bioceramic coatings are 
commonly used to functionalize the surface of metallic 
implants to increase their biocompatibility,5 corrosion 
resistance,6 or fixation characteristics.4

The most common bioceramic coatings used for ortho-
pedic implants are calcium phosphate (CaP)7–9 and 
Si-based glass ceramics.10–13 Hydroxyapatite (HA)-coated 
Ti6Al4V, for example, has been accepted as 1 of the most 
suitable alternative materials for damaged bone tissue.6 
Previous studies have confirmed the bioactivity of Si-based 
glass ceramics and their positive role in formation of an 

HA layer on an implant surface after soaking in simulated 
body fluid (SBF).14,15 Nevertheless, HA coating has been 
reported to exhibit poor bonding characteristics because of 
its notably different thermal expansion coefficient (CTE) 
with titanium alloys.16 The CTE of some glass ceramics 
such as sphene (CaTiSiO5),17 monticellite (CaMgSiO4),18 
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and akermanite (Ca2MgSi2O7)11 were recently reported to 
be closer to that of Ti6Al4V alloy. Akermanite, which is 
crystallized in a tetragonal lattice system and consists of 
magnesium oxide (MgO) tetrahedral and Si2O7 double-
pyramid sheets linked together by CaO bonds,19 is reported 
to exhibit not only adequate mechanical strength, but also 
high chemical stability and biocompatibility.20 Ionic 
release of akermanite was shown to considerably enhance 
osteoblast cells’ adhesion and proliferation.11 These ions 
are key factors that influence the process of nucleation and 
growth of HA, and are reported to affect the mineralization 
process and the bone-bonding mechanism.21 There are also 
indications that Ca and silicon (Si) released from bioactive 
glass dissolution can promote apatite formation, and stim-
ulate osteoblast proliferation and gene expression.22

Considering the efficiency of ceramic coatings on bio-
medical implants, various methods including plasma spray, 
sol-gel, and electrophoretic deposition (EPD) have been sug-
gested for their deposition.17 Herein, we used the sol-gel 
method to coat Ti6Al4V substrates with a nanostructured 
akermanite (Ca2MgSi2O7). The sol-gel method was used 
specifically for its advantages over other commonly used 
methods, including lower process temperature, providing the 
possibility of producing nanoscale particles and lower costs 
in addition to the flexibility of use for both coating and pow-
der production.23 Mg ions were incorporated into the synthe-
sized coating, as it has been suggested that they can 
significantly enhance osteoblast adhesion and stimulate oste-
oblast proliferation.24–26 Lack of Mg is also reported to con-
tribute to reduced bone formation and cause osteoporosis.27 
Furthermore, Mg is known to facilitate more than 300 enzy-
mic reactions in the human body.28 Scanning electron 
microscopy (SEM), transmission electron microscopy 
(TEM), and atomic force microscopy (AFM) methods have 
been used to study the morphology and structure of the 
obtained coating. X-ray diffraction (XRD) and energy-dis-
persive X-ray spectrum (EDX) were applied to examine 
phase composition and elements on the coating, respectively. 
In vitro tests were also performed to evaluate adhered cell 
morphology and proliferation on the coated samples.

Materials and Methods

Substrate Preparation

Disc-shaped Ti6Al4V samples with a diameter of 2 cm and 
thickness of 0.1 cm were sequentially polished by silicon 
carbide papers ranging from 100 to 600 grit sizes. The 
samples were subsequently ultrasonically washed in ace-
tone for 15 minutes.

Coating Preparation and Characterization

Akermanite powder was synthesized by the sol-gel  
method using (C2H5O)4Si (TEOS), Mg(NO3)2.6H2O, and 

Ca(NO3)2.4H2O as precursors of Si, Mg, and Ca, respec-
tively. Briefly, tetraethyl orthosilicate (TEOS) was mixed 
with water and nitric acid (2N HNO3, as a precipitant) and 
stirred for 30 minutes. Afterward, Mg(NO3)2.6H2O and 
Ca(NO3)2.4H2O was added to the solutions with a molar 
ratio of TEOS/Mg(NO3)2.6H2O/Ca(NO3)2.4H2O = 2:1:2. 
The mixture was then stirred at room temperature for 
5 hours. For microstructure observation, dry gel of the pre-
pared akermanite was characterized by TEM (EM208S). 
The distribution of akermanite particles was analyzed by 
EDX-mapping analysis.

The Ti6Al4V discs were fixed on a sol-gel coating (dip-
coating) machine and were placed into the akermanite 
solution for 10 seconds. Samples were entered vertically in 
the solution at an approximate speed of 0.5 m per second 
and then with the same speed out of the solution. After 
being heat-treated at 900°C for 2 hours, the samples were 
characterized by a Philips PW3710 XRD instrument. The 
particle size was estimated using the Scherrer equation 
described in Equation 1:29

t =  89  cos 0. /λ β θ

Where t, λ, and β stand for grain size, wavelength, and dif-
fraction peak width at half maximum height (in radians), 
respectively, and θ is the Bragg angle.

A Philips XL30 SEM was used for coated surface 
observation as well as coating thickness evaluation. The 
surface morphologies of the coated and uncoated samples 
were studied using FlexAFM (Switzerland).

Cell Culture

Coated and uncoated samples were sterilized in an auto-
clave at 120°C for 30 minutes. Then, the samples were 
incubated in Dulbecco’s modified Eagle’s medium 
(DMEM) and supplemented with 10% fetal bovine serum 
before cell seeding. The DMEM concentration was pre-
pared according to previously published research.30 SaSo-2 
osteoblast cells were seeded on the samples and the culture 
medium was changed every 2 days. The culture was kept at 
37°C in a humidified atmosphere of 95% air and 5% CO2. 
A total of 5 × 104 cells passaged at these experiments. The 
culture media was changed every 2 days during the prolif-
eration assay. After 3 days, the adhered cells were fixed 
with 2.5% glutaraldehyde buffer for 30 minutes at 4ºC. A 
dehydration process was performed using a graded ethanol 
solution of 30%, 50%, 70%, 95%, and 100%. Adhered 
cells’ morphology was observed by SEM (VEGA TESCAN) 
and optical microscopy (OM). 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay 
was used to assess the cells’ viability on coated, uncoated, 
and control samples after 1, 3, and 7 days in culture. Ultra-
high–molecular weight polyethylene (culture plate) was 
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used as negative control. The discs were kept under the 
same culture conditions with 720 μL of fresh culture 
medium and 80 μL of MTT solution. Subsequently, dime-
thyl sulfoxide was added to completely dissolve the purple 
formazan. The cell viability percentage was estimated by 
spectrophotometry (enzyme-linked immunosorbent assay 
reader) at a wavelength of 570 nm. A P value <.05 was 
determined to be statistically significant.

Results and Discussion

The XRD pattern of the coating (Figure 1) confirms the 
presence of Ca2MgSi2O7 peaks (according to Joint 
Committee on Powder Diffraction Standards 00-076-
0841). Akermanite is known to crystallize at temperatures 
above 700°C and to develop the crystalline phase by heat 
treatment at 800°C.31 On the other hand, the Ti6Al4V sur-
face is seriously damaged above 900°C.32 Therefore, a 
heat treatment was applied at 900°C with the aim of 
increasing the crystallinity, reducing the residual stresses, 
and enhancing ductility without creating tension between 
the coating and the underlying titanium substrate and not 
damaging the coating and the substrate.33 Peaks observed 
in Figure 1 can be considered as an indication of the high 
crystallinity of the coating. Few impurities of merwinite 
(Ca3MgSi2O8) are present in the XRD pattern. The rutile 
peaks detected by XRD are also due to the limited 

thickness of the coating layer. The akermanite grain size 
was measured to be about 32 ± 2.5 nm according to the 
Scherrer equation.

TEM observation of the synthesized powder (Figure 
2A) demonstrated nanosize powder particles with an 
almost oval shape and a smooth surface morphology. 
Figure 2B shows an SEM a top-surface micrograph of the 
synthesized coating. The micrograph indicates that the 
obtained coating has a disordered surface morphology 

Figure 1. XRD Pattern of the Synthesized Coating at 900°C
Ca2MgSi2O7 indicates akermanite glass-ceramic; TiO2, titanium dioxide; 
XRD, X-ray diffraction.

Figure 2. A, Transmission Electron Microscopy Micrograph of the Synthesized Powder; B, Scanning Electron Microscopy (SEM) 
Micrographs of the Coating Top Surface; and C, SEM Cross-Section Observation of the Coating.
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with the presence of some pores. The cross-section obser-
vation in Figure 2B displays a uniform and crack-free 
structure that is deposited uniformly all over the substrate. 
The coating thickness is quite regular and is measured to 
be about 5-10 μm with a defect-free microstructure. 
According to SEM observations, the created coating shows 
a disordered topography that is also confirmed by AFM 
analysis. EDX mapping analysis confirmed the presence 
of Ca, Si, Mg, Ti, and Al elements on the surface of the 
coated sample (Figure 3). The EDX cartography of the 

akermanite coating showed that all akermanite elements 
have been preserved in deposited nanostructures and are 
uniformly spread all over the sample’s surface. The pres-
ence of the elements on the surface is expected to induce 
coating bioactivity, which can significantly promote the 
formation of HA.27

AFM images of the coated and uncoated surfaces, 
shown in Figure 4, exhibit a significantly higher surface 
roughness for the coated samples compared to the bare 
material (radium = 1.5 μm vs 0.1 μm). The coated surface 

Figure 3. Energy-Dispersive X-Ray Spectrum (Mapping Results of Chemical Elements’ Distribution, A, Calcium (Ca); B, Silicon (Si); 
C, MAGNESIUM (Mg); D, Titanium (Ti); and E, Aluminum (Al) on Surface Samples.
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represents random surface topography. This hierarchical 
surface topography is expected to have positive effects on 
cellular activity.34 The positive effects of micrometer-sized 

roughness of biomaterials on osteoblast behaviors have 
been well documented.35 Disordered topography, as is the 
case for most biological tissue and almost all clinically 

Figure 4. Atomic Force Microscopy Images A, Before Coating, and B, After Coating.
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accepted biomaterials, is reported to highly affect the mor-
phology of osteoblast cells.36

Figures 5 and 6 shows the OM and SEM micrographs 
representing the morphology of Saos-2 cells cultured on 
coated and uncoated samples after 3 days in culture. The 
cells cultured on the coated surface represent a rather 
flat morphology whereas the cultures on uncoated sam-
ples represent a more rounded configuration. SEM 
images under higher magnification confirm the higher 
tendency of the cells to spread in a more flattened con-
figuration on the coated samples compared to the 
uncoated ones.

Calcified surface of the samples is shown in Figure 6. 
Calcification is the process by which mineral Ca builds up 
on biomaterials, and it is proved to have an important role 
in the bone bonding flow of bioglass and glass-ceramic 
bone implants.24 This process depends on various factors 
including absorption of Ca-binding proteins on implant 
surface and cellular response of the host tissue to the bio-
materials.37,38 Also, the effect of Mg in this process is well 
documented.38,39 The SEM images confirm good adhesion 
and anchorage of the cells to the surface coatings that can 
in turn confirm the cytocompatibility of the synthesized 
coatings.

Figure 7 shows the cell proliferation results of the MTT 
assay on coated and uncoated samples as well as control 
samples up to 1, 3, and 7 days in culture. The cultured 
Saos-2 osteoblast showed a significantly (P < .05) higher 
proliferation rate at 1, 3, and 7 days compared to the con-
trol sample. The results indicate that cell viability increased 
significantly on the coated samples in comparison with the 
uncoated ones at all time steps.

Conclusions

The sol-gel method was used to synthesize a nanocrystal-
lized Ca2MgSi2O7 coating on Ti6Al4V substrates. The 
obtained results indicate that akermanite phase can be syn-
thesized from a gel precursor by calcining at 900°C. XRD, 
EDX, and microscopical analysis confirmed that the coating 
presented a defect-free and homogeneous nanostructure. 
In vitro assays with microscopical observation and cell-pro-
liferation tests revealed that the obtained samples’ coatings 
stimulated cell spreading compared to uncoated samples. 
The coating samples were found to effectively enhance cell-
proliferation rate. The results reveal the adeptness of the 
synthesized coating in promoting cell interaction with bone 
implants, promising an improved tissue response.

Figure 5. Optical Microscopy Images of Saos-2 Cells Cultured on A, B, Coated and C, D, Uncoated Discs After 3 Days. 
Magnification A, 40× and 200×, and D, 100× and C, 200×.
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