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Abstract
Introduction: Renal dysfunction is a frequent complication in patients suffering from 
β-thalassemia major (β-TM). The aim of this study was to analyze the renal function and urine 
metabolomic profile of β-TM patients undergoing transfusions and deferasirox (DFX) therapy, 
in order to better characterize and shed light on the pathogenesis of renal disease in this set-
ting. Methods and Subjects: 40 patients affected by β-TM treated with DFX and 35 age- and 
gender-matched healthy controls were enrolled in the study. Renal function was assessed. 
Glomerular filtration rate (GFR) was estimated with CKD-EPI and Schwartz formula for adults 
and children, respectively. Renal tubular function and maximal urine concentration ability 
were tested. Urine specimens were analyzed by nuclear magnetic resonance spectroscopy to 
identify the urinary metabolite profiles. Results: The study of renal function in β-TM patients 
revealed normal estimated (e)GFR mean values and the albumin-to-creatinine ratio was < 30 
mg/g. The analysis of tubular function showed normal basal plasma electrolyte levels; 60% of 
patients presented hypercalciuria and many subjects showed defective urine concentration. 
Several amino acids, N-methyl compounds, and organic acids were overexcreted in the urine 
of thalassemic patients compared with controls. Discussion: The major finding of this work is 
that β-TM patients and controls exhibit different concentrations of some metabolites in the 
urine. Early recognition of urinary abnormalities may be useful to detect and prevent kidney 
damage. © 2020 The Author(s)
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Introduction

β-Thalassemia major (β-TM) is an inherited disorder characterized by chronic hemolysis 
and inefficient erythropoiesis due to defective synthesis of β-globin chains. Periodic blood 
transfusion with units of packed red blood cells every 2 or 3 weeks is the milestone of 
treatment and is required to maintain pretransfusion hemoglobin levels between 9.5 and 
10.5 g/dL to ensure tissue oxygenation [1]. Even if the blood transfusion is life-saving, it is 
encumbered by a number of complications due to iron overload, e.g., hypogonadism, hypo-
thyroidism, hypoparathyroidism, diabetes, renal and/or cardiac dysfunction, heart failure, 
and infections, especially in patients who have undergone splenectomy [2, 3]. Success in the 
management of the transfusion-dependent thalassemia patients is related to an optimal 
chelation therapy to prevent organ damage. To date, 3 chelators (deferiprone [DFP], desfer-
rioxamine [DFO], and deferasirox [DFX]) are available for treating thalassemia patients, and 
each presents efficacy and safety but also side effects. The negative balance between iron 
intake and iron output is the goal for improving survival [1].

There is evidence of renal dysfunction in β-TM patients. Signs of proximal tubular damage, 
like low-molecular-weight proteinuria, have been described in several reports [4–6]. Piga et 
al. [7] reported a normal glomerular filtration rate (GFR) measured by 51Cr-EDTA in patients 
with β-TM naïve to iron-chelating therapy with DFX. Treatment with DFX for up to 2 years 
was associated with reduction in GFR of 17.7–17.2%, which did not progress during 2 years 
of follow-up and reversed after a 4-week washout period. 

Additional studies have reported other signs of renal tubular dysfunction, including 
hypercalciuria, in β-TM patients on DFX, but this has not been examined systematically [7–9]. 
Wong et al. [10] reported that deferasirox at therapeutic doses leads to exacerbation of hyper-
calciuria in a dose-dependent manner and requires vigilance for osteoporosis, urolithiasis, 
and other markers of renal dysfunction. 

β-TM patients showed also significantly higher levels of cystatin C, a sensitive marker of 
glomerular dysfunction and an early sign of renal impairment [11–13]. Finally, in β-TM 
patients, renal involvement encompasses tumorigenesis and cyst development, but for both 
of these, the underlying molecular basis has been hypothesized but not elucidated [13, 14].

The principal aim of this study was to analyze the spectrum of urine metabolites to verify 
if there are metabolic patterns that discriminate β-TM patients undergoing transfusion and 
chelation therapy with DFX from normal subjects.

Materials and Methods

Patient Recruitment and Renal Function Analysis
One hundred and eighty-five β-TM patients were admitted to the Rare Red Blood Cell 

Disease Unit, Cardarelli Hospital, Naples, Italy, and treated with regular and periodic trans-
fusion of packed red blood cells every 2 weeks and chelation therapy with different chelators, 
i.e., DFP, DFO, and DFX.

Inclusion criteria included: a genetic diagnosis of β-TM, an age of > 8 years, and DFX 
treatment for > 12 months. Exclusion criteria included: an estimated (e)GFR < 60 mL/
min/1.73 m2, impaired liver function, pregnancy, and breastfeeding. Finally, 40 β-TM 
patients that met the inclusion criteria were enrolled and 35 age- and gender-matched 
healthy individuals were selected as controls. Inclusion criteria for the control group 
included: normal renal function (eGFR > 90 mL/min/1.73 m2) and no anemia or history of 
chelation. Exclusion criteria included: impaired liver function, pregnancy, and breast-
feeding.
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Hematological and biochemical screening included: a complete blood count, liver and 
kidney function tests, fasting blood sugar, lipid profile, and serum ferritin. All participants 
collected a 24-h urine sample and the urine was kept refrigerated during the collection. Renal 
function was assessed in terms of the following: 

 − eGFR was calculated with CKD-EPI and the Schwartz formula for adults and children, 
respectively, using calibrated, standardized plasma creatinine measurement; the 
albumin-to-creatinine ratio (ACR) was measured;

 − Tubular function was evaluated by arterial blood gas analysis, plasma electrolyte 
measurements, and determination of the fractional excretion of sodium (FENa), calcium, 
bicarbonate, and phosphate. Maximal urine concentration ability was assessed by 
measuring urine osmolality after night (12-h) fluid restriction as done previously [15]. 
Fasting urine pH was measured using a standard pH meter [16]. Urinary bicarbonate was 
evaluated by acid base titration according to previous studies [17, 18].

Definitions
The diagnosis of β-TM was based on the genetic characterization of α-globin and 

β-globin chains to identify the genetic defect underlying the disease. eGFR and ACR were 
classified based on K-DIGO 2012 guidelines [19]; urine calcium-to-creatinine ratio was 
defined as normal or high (< 0.2 and > 0.2, respectively). Defective urine concentration was 
considered as having a maximum urine osmolality < 750 mOsm/kg of water for adults and 
< 600 mOsm/kg of water for children (aged < 16 years) after 12 h of fluid restriction. Meta-
bolic acidosis was defined as bicarbonate plasma levels < 22 mmol/L on arterial blood gas 
analysis.

Experimental Protocol
Urine specimens were analyzed by nuclear magnetic resonance spectral acquisition 

(NMR spectroscopy) to discover differences in the urinary metabolite profiles between cases 
and controls. Sample pretreatment for NMR observation was performed by:
1. Adjusting the pH to 1.2–2 as already reported previously [20, 21]. Briefly, 50 µL of 

urine was mixed with 50 µL of 4.85 mM standard solution of sodium-3-trimethylsilyl-
[2,2,3,3–2H4]-propionate (TSP; Sigma-Aldrich) in D2O (99.9%; Avanti Polar Liquids). 
The pH value was adjusted to 1.2≤ pH ≤2 by adding 50 µL of 3-M HCl solution. Final pH 
was monitored by inspection of citrate signals (always detected in all samples) [20–22]. 

2. Adjusting the pH to neutral with the addition of a phosphate buffer, as described in the 
literature. 550 µL of urine were mixed with 50 µL of a 1 M potassium sodium buffer D2O 
solution with K2HPO4 and NaH2PO4 × 2H2O containing TSP at a concentration of 0.05% 
(m/v) [23, 24].
The urine specimens were then transferred into a 5-mm NMR tube for spectral acqui-

sition. Spectra were acquired on a Bruker Avance 500 spectrometer (500-MHz proton reso-
nance), at 298 K and at a spinning frequency of 20 Hz, by locking the spectrometer field using 
the deuterium resonance provided by the D2O used in the preparation of the urine sample. In 
order to suppress the intense water peak, the presaturation pulse sequence zgpr (Bruker 
Biospin) was used. The optimized acquisition parameters were: a 90° pulse of 12 µs; a spectral 
width of 12 ppm for all data collection, and typically 128 FIDs were accumulated for the 
analysis into 64-K digital data points; and a 4-s delay time between pulses. All collected FIDs 
were apodized prior to Fourier transform, with an exponential decay corresponding to a line 
broadening of 0.4 Hz. Spectra were zero-filled to 128 K.

TSP was taken as a qualitative standard for chemical shift scale (0.015 ppm) as well 
as a quantitative internal standard for peak area calculation. Standard metabolites solu-
tions, at the specified pH values, were used for the assignment of the chemical shift of each 
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spectral signal. Metabolite concentration (mmol/L), was calculated according to the 
following equation, by measuring the height of the selected peak representative for the 
metabolite “h”:

[ ] ( )[ ]
( )

h metabolite TSP
Metabolite f

h TSP
=

where h(TSP) is the height of the standard TSP peak, [TSP] is the molar concentration of TSP 
added, and f is a factor accounting for the number of hydrogens and the multiplicity of the 
signal of the TSP peak and of the signal to which the selected metabolite peak belongs. 

Metabolite quantification was also expressed as mmol/mol of creatinine by normalizing 
with respect to the creatinine peak height, h(Cre), according to the following equation:

[ ] ( )
( )

h metabolite
Metabolite f

h Cre
=  

Untargeted Metabolomic Analysis across the Full Spectral Range
For metabolomic analysis, all the spectra were bucketed with bins of either 0.04 or 0.01 

ppm. Bucketing was performed by the MNOVA software. The bucketed spectra were 
normalized with respect to the total spectral area. The following spectral regions were 
excluded from the analysis: 0–0.5, 4.8–5.5, and > 10.5 ppm, resulting in bucketed spectra with 
249 and 1,000 variables, respectively, for the 0.04- and 0.01-ppm binning.

The bucketed spectra were imported in SIMCA-P13 (Umetrics) for multivariate data 
analysis. As a first step, an exploratory multivariate analysis was performed with principal 

Table 1. Demographic and anthropometric characteristics and markers of renal and tubular function of study 
groups

β-TM patients
(n = 40)

Controls
(n = 35)

p valueb

Age, years 34±12 33±14 0.85
BMI 22.9±3.5 23.8±1.2 0.23
Serum creatinine, mg/dL 0.74±0.21 0.71±0.13 0.39
eGFR, mL/min/1.73 m2 109.5±18 112±12 0.52
Hemoglobin, g/dL 9.8±0.4 13.2±1.4 <0.001
Ferritin, ng/mL 1,559±583 150±22 <0.001
Serum concentrations

Sodium, mmol/L 142±3 139±3 <0.001
Potassium, mmol/L 4.53±0.44 4.06±0.4 <0.001
Calcium, mg/dL 9.5±0.6 9.2±0.8 0.19
Chlorine, mmol/L 104±2 101±3 0.78
Bicarbonate 27.8±5.8 28±4.6 0.72

FeNa, % 0.93±0.45 0.98±0.9 0.64
Urinary values

Calcium, mg/24 h 398±172 180±62 <0.001
Phosphorus, mg/24 h 835±364 895±492 0.8
ACR, mg/g 18.7±8.8 16.9±7.9 0.15
Osmolaritya (subjects <16 years), mOsm/kg 546±117 817±137 <0.001
Osmolaritya (subjects >16 years), mOsm/kg 669±243 900±235 <0.001
pH 5.9±0.8 6.1±0.6 0.26

Values are reported as mean ± standard deviation. β-TM, beta-thalassemia; FeNa, urinary excretion 
fraction of sodium; ACR, albumin-to-creatinine ratio.

a Urinary osmolarity after 12 h of fluid restriction.
b Mann-Whitney U test.
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components analysis (PCA), on data preprocessed by unit variance scaling (UV) and mean 
centering. Then, a partial least-squares discriminant analysis (PLS-DA) was used to find the 
principal components best describing class separation. Each class is defined by a matrix of 
response variables reporting the class membership of each observation in the training dataset. 
PLS-DA provides the correlation between the response variables and the observations.

Statistical Analysis
Comparisons between β-TM cases and controls were performed by the goodness-of-fit 

test. Since some of the variables were not found to be normally distributed, the Mann-Whitney 
U test was used to test differences between means. 

Results

Renal and Tubular Function
Demographic and anthropometric characteristics and other markers of renal and tubular 

function of β-TM subjects and controls are shown in Table 1. 
In the β-TM group, mean eGFR was 109.6 mL/min/1.73 m2; 80% of patients had an eGFR 

> 90 and 20% had 60–90 mL/min/1.73 m2. ACR was < 30 mg/g in all patients. The analysis of 
tubular function revealed normal basal plasma electrolyte levels, with basal FeNa < 1% in most 
of the patients, as in the normal range [47]; the mean fractional bicarbonate excretion 
(FeHCO3) was < 1% and no difference in urinary excretion of bicarbonate/creatinine and 
FeHCO3 was detected between study groups. 60% of patients showed hypercalciuria in the 
absence of hypercalcemia. In adults, the mean maximal urine osmolality was 669 mOsm/kg, 
with 50% showing a defective ability to concentrate the urine, defined as a urine osmolality 
< 750 mOsm/kg (an arbitrary cut-off based on the literature) [25, 26]. After overnight fasting, 
urine pH was > 6.5 in 20% of the patients analyzed, and > 80% of patients had a urine α1-
microglobulin concentration > 15 mg/g creatinine, indicating defective tubular reabsorption.

Urine Metabolomic Profile in Patients and Controls
After explorative PCA, PLS-DA was performed with the aim of distinguishing between the 

thalassemic and healthy individuals. The resulting statistical models obtained with the 2 sets 
of binned spectra (0.04 and 0.01 ppm) were very robust with R2 and Q2 always > 0.5.  

β-thalassemic
Control 

Fig. 1. Three-dimensional scores 
scatter-plot of the first 3 principal 
components. Blue dots, healthy 
individuals; green dots, thalasse-
mic patients.
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We discuss the analysis of the 0.01-ppm binned spectra, which gave the best results, in on- 
line supplementary Figure 1 (see www.karger.com/doi/10.1159/000507369 for all on- 
line suppl. material).

The scatter-plot scores of the first 3 principal components, accounting for > 80% of the 
variance, are reported in Figure 1. The inspection of this plot highlights a clear distinction 
between the healthy individuals (blue dots) and the β-TM patients (green dots), indicating 
that these 2 populations have significantly different metabolite profiles.

In order to understand the distinctive metabolic differences between the 2 groups, 
analysis of the loadings was performed. In an untargeted metabolomic analysis, the PLS 
loadings line-plot across the full spectral range is better-suited to detecting spectral regions 
where differences occur, i.e., that mainly contributed to the discrimination between the thal-
assemic and healthy individuals. As reported in Figure 2, the chemical shift regions, where 
significant differences occurred, are those at 1–4 and 7–8 ppm.

This is further confirmed in Figure 3 where the variables importance plot (VIP) is 
displayed. It shows that the most important variables (chemical shift spectral regions) that 
are able to discriminate between thalassemic and healthy individuals are those specified 
above.

Fig. 2. Loading line plot.

Fig. 3. VIP plot of the first 100 variables. Variables with a VIP value > 1 are considered “important.”
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Visual inspection of the spectra of the thalassemic patients shows a very crowded spectral 
region in the low range of 1–3.5 ppm (Fig. 4). In this range, the peaks of amino acids with 
lateral alkyl chains and of most of the low-molecular weight organic acids, are under reso-
nance, together with the characteristic singlets of N-alkyl metabolites such as TMAO, betaine, 
taurine, carnitine, etc. (Fig. 4). On the other hand, the high range of 7–8 ppm contains the 

Formic

Ty
r

Tr
p

Ph
e

His

Hip

TMAO

Organic 
acids

+
branched aa 

Unknown metabolite

b-hbu

a

b

Fig. 4. 1H-NMR spectrum of a thalassemic patient zoomed in the 0.8–3.6 ppm (a) and 6.7–8.7 ppm (b) spec-
tral ranges. Some of the peaks are labeled with the respective over- and underexcreted metabolite. b-HBu, 
β-hydroxybutyric acid; Thr, threonine; Lac, lactate; b-a-HIBu, β-hydroxyisobutyric acid; Ala, alanine; Acet, 
acetone; DMA, dimethylamine; TMA, trimethylamine; Citr, citrate; Crtn, carnitine; Cre, creatine; Chol, choline; 
Btai, betaine; TMAO, trimethylamino-N-oxide; Hipp, hippuric acid; Form, formic acid; His, histidine; Trp, trip-
tophane; Tyr, tyrosine; Phe, phenyalanine.
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peaks of some other amino acids like histidine, phenylalanine, triptophane, tyrosine, and 
other organic acids like hippuric and formic acid. 

Even though the metabonomics analysis revealed that the difference in the urinary metab-
olite profile between the β-TM and control populations was due to a significant different multi-
parametric response, the concentrations of some selected metabolites were differentially 
excreted in the urine. Online supplementary Tables S1 and S2 list several metabolites that are 
more or less abundant in the urine of patients than in controls. Interestingly, a number of mole-
cules known to be reabsorbed along the proximal tubule, e.g., amino acids (valine, threonine, and 
alanine) and citrate, were overexcreted in the β-TM patients, suggesting a tubular defect.

Notably, Figure 4 also shows the presence, in all thalassemic samples, of a doublet at 
1.282–1.297 ppm. In contrast, > 10% of the healthy samples did not show the above signal, 
and the mean concentration in the control population is significantly lower than in the β-TM 
subjects (Table 2). Indeed, this metabolite is one of the most important factors contributing 
to the distinction between healthy and β-TM individuals (Fig. 2, 3). A 2-dimensional NMR 
correlation spectroscopy (COSY) study was performed to detect spectral signatures related 
to this doublet. This analysis revealed that the doublet was linked to several low-intensity 
peaks in the region of 2.5 and 3.5 ppm. This finding suggests that one of the candidate 
molecular structures could be a derivative of 2-(1-hydoxyethyl)propanedioc acid. Further 
investigations are needed to definitely assign the above signal.

Discussion

The major new finding in this study is that β-TM patients undergoing transfusions and 
DFX therapy versus normal individuals exhibit different concentrations of some metabolites 
in the urine. Our data show that N-methyl compounds and organic acids were overexcreted 

Table 2. Univariate statistics of a selected list of metabolites which drive the discrimination between the 
β-TM and age- and gender-matched control populations

Metabolite Metabolite median concentration1, 
mmol/mol

p value2

β-TM controls

Valine 2.9 1.6 0.00006
Threonine 33.9 14.0 0.0009
Alanine 61.2 32.8 0.000002
Acetic acid 20.4 9.4 0.0003
Citric acid 578.9 442.3 0.035
Taurine 69.1 47.8 0.00006
Carnitine 5.6 2.6 0.0002
TMAO 55.1 51.9 0.3
Betaine 20.2 6.9 0.00005
Glycine 221.0 72.5 0.000006
Hippuric acid 55.2 110.5 0.0007
Formic acid 140.5 38.8 0.00000000003
b-hbu 7.9 8.4 0.4
Unknown 109.9 12.3 0.00000002

TMAO, trimethylamine N-oxide, b-hbu, β-hydroxybutyric acid.
1 Metabolite-to-creatinine ratio, i.e., metabolite (mmol)/creatinine (mol).
2 Kolmogorov-Smirnov test.
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in the urine of thalassemic patients compared with controls. Moreover, a number of mole-
cules normally reabsorbed along the proximal tubule, like valine, threonine, and alanine as 
well as citrate, are overexcreted in β-TM patients, suggesting a tubular defect of this tract of 
the nephron. These results further support the hypothesis that “urinomic” analysis may be 
potentially used for the early detection of renal dysfunction in this setting.

The pathogenesis of kidney damage in β-TM is currently unknown and requires addi-
tional studies. In our study cohort, we found a high incidence of low-molecular-weight 
proteinuria and defective urine concentration in the β-TM subjects. Selected patients, those 
on DFX, had urine osmolality < 750 and < 600 mOsm/kg (adults and children, respectively), 
and thus differed significantly from controls. β-TM patients also had a tendency towards 
more alkaline urinary pH. This seems not to depend on the loss of bicarbonate (FeHCO3 < 1%) 
or phosphate in the urine but is rather related to the increased urine excretion of organic 
anions. Indeed, this altered the urinary buffer capacity (increasing the titratable acidity), 
influencing the 12 h night-fasting urinary acid excretion. Moreover, 60% of the patients had 
hypercalciuria but not hypercalcemia, as previously reported [10, 48].

In line with our data, several other reports have shown that β-TM is associated with renal 
dysfunction [27–29]. Renal manifestations in β-TM have a multifactorial genesis related to 
the natural history of the disease: chronic anemia, potential associated chronic hypoxia, iron 
overload, and the use of specific iron chelators [27]. Şen et al. [30] suggested that urinary NAG 
and NGAL may be considered reliable markers for monitoring renal injury in β-TM patients. 
Chronic anemia and hypoxia are also associated with oxidative stress, lipid peroxidation, and 
functional abnormalities in tubular cells. There is evidence in the literature of a significant 
correlation between the severity of anemia and markers of tubular abnormalities in patients 
with β-TM. The underlying pathophysiological mechanism is considered multifactorial, 
including increased vascular resistance, with consequent hyperdynamic circulation and 
modulation of the renal plasma flow and GFR [31, 32].

Reports of kidney injury in β-TM patients demonstrate an association between proximal 
tubular dysfunction and intracellular iron deposition [33, 34]. Experimental studies on an 
animal model of β-TM exposed to chronic iron loading showed that rats developed iron 
deposits in glomeruli and in the proximal but not distal tubules, with signs of significant 
glomerulosclerosis, tubular atrophy, and interstitial fibrosis [35]. In the acidic proximal 
tubular fluid, iron dissociates from transferrin and induces the production of reactive oxygen 
species, with subsequent damage to the brush-border of the renal tubular membrane [36]. 
Moreover, the use of iron-chelating agents has been associated with renal toxicity in patients 
with transfusion-dependent β-TM and iron overload [37, 38]. DFX forms complexes with iron 
and promotes its excretion, but it is not indicated for creatinine clearance < 40 mL/min/1.73 
m2 or serum creatinine > 2 times the upper limit of normal [39]. In this study, all patients had 
an eGFR > 60 ml/min/1.73 m2 and were treated with DFX for > 12 months.

“Omics” technologies are a novel and expanding area in clinical research and are emerging 
as diagnostic and therapeutic tools in many inherited renal and extrarenal diseases [40–42, 
49]. The application of multi-omics studies to investigate genetic rare diseases offers the 
possibility of understanding the pathophysiological mechanisms underlying kidney 
dysfunction [43]. In addition, urine is a biological sample that is easy to collect in a nonin-
vasive manner, providing the possibility of carefully identifying thousands of renal and extra-
renal molecules [44]. Early and accurate identification of urinary markers could be useful for 
assessing initial damage to tubules, and possibly improve the management of rare renal 
disease and its progression to the end stage, i.e., chronic kidney disease [45]. The application 
of metabolomics, the large-scale study of small molecules, metabolomes, and their interaction 
with the biological system and environment, may improve our knowledge in this field of 
research [46].
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To date, there is little information on the pathogenesis, risk, and predictors of poor renal 
outcome in β-TM. This is the first experimental study on metabolomics in thalassemic patients. 
Our results show that β-TM subjects undergoing transfusions and DFX therapy have some 
metabolites overexcreted in their urine. 

One limitation of the study is that any change in the urine metabolite profile could be 
associated with any of the following: thalassemia, transfusions, DFX therapy, or a combi-
nation, with no way of discerning which. However, our results support other studies by 
showing that tubular dysfunction is common in β-TM. We demonstrated that tubular defects 
may be revealed by a complex urinary metabolic multiparametric response. In our opinion, 
these findings can be used to possibly identify patients in an early stage of renal failure. 
Further studies may investigate the effect of different chelating agents on the urinary metab-
olite profile of thalassemic individuals.

Another limitation is that our findings were based on a cross-sectional observation. 
Longitudinal studies are needed to better address the mechanisms underlying renal 
dysfunction in β-TM and whether the metabolomic patterns may characterize patients with 
a higher risk of kidney disease progression.

A precision medicine approach will allow us to tailor counseling, screening, treatment 
recommendations, and the early individuation of markers of renal dysfunction so as to be able 
to prevent the evolution of kidney disease in this setting. 
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