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Summary

Columnar file formats provide an efficient way to store data to be queried by SQL-on-Hadoop

engines. Related works consider the performance of processing engine and file format together,

which makes it impossible to predict their individual impact. In this work, we propose an

alternative approach: by executing each file format on the same processing engine, we compare

the different file formats as well as their different parameter settings. We apply our strategy

to two processing engines, Hive and SparkSQL, and evaluate the performance of two columnar

file formats, ORC and Parquet. We use BigBench (TPCx-BB), a standardized application-level

benchmark for Big Data scenarios. Our experiments confirm that the file format selection and

its configuration significantly affect the overall performance. We show that ORC generally

performs better on Hive, whereas Parquet achieves best performance with SparkSQL. Using

ZLIB compression brings up to 60.2% improvement with ORC, while Parquet achieves up to 7%

improvement with Snappy. Exceptions are the queries involving text processing, which do not

benefit from using any compression.
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1 INTRODUCTION

In the last years, Hadoop has become the standard platform for storing and managing Big Data. However, the lack of skilled developers to write

MapReduce programs has pushed the adoption of SQL dialects into the Hadoop Ecosystem in an attempt to benefit from the existing relational

database skills, especially in the Business Intelligence and Analytics departments. Apache Hive1,2 has emerged as the standard data warehouse

engine on top of Hadoop. This adoption by the industry has lead the developer community to continuously work on improvements both in query

execution path as well as in data storage strategies. For example, Huai et al3 proposed an effective query planning, a vectorized query execution

model, and a new file format, called Optimized Record Columnar (ORC). Similarly, Parquet,4,5 inspired by the Google Dremel paper,6 is another

columnar file format.

Columnar file formats store structured data in a column-oriented way. The advantages of the columnar over the row oriented formats3,4 are

the following.

• They make it efficient to scan only a subset of columns. If a query accesses only a few columns of a table, the I/O can be drastically reduced

compared to traditional row oriented storage where you are forced to read entire rows.

• Organizing data by columns, chunks of data of the same type are stored sequentially. Encoding and compression algorithms can take advantage

of the data type knowledge and homogeneity to achieve better efficiency both in terms of speed and file size.

Many SQL-on-Hadoop engines exist nowadays along with file formats designed to accelerate the data access and maximize the storage capacity.

Table 1 summarizes the most popular SQL-on-Hadoop engines together with the data file formats they support. As shown in columnDefault File

Formats, each engine prefers different default file format with which it achieves its best performance. For example, ORC is favored by Hive1,2 and
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TABLE 1 Popular SQL-on-Hadoop
engines

Engines Default File Format Other Supported File Formats

Hive1,2 ORC Text, Sequence File, RCFile, Parquet, Avro

Spark SQL7 Parquet Text, JSON, Sequence File, RCFile, ORC, Avro

Impala8 Parquet Text, Sequence File, RCFile, Avro

Pig9 Pig Text File Sequence File, RCFile, ORC, Parquet, Avro

Drill10 None Text, JSON, Sequence File, MapR-DB, Parquet, Avro

Presto11 ORC Text, JSON, Sequence File, RCFile, ORC, Parquet

Tajo12 Text File JSON, Sequence File, RCFile, ORC, Parquet

HAWQ13 AO, CO, Parquet PXF, Text, RCFile, Avro, Hbase

IBM BigSQL14 Text File Sequence File, RCFile, ORC, Parquet, Avro

Phoenix15 CSV, JSON Hbase, Spark RDD and DataFrames

AsterixDB16 ADM (super-set of JSON) ADM, CSV

Vertica17 internal raw formats ORC, Parquet

AWS Athena/Presto18 ORC ORC, Parquet, CSV, JSON, Avro

FIGURE 1 Research objective

What is the 
best 

performing 
combination

?

File format:
1. ORC
2. Parquet

Configuration:
1. Default
2. No compression
3. Compression

Processing Engine [Hive | Spark SQL]

Presto,11 whereas Parquet is first choice for SparkSQL7 and Impala.8 A number of studies19-22 have investigated and compared the performance

of file formats running them on different SQL-on-Hadoop engines. However, because of the different internal engine architectures, these works

actually compare the engine together with its file format optimizations. Contrary to those approaches, in this paper, we compare ORC and

Parquet file formats while keeping the processing engine fixed. Our main goal is not to tell which engine is better but to understand how the

overall performance of an engine is influenced by a change in the file format type or by a different parameter configuration.

Figure 1 shows a graphical representation of our research objective.

This study investigates the performance of the ORC and Parquet file formats first in Hive and then in Spark SQL. It also shows how tuning

accordingly the file format configurations can influence the overall performance. We perform a series of experiments using the standard BigBench

(TPCx-BB) benchmark23 with a dataset size of 1000 GB, comparing different ORC and Parquet configurations.

The contributions of this paper are as follows:

• performance evaluation of ORC and Parquet file formats with their default configuration on both Hive and Spark SQL engines;

• performance comparison of ORC and Parquet file formats with two optimized configurations (respectively with and without data compression)

in Hive and Spark SQL;

• investigate the influence of data compression (Snappy) on the file format performance;

• detailed query analysis of representative BigBench queries.

This work is a continuation of a series of benchmark experiments24-29 conducted at the Frankfurt Big Data Lab.

The rest of this paper is organized as follows. Section 2 gives background information and related work. Section 3 presents the experimental

setup and the preparation stages. Section 4 discusses benchmark results for Hive, and Section 5 discusses benchmark results for SparkSQL.

Section 6 presents an in-depth analysis of a small subset of representative queries. Section 7 discusses our findings and directions for future

work. Finally, Section 8 summarizes our results.

2 BACKGROUND AND RELATED WORK

In this section, we briefly introduce the main technologies and terms used throughout the paper. Moreover, we present a summary of the most

relevant studies investigating data file formats in SQL-on-Hadoop systems.

2.1 Hive

Apache Hive1,2 is a data warehouse infrastructure built on top of Hadoop. Hive was originally developed by Facebook and supports the analysis

of large data sets stored on HDFS by queries in an SQL-like declarative query language, called HiveQL. It does not strictly follow the SQL-92
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standard. Additionally, natively calling User Defined Functions (UDF) in HiveQL allows to filter data by custom Java or Python scripts. Plugging

in custom scripts in HiveQL makes the implementation of natively unsupported statements possible. Hive consists of two core components:

the driver and the Metastore. The driver is responsible for accepting HiveQL statements, submitted through the command-line interface (CLI)

or the HiveServer, and translating them into jobs that are submitted to the MapReduce engine.2 This allows users to analyze large data sets

without actually having to develop MapReduce programs themselves. The Metastore is the central repository for Hive's metadata and stores all

information about the available databases, tables, table columns, column data types, and more. The Metastore uses typically a traditional RDBMS

like MySQL to persist the metadata.

2.2 Spark SQL

Apache Spark30 is a cluster computing system that is able to run batch and streaming analysis jobs on data distributed on the cluster. Spark

SQL7 is one of the many high level tools running on top of a Spark cluster. It facilitates the processing of structured data by offering an SQL-like

interface and support for HiveQL and Hive UDFs. To achieve this, it defines the concept of DataFrame, a collection of structured records, and a

declarative API to manipulate it. Spark SQL includes a specific query optimizer, Catalyst, which improves computation performance thanks to the

available information about the data structure. Data can be queried from multiple sources, among which the Hive catalog.

2.3 Columnar file formats

Apache ORC3,31 and Apache Parquet5 are the most popular and widely used file formats for Big Data analytics and they share many common

concepts in their internal design and structure. In this section, we will present the main aspects of columnar file formats in general and their

purpose in optimizing query execution. Figure 2 will support the explanation.

The upper right part of Figure 2 shows a table example with four columns (A, B, C, and D). Each column has a different color to better

understand the column-oriented storage pattern later. A table is stored in one or more HDFS files, composed of one or more file system blocks.

Table rows are partitioned into groups and stored in the blocks, as shown in the left upper part of Figure 2. Row groups are data units independent

from each other and used to split the input data for parallel processing. Data in row groups is not stored row by row, but column by column.

Looking at the first row group detail in Figure 2, we can see that data values for Column A (in red) are stored first, next to it come data values for

Column B (in purple), and so on. These portions of column data are usually called column chunks and they allow the filtering of unneeded columns

by the query while reading the file. Finally, data in column chunks is split into pages which are the indivisible unit for encoding and compression.

Because values in a column chunk share the same data type, encoding algorithms can achieve a more efficient representation. The encoded

output is then compressed with a generic compression algorithm (like ZLIB32 or Snappy33).

While the column-oriented storage strategy is used to filter out unnecessary column data for a query, indexes are used to filter out row groups.

They are usually placed in front of each row group, so that, by just reading the index, an entire row group can be immediately skipped. This is only

possible when the query execution engine uses predicate push-down optimization.34 Indexes are not shown in Figure 2 for the sake of simplicity.

Tables 2 and 3 report all the mentioned general concepts and their specific implementation name for each file format. Furthermore, parameter

name and default value for the Hive engine are shown. We do not report parameters for Spark in the tables because our benchmarking platform

(BigBench) generates the dataset with Hive and the file format configuration happens in Hive settings.

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

... ... ... ...

aN bN cN dN

block1 block2 ... blockN Footer

Row group 1 Row group 2

Column A
Chunk 1

Column B
Chunk 1

Column C
Chunk 1

Column D
Chunk 1

page page page page page page page page page page

Column A
Chunk 2

Column B
Chunk 2

Column C
Chunk 2

Column D
Chunk 2

FIGURE 2 General structure of a columnar file
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TABLE 2 ORC design concepts and
default configuration

Concept Name Hive Configuration Default

Group of rows Stripe hive.exec.orc.default.stripe.size 67 108 864 Bytes

Index Index orc.create.index (not available in Hive) true

hive.exec.orc.default.row.index.stride 10 000 rows

Portion of column Stream

Page Compression chunk hive.exec.orc.default.buffer.size 262 144 Bytes

Encoding Encoding hive.exec.orc.encoding.strategy SPEED

Compression Compression hive.exec.orc.default.compress ZLIB

TABLE 3 Parquet design concepts and default
configuration

Concept Name Hive Configuration Default

Group of rows Row group parquet.block.size 134 217 728 Bytes

Index Dictionary page parquet.enable.dictionary true

parquet.dictionary.page.size 1 048 576 Bytes

Portion of column Column chunk

Page Data page parquet.page.size 1 048 576 Bytes

Encoding Encoding parquet.enable.dictionary True

Compression Compression parquet.compression Uncompressed

2.4 Optimized record columnar file

Apache optimized record columnar (ORC)3,31 is a self-describing (includes metadata), type-aware columnar file format designed initially for

Hadoop workloads, but now used as a general purpose storage format. It is optimized for large streaming reads and has many advantages over

its predecessor, the RCfile format.35

Table 2 shows the ORC implementation of general design concepts we talked about in Section 2.3. A group of rows is called a stripe in ORC.

The size is configurable and defaults to 64MB. Stripes are explicitly separated from each other by an index (placed in front) and a footer. A stripe

contains portions of the table columns, which are called streams and each stream is divided into pages, called compression chunks. Pages are sized

256 KB by default.

The index contains row statistics and the minimum and maximum value for each column stream. An index can be stored into more pages and a

page contains information about 10 000 rows by default. In addition, a bloom filter is included for better row filtering. Finally, a top level index is

placed in the file footer.

ORC supports the complete set of data types available in Hive, including the complex types: structs, lists, maps, and unions. Numerical columns

are encoded using Run-Length Encoding (RLE) and it is possible to select between the SPEED (default) or COMPRESSION strategy. Dictionary

encoding is applied when possible to strings. The latter makes the encoding more lightweight; anyway, this has nothing to do with the generic

compression algorithm, which is applied on the encoding output. Default compression algorithm is ZLIB.32

The metadata in ORC is stored at the end of file (after the file footer) using the Protocol Buffers,36 providing the ability to add new fields to

the table schema without breaking readers.

2.5 Parquet

Apache Parquet5 is an open source columnar storage format using complex nested data structures inspired by the Google Dremel paper.6 It

is a general purpose storage format that can be used or integrated with any data processing framework or engine. Parquet supports efficient

compression and encoding schemas on a per-column level. It uses Apache Thrift37 for the metadata definitions. There are three types of metadata:

file metadata, column (chunk) metadata, and page header metadata.

Table 3 shows the Parquet implementation of general design concepts we talked about in Section 2.3. The row group concept keeps the same

name in Parquet documentation, whereas it is called block in Hive configuration and has a default size of 128 MB. Differently from ORC, row

groups are not explicitly separated from each other. Furthermore, for column chunks, Parquet keeps using the general name. Pages composing a

column chunk are called data pages to distinguish them from dictionary pages used as indexes. The default size of each data page is 1 MB, 4 times

larger than ORC compression chunks.

Column chunk data is paired with metadata that includes a dictionary page, a compact representation of column values. The dictionary pages

are useful to filter out unnecessary data for the query. Dictionary page size is customizable and it defaults to 1 MB, the same default value used

for data pages.

At the end of the file, metadata describing the file structure are stored. File metadata contain references to all of the column chunk metadata

start locations to easily access them. Furthermore, it allows to immediately filter out columns not needed by the query.

For encoding, Parquet uses a dictionary encoding when applicable on text data. RLE or bit-packing are used for numerical values. The selection

happens automatically when writing data to a Parquet file. A further generic compression algorithm can be applied on encoded data. In the

default Hive configuration, the Parquet data is not compressed.
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2.6 Related work

In recent years, multiple studies evaluated and compared the different SQL-on-Hadoop engines along with the file formats they support. A recent

SQL-on-Hadoop Tutorial38 at VLDB 2015 reviews in detail the architectures of the most popular ones. ORC and Parquet are also listed as the

most widely used file formats.

Performance Comparisons. Table 4 summarizes related work that evaluate SQL-on-Hadoop engines with ORC and Parquet.

Floratou et al19 compared the performance of ORC and Hive with the one of Parquet and Impala using TPC-H42 and TPC-DS43 queries. The

results show that Impala is 3.3× to 4.4× faster than Hive on MapReduce and 2.1× to 2.8× faster than Hive on Tez for the TPC-H experiments. For

the TPC-DS inspired experiments, Impala 8.2× to 10× faster than Hive on MapReduce and about 4.3× faster than Hive on Tez. The results also

show that Parquet skips data more efficiently than the ORC format, which tends to prefetch unnecessary data especially when a table contains a

large number of columns. However, the built-in index in ORC format mitigates that problem when data is sorted.

Similarly, Chen et al21 compare multiple SQL-on-Hadoop engines using modified TPC-DS queries on clusters with varying number of nodes. In

terms of storage formats, they use the default ORC and Parquet configuration parameters. The results show that overall Impala and Shark are

the fastest followed by Presto, Hive, and Stinger. Moreover, Shark and Impala perform better on small datasets, and Hive, Stinger, and Shark are

sensitive to data skewness.

Another work by Wouw et al20 presented a new benchmark with real and synthetic data and compared Shark, Impala, and Hive in terms of

processing power, resource utilization, and scalability. The results do not show a clear winner in terms of performance, but Impala and Shark have

similar behavior. In terms or resource consumption, Impala is the most CPU efficient and has slightly less disk I/O than Shark and Hive.

Costea et al22 introduced the VectorH engine as a new SQL-on-Hadoop system on top of Vectorwise and compared it with similar engines

using TPC-H. In the experiments, they used ORC and Parquet with Snappy compression. The experiments showed that VectorH performs 1-3

orders of magnitude faster than Impala (with Parquet), Hive (with ORC), HAWQ (with Parquet), and Spark SQL (with Parquet), thanks to the

multiple optimizations introduced in the paper.

A recent work by Poggi et al39 evaluated the Hive on MapReduce and Hive on Tez (with default ORC format configuration) performance on

multiple cloud providers using the TPC-H benchmark. The results showed that the price-to-performance ratio for the best cloud configuration is

within a 30% cost difference for the 1TB scale. The same team40 evaluated different cloud providers and their Hive+Tez/Hive+MR as well as Spark

offerings using the BigBench (TPCx-BB) benchmark. All experiments were performed using data stored in ORC format and default configurations

unless there were specific execution problems. The results showed that Hive-on-Tez performs up to 4x better than Hive-on-MapReduce.

Hive-on-Tez is also faster than Spark 2.1 on the lower scale factors, but this difference narrows down for the larger data sizes. However, it is not

possible to draw any conclusions if ORC or Parquet influenced the overall performance.

Last but not the least, Pirzadeh et al compared different SQL-on-Hadoop engines (Hive, Spark SQL, AsterixDB, and a commercial parallel

relational database) stressing them with TPC-H and storing the underlying data in various file formats. Similar to other studies, the authors

TABLE 4 Summary of related work

Citation Engines Benchmark File Formats Configurations

Floratou et al19 Hive v0.12 TPC-H ORC Text

Hive-Tez v0.13 TPC-DS Parquet Default

Impala v1.2.2 Snappy

Chen et al21 Hive v0.10 TPC-DS ORC Text

HiveStinger v0.12 Parquet Default

Shark v0.7.0

Impala v1.0.1

Presto v0.54

Wouw et al20 Hive v0.12 CALDA Sequence file Snappy

Impala v1.2.3 real world dataset

Shark v0.8.1

Costea et al22 Hive v1.2.1 TPC-H ORC ORC+Snappy (Hive)

VectorH v5.0 Parquet Parquet+Snappy

Impala v2.3 VectorH (Impala, HAWQ, SparkSQL)

HAWQ v1.3.1

Spark SQL v1.5.2 VectorH+LZ4

Poggi et al39 Hive v1.2.1 TPC-H ORC Default

Hive+Tez v1.2.1

Poggi et al40 Hive+Tez v1.2-2.1 BigBench ORC Default

Spark+SQL+MLlib v1.6-2.1 (TPCx-BB)

Pouria et al41 Hive+Tez v1.2 TPC-H ORC (Hive) Default

AsterixDB v0.8.9 Parquet (SparkSQL)

Spark v1.5
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compared SparkSQL with text data and Parquet; Hive-on-MR and Hive-on-Tez with ORC; and AsterixDB with normalized data and nested data.

The results showed that using optimized columnar file formats such as ORC and Parquet significantly improved the performance.

Optimizations. Recently, many new techniques for optimizing the performance and efficiency of analytical workloads on top of columnar

storage formats have been proposed. Bian et al44 focused on improving the data scan throughput by finding an optimal column layout. By

applying efficient column ordering, they reduced the end-to-end query execution time by up to 70% and respectively by additional 12% when

using column duplication with less than 5% extra storage.

A different approach of reducing data access through data skipping was presented by Sun et al.45,46 The authors introduced a four-step

framework (workload analysis, augmentation, reduce, and partitioning phases) for data skipping by applying more effective partitioning schema

that takes into account the query filters. The results showed 3-7x improvements in the query response time compared to the traditional range

partitioning. In their latest work, Sun et al47 presented a novel hybrid data skipping framework that optimizes the overall query performance by

automatically balancing skipping effectiveness and tuple-reconstruction overhead. It allows both horizontal and vertical partitioning of the data,

which maximizes the overall query performance.

At the same time, new file formats utilizing the capabilities of emerging storage components like Non-Volatile Memory (NVMe) devices were

introduced. Apache Arrow48 provides a language-independent columnar memory format for flat and hierarchical data, organized for efficient

analytic operations on modern hardware. Trivedi et al49 introduced a new high-performance file format optimized for NVMe devices that achieves

up to 21.4x performance gains. The authors integrated it with SparkSQL and showed up to 3x query accelerations with TPC-DS.

However, none of the above studies investigates the similarities and differences of both formats using a common SQL-on-Hadoop engine as a

baseline. Additionally, most of the above comparisons were based on benchmarks using structured data such as the TPC-H42 and TPC-DS.43 In

our study, we use BigBench, which operates on structured, semi-structured, and unstructured data and has been standardized as TPCx-BB50 by

the TPC committee.

3 EXPERIMENTAL SETUP

This section describes the hardware and software components and the different configurations used in our experiments.

3.1 Hardware configuration

The experiments were performed on a cluster consisting of 4 nodes connected directly through a 1GBit Netgear switch. All 4 nodes are Dell

PowerEdge T420 servers. The master node is equipped with 2x Intel Xeon E5-2420 (1.9 GHz) CPUs each with 6 cores, 32 GB of main memory,

and 1 TB hard drive. The 3 worker nodes are equipped with 1x Intel Xeon E5-2420 (2.20 GHz) CPU with 6 cores, 32 GB of RAM, and 4x 1 TB

(SATA, 7.2K RPM, 64 MB Cache) hard drives.

3.2 Software configuration

All four nodes in the cluster are equipped with Ubuntu Server 14.04.1 LTS as the operating system. On top of that, we installed the Cloudera

Distribution of Hadoop (CDH) version 5.11.0, which provides Hadoop, HDFS, and Yarn all at version 2.6.0 and Hive 1.1.0. Separately, we installed

Spark 2.3.0 and we configured Spark SQL to work with Yarn and Hive catalog. The total storage capacity is 13 TB of which 8 TB are effectively

available as HDFS space. Due to the resource limitation (only 3 worker nodes) of our setup, the cluster was configured to work with replication

factor of two. Table 5 show relevant cluster parameters and how they were adjusted for the experiments.

TABLE 5 Cluster configuration Component Parameter Configuration Value

YARN yarn.nodemanager.resource.memory-mb 31 GB

yarn.scheduler.maximum-allocation-mb 31 GB

yarn.nodemanager.resource.cpu-vcores 11

Spark master yarn

num-executors 9

executor-cores 3

executor-memory 9 GB

spark.serializer org.apache.spark.serializer.KryoSerializer

MapReduce mapreduce.map.java.opts.max.heap 2 GB

mapreduce.reduce.java.opts.max.heap 2 GB

mapreduce.map.memory.mb 3 GB

mapreduce.reduce.memory.mb 3 GB

Hive Client Java Heap Size 2 GB
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3.3 BigBench

In order to perform an extensive evaluation of the file formats, it was necessary to use a Big Data benchmark that is able to evaluate the

3Vs characteristics and utilizes structured, semi-structured, and unstructured data. BigBench23,51 has been proposed and developed to address

exactly these needs. It is an end-to-end analytics, application level, and technology agnostic Big Data benchmark that was recently adopted by

TPC and released as the TPCx-BB50 benchmark. Chowdhury et al52 presented a BigBench implementation for the Hadoop ecosystem, which

is available on GitHub53 and was used for our experiments. The data set is generated on a fictitious product retailer business model, whereas

the workload consists of 30 complex queries. 10 queries were taken from the TPC-DS benchmark,43 whereas the remaining 20 queries were

adapted from the McKinsey report.54 Table 6 summarizes the number and type of queries of this BigBench implementation. The query grouping

is an extended version of the one proposed in BigBench specification (see appendix B.3.2 in the work ‘‘TPC - Current Specifications - tpcx-bb

v1.2.0’’55). All queries are implemented using Apache Hadoop,56 Hive,57 Mahout,58 and the open Natural Language Processing toolkit.59 Apache

Mahout58 is a library for quickly creating scalable performing machine learning applications on top of MapReduce, Spark, and similar frameworks.

Apache OpenNLP59 is a library toolkit for machine learning processing of natural language text.

3.4 File format configurations

One of the goals of this study is to investigate how changing the configuration parameters of ORC and Parquet influence their performance.

Therefore, defining the exact configuration parameter values was the first very essential step before starting the experiments.

As shown in Sections 2.3, 2.4, and 2.5, the two file formats share many concepts in their structure design. Our goal is to setup ORC and

Parquet with a similar configuration, so to be able to meaningfully compare their performance. We define three test configurations reported in

Table 7 and we focus on three parameters: the row group size, the page size, and the compression algorithm. All other parameters are set to their

default values for all the three test configurations. As expected, the use of indexes in ORC and of dictionary pages in Parquet is enabled by

default. We set the HDFS block size to 256 MB for all of our tests.

The first test configuration is called Default Config and uses the default ORC and Parquet parameters as stated in each file format documentation.

The two formats have very different configurations, especially in the compression parameter. ORC uses ZLIB compression and Parquet does not

use any compression, which makes the benchmark results not comparable. Nevertheless, we decided to keep this setup to show the file formats

behavior when using them ‘‘out-of-the-box’’ and to highlight the performance change after an optimized parameter configuration.

The two other configurations, named Snappy Config and No Compression Config, use respectively the same value for row group and page size

while the compression algorithm changes. We increase the row group size to 256 MB to have more sequential reads from disk at the expense

of a higher memory usage.3,44 The page size is set to 1 MB (default for Parquet). A larger page size improves the compression performance and

decreases overhead, again, at the expense of a higher memory usage.

The compression parameter is also very important as it determines which general-purpose algorithm such as Snappy, ZLIB, or LZO is used

after the file format encoding.3 Using compression, file readers perform less I/O operations to get the data from disk but more CPU cycles are

spent to decompress them. In our configurations, we use the Snappy compression, which is supported by both ORC and Parquet.

Many parameter combinations are possible and would lead to interesting research questions. For example, how the performance for the two

file formats change if we vary the row group and page size from 64 MB to 256 MB in steps of 16 MB? Due to time constraints, we limit our tests

to these three configurations to achieve a meaningful comparison of the two file formats when running queries on a fixed engine.

Query Types Queries Number of queries

Pure HiveQL 6,7,9,11,12,13,14, 14

15,16,17,21,22,23,24

MapReduce /UDTF 1 1

MapReduce /Python 2,3,4,8,29,30 6

HiveQL /Spark MLlib 5,20,25,26,28 5

MapReduce /OpenNLP 10,18,19,27 4

TABLE 6 BigBench query types

Format Parameters Default config No compression config Snappy config

Parquet parquet.block.size 128 MB 256 MB 256 MB

parquet.page.size 1 MB 1 MB 1 MB

parquet.compression uncompressed uncompressed snappy

ORC hive.exec.orc.default.stripe.size 64 MB 256 MB 256 MB

hive.exec.orc.default.buffer.size 256 KB 1 MB 1 MB

hive.exec.orc.default.compress zlib uncompressed snappy

TABLE 7 File Format Configurations
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3.5 Engine configuration

To fully take advantage of columnar file formats design, it is important to configure some settings in the query execution engine. It is important

to notice that these parameters do not affect the file generation, but only the query processing.

Code 1 SparkSQL query execution settings.

For SparkSQL, we edit spark-default.conf file by adding the lines shown above.60,61 The first group of parameters is relevant for Parquet file

format. Lines 1 and 2 enable full support for predicate push-down optimizations. Parameter at line 3 enables the usage of Parquet built-in reader

and writer for Hive tables, instead of SerDe.62 Finally, line 4 in the previous file snippet enables predicate push-down also for ORC.

Code 2 Hive query execution settings.

BigBench uses custom settings for Hive, overriding the default.63 We set the parameters shown above in engineSettings.sql file placed in

BigBench Hive subfolder. Lines 1-3 enable the predicate push-down optimization. Line 4 enables the use of format specific indexes for both ORC

and Parquet.

3.6 Load times and data sizes

The last step before starting the experiments is to generate data using the BigBench data generator based on the PDGF.64 It generates data

in text format that needs to be loaded and converted to a specific file format. The loading process can greatly vary in time depending on the

compression used by both ORC and Parquet. BigBench relies only on Hive for creating the schema in the Metastore and storing the file formats

data into HDFS. Figure 3 displays the loading times (in minutes) versus the dataset sizes (in GB) for all configurations in Hive version 1.1.0 with

scale factor 1000 (1 TB). However, the size of the generated data even with No Compression Config. is much smaller (around 600 GB) than 1 TB

due to the columnar file format optimizations applied on the stored data (Section 2.3). The detailed summary of all results is available on GitHub65

under file Loading-times.xlsx.

To better compare measurements in Figure 3, we divide it in four equal quadrants by drawing a line at 350 GB on the Y-axis and 150 minutes

on the X-axis. There is an obvious trade-off between time taken to generate the data and the size of the generated data. The points in the

down-left quadrant will be the one with optimal performance, which in our case is empty. Therefore, the ORC Default configuration (using ZLIB

compression) in the down-right quadrant has the best performance in terms of time and data size, followed by the ORC Snappy configuration

with the fastest time generation. Parquet achieves its best performance with the Snappy configuration also in the down-right quadrant.

3.7 Performance evaluation

Our plan is to run experiments with all the 30 BigBench queries with the scale factor 1000 of BigBench (1000 GB of data). All tests are repeated

three times and we measure the execution time of each query. The averaged values are taken as a representative number. In order to compare

the three different configurations defined in Table 7, we need to repeat the three runs for each configuration for both ORC and Parquet. To

better compare the file formats and understand the different support on multiple processing engines, we perform the experiments on two

FIGURE 3 Hive Load Times (min.) on the X-axis and Data Sizes (GB)
on the Y-axis for Scale Factor 1000
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Configuration Default No compression Snappy compression

File Format ORC Parquet ORC Parquet ORC Parquet

BigBench Queries 30 30 30

Average Total Execution Time per 24 26 24 26 24 25

Run (hours) on Hive

Average Total Execution Time per 12 15 15 14 15 14

Run (hours) on SparkSQL

Number of Runs 3 3 3

Total Execution Time (hours) 108 124 116 120 116 117

TABLE 8 Experimental Roadmap

popular engines, Hive and Spark SQL. Table 8 summarizes all experimental runs to give an idea about the time overhead for our study. The

Average Total Execution Time per Run is the time needed to run all the 30 BigBench queries. We report this time in hours for Hive and Spark SQL.

As stated before, the tests are repeated three times for each combination of file format type, configuration, and processing engine. By summing

and multiplying, we obtain the Total Execution Time (in hours) needed for each of our configurations. It is reported on the last line of Table 8. By

summing all total execution times for the experiments, we get around 701 hours (29.2 days) of testing time.

We defined two metrics to help us compare the different file format configurations. The first metric is called Performance Improvement (PI%)

and the second one is called Compression Improvement (CI%). When comparing two execution times, we define the higher time HT (worst) as the

baseline and we compute the time difference with the lower time LT (better) as a percentage. This is the amount of saved time between the two

executions and we define it as Performance Improvement (PI%):

PI% =
|
|
|
|

(LT − HT)
HT

· 100
|
|
|
|

. (1)

Similarly, we define the Compression Improvement (CI%) as follows:

CI% = NoCompressionTime · 100
CompressionTime

− 100. (2)

The Performance Improvement (PI%) metric reports with how many % a file format configuration is faster on ORC compared to Parquet or vice

verse. It compares the execution times of the different file formats, whereas Compression Improvement (CI%) compares the improvement on a

particular file format (Parquet or ORC) when using data compression. The CI% can be negative when the baseline configuration without any

compression performs faster than the configurations with compressions (eg, Snappy and ZLIB).

4 HIVE

In the next subsections, we show results for the Hive processing engine. Each table is dedicated to a query set identified by the query type as

described in Table 6. Note that we merged the single MapReduce/UDTF query with MapReduce/Python group. The first column reports the

query number, whereas the following columns report execution times for each combination of configuration (Table 7) and file format type. The

Total Time of query execution is shown at the end of the table, whereas the very last two rows report the PI% and CI%. The latter is used to

show the overall improvement achieved by using data compression, whereas PI% shows the overall performance difference between the two file

formats for each configuration.

Query execution time is reported in minutes, and green cells highlight the best time between file formats within each of our configurations

(ie, Default, No compression, Snappy). Pairs of cells with the same color (white or light gray) are used to show similar performance between the

two file formats: we consider query performance comparable/equal if the difference is lower or equal to 1 minute. The standard deviation in %

between the 3 query executions for all Hive queries is under 5%, which indicates that Hive achieves very stable execution behavior.

Furthermore, we discuss the results from the perspective of a practitioner who runs BigBench as a black-box benchmark and analyzes the

results. This is also the motivation to include the Default file format configurations in our tests. We want to show what kind of performance you

get by using file formats out-of-the-box and how adjusting the configuration parameters can influence the system behavior.

4.1 Pure HiveQL

Table 9 shows results for the Pure HiveQL query type. Figure 4 depicts the query execution times as visual chart. These queries are fully

implemented in HiveQL and, unlike other query types, do not use UDF (User Defined Functions) or external libraries.

Looking at the Default configuration column, we can observe a clear pattern with ORC generally performing better. Only Q15, Q16, and Q22

show similar performance. For a naive user, this can be considered as an expected behavior since, as shown in Table 1, ORC is the default file

format in Hive and we expect better optimization with this engine. However, the file formats are configured very differently with ORC using
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TABLE 9 Hive Results for Pure HiveQL query type. Query execution time is reported in minutes. Green cells, as well as
<> symbols, highlight the best time between file formats within each configuration. Pairs of cells with similar
performance are filled with the same color (white or light gray) and divided by the ≈ symbol. PI% and CI% respectively
show the performance difference between formats and between uncompressed and compressed configurations

Default (min.) No compression (min.) Snappy (min.)

Query ORC Parquet ORC Parquet ORC Parquet

Q06 40 < 44 43 ≈ 44 41 < 43

Q07 30 < 34 32 < 34 30 < 34

Q09 16 < 20 16 < 21 16 ≈ 16

Q11 12 < 14 14 ≈ 14 13 ≈ 14

Q12 26 < 35 29 < 35 27 < 30

Q13 27 < 33 30 < 33 28 < 31

Q14 6 < 9 7 < 9 5 < 9

Q15 4 ≈ 5 4 ≈ 5 4 ≈ 4

Q16 62 ≈ 62 62 ≈ 62 62 ≈ 61

Q17 15 < 18 15 < 18 14 < 17

Q21 20 < 25 21 < 25 20 < 24

Q22 28 ≈ 28 28 ≈ 28 31 > 28

Q23 8 < 12 9 < 13 8 < 11

Q24 20 < 26 23 < 26 21 < 25

Total Time (min.) 312 < 366 332 < 367 320 < 347

Performance Improvement (PI) % 14.8 % ←− 9.5 % ←− 7.8 % ←−
Compression Improvement (CI) % 6.3 % baseline baseline baseline 3.7 % 5.6 %

FIGURE 4 Hive Results (in minutes) for the Pure HiveQL queries with all three file format configurations

ZLIB compression and a bigger block size, whereas Parquet is not using compression at all (Table 7). This comparison can then lead to misleading

conclusions.

To verify the previous results, we can observe the No compression and Snappy columns. In these two configurations, we tried to set ORC and

Parquet parameters to be as similar as possible, so that the performance comparison is more accurate. Observing the No compression column,

we can see that the previous pattern with ORC as a winner is confirmed, although the performance difference between the two file formats is

reduced. As shown in Table 9, from a ∼14.8% PI on Default configuration, we move to a ∼9.5% PI. Q06 and Q11 are added to the group of

queries showing similar performance.

Moving to the Snappy column, we can observe a general performance improvement for both file formats. This is shown by comparing the

Total Time cells. Blue cells show the baseline and CI for ORC (∼3.7%), whereas orange cells do the same for Parquet (∼5.6% CI). When using

compression, the better performance of ORC is again confirmed. Still, Q09 shows better performance on Parquet with similar performance to

ORC, and Q22 seems to get worse performance on ORC when adding Snappy compression to the configuration.

Finally, we can state that ORC is the winning file format for the Pure HiveQL query type on the Hive engine. Furthermore, using Snappy data

compression slightly improves the performance of both file formats.

4.2 MapReduce/Python

Table 10 shows results for the MapReduce/Python query type. Figure 5 depicts the query execution times as visual chart. The queries are

implemented in HiveQL and enriched with Python programs to execute complex operations within the query definition.

Starting from the Default column, we can observe again that ORC is performing better than Parquet for all the queries. Only Q29 shows a

difference of two minutes, but similar performance on the other configurations. We believe that this small difference is only due to noise in
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TABLE 10 Hive Results for MapReduce/Python query type. Query execution time is reported in minutes.
Green cells, as well as <> symbols, highlight the best time between file formats within each configuration.
Pairs of cells with similar performance are filled with the same color (white or light gray) and divided by
the ≈ symbol. PI% and CI% respectively show the performance difference between formats and between
uncompressed and compressed configurations

Default (min.) No compression (min.) Snappy (min.)

Query ORC Parquet ORC Parquet ORC Parquet

Q01 12 < 18 14 < 17 13 < 16

Q02 170 < 183 172 < 184 171 < 180

Q03 76 < 91 79 < 90 76 < 85

Q04 155 < 171 156 < 172 155 < 167

Q08 41 < 49 44 < 49 42 < 45

Q29 38 < 40 40 ≈ 40 39 ≈ 40

Q30 250 < 259 250 < 258 249 < 253

Total Time (min.) 743 < 811 755 < 811 746 < 786

Performance Improvement (PI) % 8.4 % ←− 6.8 % ←− 5.1 % ←−
Compression Improvement (CI) % 1.7 % baseline baseline baseline 1.3 % 3.1 %

FIGURE 5 Hive Results (in minutes) for the MapReduce/Python queries with all three file format configurations

the execution time and we conclude that Q29 acts similarly in spite of any change in the file format configuration. The table shows a ∼8.4% PI

between ORC and Parquet with the Default configuration.

The performance behavior is confirmed on the No compression and Snappy columns, where the PI is reduced respectively to ∼6.8% and ∼5.1%.

Both file formats benefit from a small performance improvement thanks to the introduction of compression. This is highlighted in the blue and

orange cells at the end of Table 10.

4.3 HiveQL/OpenNLP

Table 11 shows results for the HiveQL/OpenNLP query type. Figure 6 depicts the query execution times as visual chart. The queries are

implemented in HiveQL and enriched with a Java UDF to process natural language data (ie, product reviews).

TABLE 11 Hive Results for HiveQL/OpenNLP query type. Query execution time is reported in minutes. Green
cells, as well as <> symbols, highlight the best time between file formats within each configuration. Pairs of
cells with similar performance are filled with the same color (white or light gray) and divided by the ≈ symbol.
PI% and CI% respectively show the performance difference between formats and between uncompressed and
compressed configurations

Default (min.) No compression (min.) Snappy (min.)

Query ORC Parquet ORC Parquet ORC Parquet

Q10 33 > 18 23 > 19 30 ≈ 30

Q18 50 > 45 46 ≈ 47 48 < 50

Q19 13 > 9 10 ≈ 9 12 ≈ 12

Q27 2 ≈ 1 2 ≈ 1 2 ≈ 2

Total Time (min.) 97 > 73 81 77 92 94

Performance Improvement (PI) % −→ 25.5 % −→ 5.1 % 2.3 % ←−
Compression Improvement (CI) % -17.3 % baseline baseline baseline -12.0 % -18.4 %
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FIGURE 6 Hive Results (in minutes) for the HiveQL/OpenNLP queries with all three file format configurations

Looking at the Default column, we observe an opposite performance pattern with respect to the previous query types. Parquet shows

considerably better performance than ORC for Q10, Q18, and Q19. Q27 takes a very short time, making it hard to spot any significant

performance difference across the various configurations. The PI for Default configuration is ∼25.5%.

To understand this unexpected behavior, it is useful to look at query performance when the two file formats have a similar configuration.

With the No compression configuration, the PI resulting from the usage of Parquet decreases to ∼5.1%. All the queries show similar performance,

with the exception of Q10 that takes a considerably shorter time on Parquet. The results reported in the Snappy column highlight a very similar

performance behavior between the two file formats. Q18 seems to perform better on ORC here, but with a very small difference of about two

minutes. We can conclude that the performance is not greatly influenced by the file format because, if configured similarly, ORC and Parquet

show a comparable behavior.

It is interesting to compare the performance between No compression and Snappy. For the OpenNLP query type, the introduction of the Snappy

data compression does not bring any benefit, but instead, it worsens the performance. As reported in the very last line of Table 11, both ORC

(blue cells) and Parquet (orange cells) show a negative and consistent CI. This observation finally explains the unexpected performance pattern

reported in the Default column. In fact, Parquet uses no compression as a default, resulting in better performance when compared to ORC that

uses ZLIB in its Default configuration.

4.4 HiveQL/Spark MLlib

Table 12 shows results for the HiveQL/Spark MLlib query type. Figure 7 depicts the query execution times as visual chart. HiveQL code is used

to extract and prepare input data for machine learning algorithms. Usually, input is stored in a temporary table, processed with Spark MLlib Java

library, and the output is stored in a new additional table.

Looking at the Default column, we can see that all the queries except Q28 perform better on ORC than Parquet. Q28 performance is not

affected by any change in the file format configuration. The PI between the two file formats is 8.1%.

Moving to the No compression column, the previous performance pattern is confirmed but the PI decreases to ∼4.9%. The introduction of

Snappy data compression improves the performance for both file formats in a similar amount, respectively ∼2.6% for ORC (blue cells) and ∼2.5%

for Parquet (orange cells). Indeed, ORC results as the file format winner also for the Snappy configuration.

TABLE 12 Hive Results for HiveQL/Spark MLlib query type. Query execution time is reported in minutes.
Green cells, as well as <> symbols, highlight the best time between file formats within each configuration.
Pairs of cells with similar performance are filled with the same color (white or light gray) and divided by
the ≈ symbol. PI% and CI% respectively show the performance difference between formats and between
uncompressed and compressed configurations

Default (min.) No compression (min.) Snappy (min.)

Query ORC Parquet ORC Parquet ORC Parquet

Q05 147 < 153 148 < 154 146 < 149

Q20 65 < 69 68 ≈ 69 66 < 69

Q25 34 < 42 38 < 42 35 < 41

Q26 24 < 30 26 < 30 25 < 28

Q28 6 ≈ 6 6 ≈ 6 6 ≈ 6

Total Time (min.) 276 < 300 286 < 301 279 < 294

Performance Improvement (PI) % 8.1 % ←− 4.9 % ←− 5.0 % ←−
Compression Improvement (CI) % 3.8 % baseline baseline baseline 2.6 % 2.5 %
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FIGURE 7 Hive Results (in minutes) for the HiveQL/Spark MLlib queries with all three file format configurations

4.5 Summary

Next, we summarize the major findings of all experiments reported in this section.

1. Using the ‘‘out-of-the-box’’ Default file format configuration is not always the optimal choice and depends heavily on the data structure and

query type (Section 4.3).

2. ORC generally achieves best performance with the Hive engine with a Performance Improvement (PI%) going from ∼5% to ∼10%. The

HiveQL/OpenNLP query type (Section 4.3) makes an exception, with Parquet performing better on No compression (∼ 4.9% of PI) and similarly

with Snappy.

3. In most cases, using Snappy compression improves the performance on both file formats with Hive, except for the OpenNLP query type,

where we observe negative influence (Section 4.3). In particular, the Compression Improvement (CI%) for Parquet is negative with a value of

−18.4%.

5 SPARK SQL

In the next sections, we show results for the Spark SQL processing engine, again divided in the four BigBench query types as listed in Table 6. The

first column reports the query number, whereas the following columns report execution times for each combination of configuration (Table 7) and

file format type. The Total Sum of query execution times is shown at the end of the table, whereas the very last two rows report the PI% and CI%.

Query execution time is reported in seconds, and green cells highlight the best time between file formats within each of our configurations.

Pairs of cells with the same color (white) are used to show similar performance between the two file formats. We consider query performance

comparable/equal if the difference is lower or equal to 5% of the highest execution time. The standard deviation in % between the 3 query

executions for all SparkSQL queries varies greatly. Queries Q02 and Q30 achieve standard deviations varying between 7% and 16%, which will

be explained in Section 5.4. All other queries have standard deviations around 10%, which indicates that SparkSQL is less stable than Hive as

reported in the works of Ivanov and Beer.24,25 We believe this is also due to execution noise in the cluster affecting more SparkSQL times that are

generally much shorter compared to Hive ones.

Similar to the Hive engine, we will first discuss the performance of the Default configuration. Next, we observe No compression and Snappy

configurations to get insights and better understand the performance behavior. Generally, query performance on Spark showed more variable

results. This is also due to shorter execution times with respect to Hive and therefore bigger noise influence. The query source code for the Spark

experiments is exactly the same as the one in Hive, and therefore, we use the same query groupings in this section.

5.1 Pure HiveQL

Table 13 reports results for the Pure HiveQL query type. Figure 8 depicts the query execution times as visual chart. In general, Parquet seems to

perform better in all the three configurations.

Looking at the Default configuration, Parquet performs better than ORC for many of the queries despite the former does not use compression

and the latter uses ZLIB. Some queries perform similarly on both file formats (ie, Q07, Q11, and Q21), whereas other achieve considerably lower

execution times with ORC (ie, Q16, Q22, and Q24). In particular, Q22 shows a huge improvement of ∼79.3% when run on ORC with the Default

configuration compared to the No compression and Snappy configurations. Further experiments with ZLIB compression need to be performed in

order to understand this behavior, but this is out of the scope of our work.

Moving to the No compression column, it is more clear that, when the two file formats are under the same conditions, Parquet is the optimal

choice. At the same time, a group of six queries show similar performance between the two formats (ie, Q14, Q15, Q21, Q22, Q23, and Q24).

The PI% is significant with Parquet taking ∼21.5% less time than ORC to execute the full set of queries.

On the Snappy column, we can observe that both file formats get a performance benefit from the application of data compression. Parquet

gets an improvement of ∼5.5% (orange cells), whereas ORC gets a more modest improvement of ∼1.5%. Parquet clearly demonstrates its
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TABLE 13 Spark Results for Pure HiveQL query type. Query execution time is reported in seconds. Green
cells, as well as <> symbols, highlight the best time between file formats within each configuration. Pairs of
cells with similar performance are filled with the same color (white or light gray) and divided by the ≈
symbol. PI% and CI% respectively show the performance difference between formats and between
uncompressed and compressed configurations

Default (sec.) No compression (sec.) Snappy (sec.)

Query ORC Parquet ORC Parquet ORC Parquet

Q06 894 > 467 894 > 480 884 > 475

Q07 114 ≈ 118 130 > 123 116 ≈ 117

Q09 202 > 136 199 > 140 201 > 135

Q11 126 ≈ 121 134 > 116 117 > 110

Q12 331 > 105 331 > 118 314 > 122

Q13 278 > 155 274 > 176 271 > 150

Q14 148 > 138 138 ≈ 140 143 > 126

Q15 141 > 118 133 ≈ 132 139 > 125

Q16 451 < 613 677 > 630 665 ≈ 636

Q17 254 > 163 245 > 168 246 > 155

Q21 270 ≈ 262 244 ≈ 232 233 > 210

Q22 135 < 654 680 ≈ 688 687 > 635

Q23 155 > 145 167 ≈ 160 170 > 132

Q24 164 < 174 166 ≈ 160 164 > 154

Total Time (sec.) 3662 > 3369 4412 > 3463 4349 > 3282

Performance Improvement (PI) % −→ 8.0 % −→ 21.5 % −→ 24.5 %

Compression Improvement (CI) % 20.5 % baseline baseline baseline 1.5 % 5.5 %

FIGURE 8 Hive Results (in minutes) for the Pure HiveQL queries with all three file format configurations

performance advantages over ORC in all queries with the exceptions of Q07 and Q16 that perform similarly. The PI% between the two formats

is even more significant than the No compression case, reaching ∼24.5%.

5.2 MapReduce/Python

Table 14 reports results for the MapReduce/Python query type. Figure 9 depicts the query execution times as visual chart.

TABLE 14 Spark Results for MapReduce/Python query type. Query execution time is reported in seconds.
Green cells, as well as <> symbols, highlight the best time between file formats within each configuration.
Pairs of cells with similar performance are filled with the same color (white or light gray) and divided by the
≈ symbol. PI% and CI% respectively show the performance difference between formats and between
uncompressed and compressed configurations

Default (sec.) No compression (sec.) Snappy (sec.)

Query ORC Parquet ORC Parquet ORC Parquet

Q01 137 > 127 127 < 146 122 ≈ 128

Q02 15644 < 19287 19471 > 15937 19441 > 17580

Q03 2709 ≈ 2683 2750 ≈ 2737 2713 ≈ 2653

Q04 6319 < 7062 7375 ≈ 7032 6727 ≈ 6752

Q08 913 > 675 911 > 712 900 > 639

Q29 203 < 504 197 < 517 199 > 184

Q30 6837 < 15253 8690 < 11588 9368 < 11539

Total Time (sec.) 32762 < 45592 39522 > 38669 39471 ≈ 39474

Performance Improvement (PI) % 28.1 % ←− −→ 2.2 % 0 % ←−
Compression Improvement (CI) % 20.6 % baseline baseline baseline 0.1 % -2.0 %



IVANOV AND PERGOLESI 15 of 31

FIGURE 9 Hive Results (in minutes) for the MapReduce/Python queries with all three file format configurations

First, we need to say that Q02 and Q30 are highly unstable on Spark when using the Parquet file format. The two queries randomly fail with

‘‘Out of Memory’’ errors, but in many cases, they complete successfully. To obtain the results in Table 14, we ran Q02 and Q30 more than three

times with Parquet until we were able to get 3 successful run completions. We report the results for completeness, but we do not consider them

trustworthy for our discussion. We did not observe this behavior with any of the ORC configurations.

With the Default configuration, ORC performs better with the majority of the queries except Q01 and Q08 performing better on Parquet

and Q03 showing similar behavior. The PI% shows a ∼28.1% difference between the two formats. One reason for this behavior is that Q30 on

Parquet is taking more than twice the time needed to execute it on ORC. We observed that Spark uses a lot more memory with Parquet and

often fails with the aforementioned errors.

Moving to the No compression column, there is no clear winner between ORC and Parquet. Q08 performs better on Parquet, whereas Q01

and Q29 perform better on ORC. Q03 and Q04 show similar behavior on both file formats.

For the Snappy configuration, we cannot say which file format performs better. It is interesting to observe that the CI% achieved with the

introduction of Snappy compression is negligible for ORC (∼0.1%) and even negative for Parquet (∼ −2.0%). We should keep in mind that the

total times are highly influenced by the unstable behavior of Q02 and Q30 on Parquet.

Finally, it is hard to conclude anything meaningful for the MapReduce/Python query type on Spark. By changing the file format configuration,

many queries show no change in their performance (Q03 and Q04), whereas others show contradictory behavior (Q29 and Q01). Only Q08

performs always better on Parquet for all the configurations.

5.3 HiveQL/OpenNLP

Table 15 reports results for the HiveQL/OpenNLP query type. Figure 10 depicts the query execution times as visual chart.

On the Default column, execution time is shorter on Parquet because it uses uncompressed data as default parameter. Q19 shows no change

in performance and this behavior is confirmed also in the other columns of the table. In general, Q19 performance looks not to be affected by

any change in the file format configuration.

Similar to the Hive behavior in Section 4.3, we can observe that this set of queries in Spark SQL performs better on non-compressed data for

both file formats. Comparing No compression and Snappy, we can observe how enabling the data compression decreases the performance for all

queries and for both file formats. In fact, the CI% is negative for both ORC (blue cells) and Parquet (orange cells).

Looking at the No compression column, Q19 and Q27 show comparable performance, whereas Q10 and Q18 perform better on Parquet. The

PI% of ∼10.7% is in favor of Parquet.

TABLE 15 Spark Results for HiveQL/OpenNLP query type. Query execution time is reported in seconds.
Green cells, as well as <> symbols, highlight the best time between file formats within each configuration.
Pairs of cells with similar performance are filled with the same color (white or light gray) and divided by the
≈ symbol. PI% and CI% respectively show the performance difference between formats and between
uncompressed and compressed configurations

Default (sec.) No compression (sec.) Snappy (sec.)

Query ORC Parquet ORC Parquet ORC Parquet

Q10 1994 > 976 2026 > 1633 2070 < 3075

Q18 2711 > 2011 2699 > 2519 2836 ≈ 2721

Q19 521 ≈ 525 526 ≈ 530 535 ≈ 537

Q27 140 > 103 138 ≈ 128 139 ≈ 145

Total Time (sec.) 5366 > 3615 5388 > 4811 5581 < 6477

Performance Improvement (PI) % → 32.6 % → 10.7 % 13.8 % ←−
Compression Improvement (CI) % 0.4 % baseline baseline baseline -3.5 % -25.7 %
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FIGURE 10 Hive Results (in minutes) for the HiveQL/OpenNLP queries with all three file format configurations

As stated above, both file formats performance is decreasing with the Snappy configuration compared to the Default and No Compression. It is

interesting to observe that Q10 is faster with ORC and Snappy compared to Parquet and Snappy.

5.4 HiveQL/Spark MLlib

Table 16 reports results for the HiveQL/Spark MLlib query type. Figure 11 depicts the query execution times as visual chart.

Looking at the Default configuration, ORC achieves a better Total Time, with a PI% of ∼36.9%. Q20 and Q25 perform better on Parquet,

whereas Q28 does not show performance differences for any of the configurations.

Moving to the No compression column, ORC is still the best option in terms of total time but the PI% between the two formats is similar.

The most unusual behavior has Q05. It takes 618 seconds on ORC Default (using ZLIB compression) compared to 1842 seconds on ORC No

compression. All other queries do not seem to be affected by the configuration changes.

With Snappy data compression, the two formats show similar performance in all queries, with the exception of Q20 and Q25 that perform better

on Parquet. While Parquet gets a significant improvement thanks to data compression (∼7.0%, orange cells), ORC gets a minimal improvement in

the Total Time. Only queries Q05 and Q25 perform better when using ORC with Snappy instead of No Compression, whereas all the remaining

queries (Q20, Q26, Q28) result in longer execution times.

TABLE 16 Spark Results for HiveQL/Spark MLlib query type. Query execution time is reported in seconds.
Green cells, as well as <> symbols, highlight the best time between file formats within each configuration.
Pairs of cells with similar performance are filled with the same color (white or light gray) and divided by the
≈ symbol. PI% and CI% respectively show the performance difference between formats and between
uncompressed and compressed configurations

Default (sec.) No compression (sec.) Snappy (sec.)

Query ORC Parquet ORC Parquet ORC Parquet

Q05 618 < 1825 1842 ≈ 1900 1811 ≈ 1787

Q20 343 > 298 343 > 299 345 > 294

Q25 462 > 359 453 > 363 440 > 346

Q26 272 < 374 266 < 365 281 ≈ 290

Q28 304 ≈ 309 297 < 326 308 ≈ 322

Total Time (sec.) 1998 < 3165 3201 ≈ 3252 3187 ≈ 3039

Performance Improvement (PI) % 36.9 % ←− 1.6 % ←− → 4.6 %

Compression Improvement (CI) % 60.2 % baseline baseline baseline 0.5 % 7.0 %

FIGURE 11 Hive Results (in minutes) for the HiveQL/SparkMLlib queries with all three file format configurations
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5.5 Summary

Next, we summarize the major findings of all experiments reported in this section.

1. Using the ‘‘out-of-the-box’’ Default file format configuration is not always the optimal choice and depends heavily on the data structure and

query type (Section 5.3).

2. Parquet generally achieves best performance with the Spark engine except for HiveQL/Spark MLlib (Section 5.4) and MapReduce/Python

(Section 5.2) query types, where behavior is unclear.

3. In most cases, using Snappy compression improves the performance on both file format with Spark, except for the OpenNLP query type, where

we observe negative influence (Section 5.3). In particular, the Compression Improvement (CI%) for Parquet is negative with a value of −25.7%.

4. Queries Q02 and Q30 perform unstable on Spark (Section 5.2).

6 IN-DEPTH QUERY ANALYSIS

In this section, we perform a deeper query investigation with the goal to identify the causes of the varying performance behavior reported in the

previous sections. Due to time limitations, we select one representative query from each of the four query types in BigBench. These are Q08

(MapReduce/Python), Q10 (HiveQL/OpenNLP), Q12 (Pure HiveQL), and Q25 (HiveQL/Spark MLlib).

We re-executed the queries on SparkSQL configured with No compression and Snappy for ORC and Parquet. Each of them shows different

behavior with respect to the other queries in the same group. We analyze them with the help of the Spark History Server metrics, the query

source code, and the resource utilization data. Figure 12 shows all the information we collected about a query (ie, Q08 with No Compression on

ORC) by looking at the Spark History Server and source code. In particular, we collect the Spark tasks, stages, operations, as well as Input and

Output data sizes. A Spark query can be split into a number of jobs. A Spark job is a set of tasks that is resulting from Spark operation (action).

A task is an individual unit of work that is executed on one executor/container. A Spark stage is a set of tasks in a job that can be executed

in parallel. The operations are either actions or transformations executed in a job (ie, HadoopRDD or FileScanRDD). The Input size is the data

read in a stage, whereas the Output size is the data written/resulting from a stage. More details about the Spark internals are available in the

Spark documentation.66 Using this information, we compiled summary tables for each query execution to better understand the unexpected

behavior and compare the different file format configurations. The complete tables are available on GitHub65 under file Evaluation-summary.xlsx.

In addition, we collected performance metrics using the Performance Analysis Tool (PAT)67 by Intel. The tool collects data from all cluster nodes

introducing minimal overhead on the benchmark workload. At the end, it aggregates them and immediately produces Excel files with visual charts,

which will be used in our analysis. All generated charts are available on GitHub65 under file selected-queries-resource.pdf. In the next subsections,

we discuss our findings for each of the selected queries.

6.1 BigBench Q08 (MapReduce/Python)

Q08 investigates the effect of review reading by customers on the sales revenue in a specific time and for a specific product category. The query

can be divided in two distinct phases. In the first phase, three temporary tables are created and stored in plain text format. The first table contains

rows representing dates for the desired time period. The second stores web sessions of users who read product reviews. A Python program is

used to build this. The third and last table stores sales in the desired time period. In the second phase, the temporary tables are combined to get

the final result. To better understand the file format impact, we focus primary on the first phase where the data is retrieved from the file format

structure.

6.1.1 Comparing ORC and Parquet

As shown in Table 14, Q08 performs better on Parquet for both No Compression and Snappy configurations. Similarly for both configurations,

Parquet reads less input data for the key execution stages compared to ORC.

No Compression Configuration: The Parquet execution (12 min.) is faster than the ORC execution (16 min.). The ORC execution results in 14

Spark stages with total Input of 111.6 GB compared to 18 Spark stages with total Input of 94.5 GB for the Parquet execution. In ORC, stage 3

(5.8 min.) performs the same operations as stage 6 (2.8 min.) in Parquet. Both stages execute 1402 tasks. However, ORC stage 3 takes as Input

95.7 GB and Outputs 15.2 GB, whereas Parquet stage 6 takes 77.8 GB for the same Output.

Figure 13 shows the CPU utilization (blue peaks in the yellow square) for the No Compression configuration. The first block of lines showing

high CPU utilization should correspond to the first phase. Here, relevant data for the query is retrieved by using file format indexes and metadata.

ORC spends more CPU time for User processes with respect to Parquet. For the latter, the majority of CPU time in the first phase is spent

waiting for I/O (disk) operations. This can be interpreted as Spark being better in retrieving relevant data from Parquet and immediately triggering

I/O requests.
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FIGURE 12 Illustrates the process of collecting the Spark History Server metrics and source code details into a summary table for query Q08
executed on ORC configured with No Compression

Snappy Configuration: The Parquet execution (11 min.) is faster than the ORC execution (15 min.). Both formats execute in 14 Spark stages.

Compared the total Input for ORC is 73.7 GB, whereas, for Parquet, it is 61.8 GB. In ORC, stage 3 (5.5 min.) performs the same operations

as stage 3 (2 min.) in Parquet. The number of executed tasks is almost equal with 1402 for ORC and 1401 for Parquet. However, the ORC

stage 3 takes 61.6 GB as Input, whereas the Parquet takes only 48 GB, with Output for both 15.2 GB. With respect to executed operations,

ORC performs one HadoopRDD and 5 MapPartitionsRDD operations, whereas Parquet performs one FlieScanRDD and 2 MapPartitionsRDD

operations.

6.1.2 ORC

Execution with No Compression configuration takes 16 min., whereas with Snappy configuration takes 15 min. Both configurations execute

for 14 Spark stages. Compared the total Input for No Compression configuration is 111.6 GB, whereas the total Input for Snappy configuration

is 73.3 GB.

6.1.3 Parquet

Execution with No Compression configuration takes 12 min., whereas with Snappy configuration takes 11 min.. No Compression configuration is

executed for 18 stages, whereas the Snappy configuration for 14 stages. Compared the total Input for No Compression configuration is 94.5 GB,

whereas the total Input for Snappy is 61.8 GB.
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FIGURE 13 CPU utilization for Q08 with No Compression configuration. A, ORC; B, Parquet

The use of Snappy compression brings some improvements only for Parquet. Figure 14 shows a huge drop in I/O requests (blue peaks

in the yellow square). This is the expected behavior when using compression: to reduce the number of disk accesses while retrieving the

same data.

6.2 BigBench Q10 (HiveQL/OpenNLP)

Q10 performs sentiment analysis on the product reviews by classifying them as positive or negative. The output also reports the words that lead

to the classification. The query does not create any temporary table, but it works directly on data stored in columnar file formats. The sentiment

extraction is realized with a Java UDF embedded in the query code.

6.2.1 Comparing ORC and Parquet

This query type is particularly interesting because it generally performs better with No compression configuration, as shown in Table 15. This is

an unexpected behavior, as the data compression usually brings benefit to the performance by reducing the I/O accesses. In the specific case

of Q10, we get better performance on Parquet when using uncompressed format. On the other hand, the query performs better with Snappy

compression on ORC, but the performance improvement is less relevant.

No Compression Configuration: The Parquet execution (29 min.) is faster than the ORC execution (34 min.). The ORC execution results in 3

Spark stages, whereas the Parquet execution results in 4 Spark stages. In terms of total Input data, both take 5 GBs. However, in ORC, stage

0 executes on 9 tasks for 16 min., compared to Parquet stage 1 that executed on 28 tasks for 14 min.. Similarly, in ORC, stage 1 executed

on 9 tasks for 18 min., compared to Parquet stage 2 that executed on 28 tasks for 14 min.. The ORC stage 0 performs one HadoopRDD

and 7 MapPartitionsRDD operations, whereas Parquet stage 1 performs one FileScanRDD and 5 MapPartitionsRDD operations. The ORC stage

1 performs one HadoopRDD and 5 MapPartitionsRDD operations, whereas Parquet stage 2 performs FileScanRDD and 3 MapPartitionsRDD

operations. We can conclude that Parquet takes advantage of parallel execution by performing 28 tasks in parallel compared to 9 tasks

for ORC.

Snappy Configuration: The ORC execution (37 min.) is faster than the Parquet execution (51 min.). The ORC executions results in 3 Spark

stages, whereas the Parquet execution results in 4 Spark stages. ORC takes as total Input 3.4 GB, whereas Parquet takes as total Input 4.7 GB.
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FIGURE 14 Disk Requests for Q08 with Parquet. A, No Compression, B; Snappy

The biggest difference is that stage 1 in Parquet is not comparable to any of the ORC stages. Parquet stage 1 takes 15 min. and performs one

FileScanRDD, 4 MapPartitionsRDD, one PartitionPrunningRDD, and one PartitionwiseSampleRDD, which are not performed in ORC. Both operations

PartitionPrunningRDD and PartitionwiseSampleRDD are not typical for this Spark context and lead to unnecessary increase of the total execution

time. Therefore, further investigation for the cause of this behavior needs to be done.

For what concerns Parquet, we hypothesize that Q10 is performing better on No compression configuration because it is harder to efficiently

compress unstructured data. Anyway, the behavior is not confirmed when using ORC. Because of this discrepancy, we look into the resource

utilization. Figure 15 shows the disk requests for the No compression configuration. We can immediately notice that the disk is underutilized with

both file formats. The same happens with Snappy configurations and also for the disk bandwidth utilization and CPU utilization, which we do not

report in this document for the sake of space.

In this case, the motivation for the query performance behavior is unclear. If the benchmark user is specifically interested in this query type,

he should further investigate Q18, Q19, Q27. If no relevant insight is found, the UDF code should be checked for implementation issues.

6.2.2 ORC

The Snappy configuration takes 37 min. and total input of 5 GB compared to 34 min. and total input of 3.4 GB with No Compression configuration.

Beside the smaller input data, using compression results in worse performance than with No Compression.

6.2.3 Parquet

The Snappy configuration takes 51 min. and 4.7 GB total Input compared to 29 min. and 5 GB total input with the No Compression configuration.

Both configurations have 4 Spark stages, but stage 1 with Snappy is not performing the same operations as already mentioned above. Beside the

smaller input data, using compression results in worse performance than with No Compression.

6.3 BigBench Q12 (Pure HiveQL)

Q12 searches for customers who viewed products online and then bought a product from the same category in a physical store in the next three

months. No temporary tables are created to fulfill the query, meaning that all the relevant data is retrieved directly from the columnar file format.

The whole query period should be relevant for the analysis.
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FIGURE 15 Disk requests for Q10 with No Compression configuration. A, ORC; B, Parquet

6.3.1 Comparing ORC with Parquet

Table 13 shows that Q12 always performs better on Parquet compared to ORC. Snappy compression brings a slight improvement for ORC, while

it worsens a bit the Parquet performance. It is the only query that does not get a performance improvement on the Snappy configuration with

Parquet. For both configurations, Parquet reads much less input data compared to ORC, which has a clear impact on the performance.

No Compression Configuration: The Parquet execution (1.7 min.) is faster than the ORC execution (5.4 min.). The ORC execution is in 8 Spark

stages with total Input of 82.6 GB, whereas the Parquet execution is in 10 stages with 2.9 GB total Input. Both are executed on 1402 Spark tasks.

The ORC stage 1 takes 3.8 min. compared to the Parquet stage 4 taking 15 sec..

Snappy Configuration: The Parquet execution (1.4 min.) is faster than the ORC execution (5.2 min.). Both formats execute in 8 Spark stages.

The ORC stage 1 takes 3.6 min. with 40.9 GB total Input data compared to the Parquet stage 1 taking 11 sec. with 1172 MB total Input. Similarly,

the ORC stage 2 takes 32 sec. and 4.4 GB total Input compared to the Parquet stage 2 taking 4 sec. and 354 MB total Input.

6.3.2 Optimized record columnar

Using Snappy compression takes 5.2 min. and 45.3 GB compared to No Compression with 5.4 min. and 82.6 GB. Overall, using compression with

ORC slightly improves the performance.

6.3.3 Parquet

Using Snappy compression, the query takes 1.4 min and 1.5 GB compared to No Compression configuration with 1.7 min. and 2.9 GB. Overall,

using compression with Parquet slightly improves the performance. As the reader can notice, measurements in the run with PAT show a different

result with respect to Table 13.

To understand the aforementioned discrepancy, we look at the PAT utilization charts. The disk requests and bandwidth utilization profiles are

very similar between No compression and Snappy configurations. We do not report them here since we cannot get any useful insight from them.

Figure 16 shows the CPU utilization for Q12 on the Parquet file format for both configurations. We observe a generally higher utilization with
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FIGURE 16 CPU utilization for Q12 with Parquet. A, No compression; B, Snappy

Snappy configuration. This is usually expected since data retrieved from disk must be uncompressed, wasting valuable CPU time. As observed

in all the other queries in Table 13, despite the need of extra computation, data compression is beneficial for the performance since it reduces

the number of disk accesses. The unexpected behavior of Q12 can be explained with the fact that the query reads small amount of data from

the disk; the benefit from using compression is not appreciable. We believe that the discrepancy between Table 13 and PAT execution is due to

noise, and the difference between No Compression and Snappy configuration should be considered negligible.

6.4 BigBench Q25 (HiveQL/Spark MLlib)

Q25 groups customers based on a set of shopping dimensions. To achieve this, it uses a k-means clustering algorithm68 implemented using the

Spark MLlib. The query is split into two phases: the first phase creates a temporary table to prepare data for the clustering algorithm, whereas

the second phase simply executes a Spark job and stores results. As usual, the temporary table is stored in plain text making only the first phase

relevant for our performance analysis on file formats.

6.4.1 Comparing ORC and Parquet

Table 16 reports that Q25 always performs better on Parquet for both No compression and Snappy configurations. The data compression brings

little improvement when using Parquet (∼4.7%), whereas ORC gets a minimal improvement. Other queries in Table 16 show worse performance

on ORC for Snappy configuration with respect to No compression.

No Compression Configuration: The Parquet execution (3.4 min.) is faster than the ORC execution (5 min.). Both execute in 13 Spark stages

and the same number of tasks. The ORC execution takes as Input 18.3 GB, whereas the Parquet execution takes as total Input 23.8 GB. However,

ORC stages 1 and 5 execute HadoopRDD and 5 MapPartitionsRDD, whereas Parquet stages 1 and 5 execute FileScanRDD and 2 MapPartitionsRDD.

Snappy Configuration: The Parquet execution (3.3 min.) is faster than the ORC execution (5 min.). Both execute in 13 Spark stages

and the same number of tasks. The ORC execution takes 10.7 GB as total Input, whereas the Parquet execution takes 15.7 GB as total

Input. Again, ORC stages 1 and 5 execute HadoopRDD and 5 MapPartitionsRDD, whereas Parquet stages 1 and 5 execute FileScanRDD and

2 MapPartitionsRDD.
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FIGURE 17 CPU utilization for Q25 with Snappy configuration. A, ORC; B, Parquet

Figure 17 compares the CPU utilization on ORC and Parquet for Snappy configuration. As already observed for Q08, more CPU user time (blue

peaks in the yellow square) is spent on ORC in the data retrieving phase. It looks like that, on Parquet, it is easier for Spark to address relevant

data and request it from the disk. In fact, CPU user time is lower on Parquet, whereas a large part of the total CPU time is spent for I/O wait

(indicated by the green color in the yellow squares).

6.4.2 ORC

ORC performs equal with both Snappy and No Compression configurations taking 5 min., 13 stages, and equal number of tasks with 18.3 GB total

Input for No Compression and 10.3 GB total Input for Snappy. Overall, using compression with ORC do not improve the performance.

6.4.3 Parquet

Similar to ORC, Parquet also performs equal with both Snappy and No Compression configurations taking around 3.4 min., 13 stages, and equal

number of tasks with 23.8 GB total Input for No Compression and 15.7GB total Input for Snappy.

6.5 Summary

1. The most important lesson learned is that changing the file format influences the overall engine behavior. The functions used to retrieve

data are different: with ORC, Spark prefers to use HiveTableScan, whereas, with Parquet, it prefers to use FileScanRDD. This emphasizes the

importance of the file format choice when using a specific engine.

2. In many cases, we observed that both formats vary in the number of Spark stages, tasks, and operations, which they execute for the same

HiveQL query code.

3. Generally, the introduction of Snappy compression improves the query performance for both file formats by reading less data from disk.

However, the query performance is not only influenced by the amount of input data from disk. For Q25, Parquet shows better performance

than ORC while still reading more data.
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4. The HiveQL/OpenNLP Q10 shows abnormal behavior. Cluster resources are under utilized and Snappy compression worsens the performance.

While the latter can be caused by the unstructured data type, the cluster under utilization can be caused by flawed workload code in the

benchmark. Further investigation in the Java UDF source code is necessary.

7 DISCUSSIONS AND FUTURE WORK

In this paper we evaluated the ORC and Parquet file formats on top of Hive and Spark by varying the format configurations and comparing

their performance. However, both Parquet and ORC are developed as independent, general-purpose data file formats and as such are easier

to integrate into other engines. In Table 1, at the beginning of this paper, we listed multiple engines which already support both formats. This

also means that each of the engines offers a different level of integration for both formats as well as different default parameter configurations.

For example, Spark SQL uses Parquet with Snappy compression69 as the default storage format, contrary to Hive which uses Parquet with no

compression as a default configuration.

In addition to that, every engine focuses on implementing optimizations using its primary storage file format leaving all other supported formats

behind. Therefore, when benchmarking one should explicitly differentiate between ‘‘benchmarking SQL-on-Hadoop engine performance’’ and

‘‘benchmarking data file formats performance’’. Comparing the performance of different engines does not immediately mean that one is also

comparing the storage file format used by the engine.

What are the best practices, methodologies and metrics when comparing different file formats?

Based on our experimental results and benchmarking methodologies that we implemented to compare the file formats performance in this

study (in particular ORC and Parquet), we assembled a list of steps that can be used as a best practices guide when testing file formats on a new

SQL-on-Hadoop engine:

• Make sure the new engine offers support for the file formats under test (ORC and Parquet).

• Choose a benchmark or test workload representing your use case and suitable for the comparison.

• Set the file format configurations accordingly (with or without compression).

• Generate the data and make sure that it is consistent with the file configuration using the file format (ORC and Parquet) tools.

• Perform the experiments (at least 3 times) and calculate the average execution times.

• Compare the time differences from the two file formats using the PI % and CI % metrics and make conclusions.

• Select queries compatible with your specific use-case. Execute them while collecting resource utilization data and perform in-depth query

evaluation to spot bottlenecks and problems.

One important evaluation factor mentioned above is the benchmark used for stress testing the engines. As reviewed by the related work

(Section 2.6), TPC-H and TPC-DS are the most common choices for benchmarking both engine and file format performance. In this paper, we

utilize the BigBench benchmark as it is currently the only standard benchmark including structured, unstructured and semi-structured data type

as well as machine learning and text processing workloads.

Is BigBench suitable for file format comparisons?

Based on our experimental results (Sections 4, 5 and 6), we can conclude that BigBench is a good choice for comparing file formats

on SQL-on-Hadoop engines mainly for two reasons: (1) structured and unstructured data influence the query performance in particularly in

combination with compression (Q10 in Section 6.2); and (2) the BigBench variety of 30 different workloads (use cases) divided in four categories

based on implementation type.

However, many other questions around benchmarking file formats still remain open:

• Is there a need for a specialized micro-benchmark to better investigate the file format features?

• If yes, what should this benchmark include in terms of data types and operations?

• What are the file format features that such a benchmark should stress (for example block size, compression etc.)?

As a future work, we plan to investigate these questions. For example, further insights can be obtained by running benchmarks on the

same processing engine and file format while changing the file format parameters. This would help to better distinguish the influence of

each architecture component on the query performance. New metrics can be added to the in-depth query analysis, like the amount of

network traffic exchanged by each node in the cluster on relevant TCP and UDP ports, as shown in,70 to spot bottlenecks and unbalanced

workloads.

Resource utilization data collection and the comparison of graphs and execution plans can be standardized and integrated into BigBench

for better usability. Data analysis and visualization can then be included in a graphical user interface, like Apache Hue71 which is highly

customizable.

We also plan to evaluate columnar file formats with other benchmarks and dataset types, leading to their adoption in other applications. For

example, ORC and Parquet together with Hive or SparkSQL can be used to store and query time-series data, like data coming from sensors.
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Software architectures for sensor data analysis can select these technologies for their batch layer to achieve better access performance with

respect to simple plain text files on HDFS, or to replace complex NoSQL systems.72,73 However, dedicated benchmarks are needed to ensure the

suitability of columnar file formats for range-based queries, that are commonly used to access time-series data.

8 CONCLUSIONS

To the best of our knowledge, this is the first study that evaluates the ORC and Parquet file formats on Hive and SparkSQL using the BigBench

benchmark as a popular representative of Big Data workloads. From our benchmark results, we can observe that it is important to separate

the file format evaluation from the engine. Both components have great influence on the workload and a comparison of their combination

is meaningless because we cannot tell what component is really causing a change in performance. In Section 6, we showed how a different

file format selection changes the Spark execution behavior. In particular, different functions are used to retrieve data respectively from ORC

or Parquet files. We believe that our benchmark methodology in which we keep the processing engine fixed while changing the file format

is correct.

At the same time, overall performance on the same engine is greatly influenced by the file format parameters. The default configurations

of ORC and Parquet are extremely different and their direct performance comparison can lead to misleading results. Therefore, the file format

selection cannot be naively based on the engine preference stated by documentation or by quick-and-dirty benchmarks. A careful understanding

of file format parameters, especially the use of data compression, is necessary to make the optimal choice.

Once this is setup, a careful understanding of the benchmark workload is necessary. We showed that ORC generally achieves best performance

with the Hive engine (Section 4), whereas Parquet generally achieves best performance with the Spark engine (Section 5). However, this is not

true for all BigBench query types with significant exceptions, as shown in Sections 4.3, 5.4, and 5.2. Users should identify and select groups

of queries in BigBench that best emulate their use case and then evaluate performance. This will not only reduce time needed to execute

benchmarks but will also give more valuable results. In this respect, BigBench is extremely flexible: in this work, we ran the whole set of queries

but the user can select and run only a subset of them.

Similarly, the use of data compression is not advised for all query types. In most cases, using Snappy compression improves the performance

on both file formats and both engines, except for the OpenNLP query type, where we observe negative influence with both engines (Sections 4.3

and 5.3).

In the future, we plan to perform more experiments with different configurations by modifying other file format parameters and investigate

their influence. Furthermore, we plan to understand the cause for instability of queries Q02 and Q30 on Spark (Section 5.2) as well as the

resource under utilization found with Q10 (Section 6.2).
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APPENDIX A

BigBench Q08 (MapReduce/Python)
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APPENDIX B

BigBench Q10 (HiveQL/OpenNLP)



30 of 31 IVANOV AND PERGOLESI

APPENDIX C

BigBench Q12 (Pure HiveQL)
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APPENDIX D

BigBench Q25 (HiveQL/SparkMLlib)
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