
NUKLEONIKA 2020;65(2):99104
doi: 10.2478/nuka-2020-0015 ORIGINAL PAPER   

Introduction

Several epidemiological studies have confi rmed that 
the prolonged exposure to radon increases the risk 
of developing lung cancer for humans. In this regard, 
in recent years, the EU has consolidated the direc-
tive on basic safety standards (2013/59/Euratom), 
whose purpose is to reduce the number of cases of 
radon-induced lung cancer. 

Radon is a natural radioactive noble gas produced 
from the decay of radium (226Ra, itself a decay prod-
uct of 238U), and it is widely distributed in the geo-
logical environment in many kinds of rocks and soils. 
Radon and its progenies in air constitute the major 
natural exposure source to ionizing radiation for 
humans [2] because it can accumulate in enclosed 
space. In general, the outdoor radon concentrations 
are very low, while in confi ned environments, due 
to low ventilation, the concentration harmfully in-
creases leading to a considerable health risk [3, 4]. 
Moreover, in confi ned environments, other factors 
can contribute to increase the radon concentration, 
such as the emanation from building materials, 
the fl oor, and the degassing from tap water having 
a groundwater origin [5–7]. 
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Abstract. The population is continuously exposed to a background level of ionizing radiation due to the natural 
radioactivity and, in particular, with radon (222Rn). Radon gas has been classifi ed as the second leading cause 
of lung cancer after tobacco smoke [1]. In the confi ned environment, radon concentration can reach harmful 
level and vary accordingly to many factors. Since the primary source of radon in dwellings is the subsurface, the 
risk assessment and reduction cannot disregard the identifi cation of the local geology and the environmental 
predisposing factors. In this article, we propose a new methodology, based on the computation of the Gini coef-
fi cients at different spatial scales, to estimate the spatial correlation and the geographical variability of radon 
concentrations. This variability can be interpreted as a signature of the different subsurface geological conditions. 
The Gini coeffi cient computation is a statistical tool widely used to determine the degree of inhomogeneity of 
different kinds of distributions. We generated several simulated radon distributions, and the proposed tool has 
been validated by comparing the variograms based on the semi-variance computation with those ones based 
on the Gini coeffi cient. The Gini coeffi cient variogram is shown to be a good estimator of the inhomogeneity 
degree of radon concentration. Indeed, it allows to better constrain the critical distance below which the radon 
geological source can be considered as uniform at least for the investigated length scales of variability; it also 
better discriminates the fl uctuations due to the environmental predisposing factors from those ones due to the 
random spatially uncorrelated noise. 
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To apply effi cient locally based risk reduction 
actions, dense maps of indoor radon concentration 
are needed. Indeed, these maps are conceived to 
identify the areas of higher health risk, more prone 
to high indoor radon concentration [8]. However, 
these maps are often based on sparse measurements, 
e.g. [9], and hence require the use of interpolation 
techniques [6, 8]. 

To this aim, some statistical tools, generally 
referred to as geostatistical methods, are being cur-
rently used for the defi nition of these dense maps 
and to infer statistical correlation of the radon con-
centration with the geological conditions [8] and 
the dwellings and lifestyle features [6] of the sample 
areas. The geostatistical interpolations, like the krig-
ing, are based on the use of regionalized variables 
whose spatial correlation is quantitatively estimated 
through the defi nition of a semi-variogram [10]. To 
compute a semi-variogram describing the spatial 
correlation in a reliable way is a challenging issue 
due to the fl uctuations of the semi-variances as a 
function of distance and to the diffi culties of fi nding 
a trend that fi ts both the correlated and uncorrelated 
part of the semi-variogram [8, 11]. With a view to 
defi ne soon a radon risk map for the Campania, a 
region of southern Italy characterized by a complex 
tectonostratigraphic evolution that led to the forma-
tion of a great variety of geological environments 
[12], we here present an innovative method for 
variogram computation. This latter is based on the 
calculation of the Gini coeffi cient, which is a measure 
of the inequality of a distribution, widely used for 
the socioeconomic applications [13]. We demonstrat-
ed the effi ciency of this approach applying it to several 
simulated radon concentrations and systematically 
comparing it with the classically used variograms. 

Methods

The semi-variance and the variogram

One of the most challenging issues for radon risk as-
sessment is to provide a realistic map of expected con-
centration exploiting sparse experimental measures. 
To this aim, several procedures have been proposed, 
generally referred to as geostatistic tools, like the 
kriging. These techniques are defi ned as distance-
-weighted interpolations of the experimental concen-
trations deriving from the spatial correlation analysis. 

The spatial correlation among the measures is 
generally estimated through the analysis of the semi-
-variance variability with the inter-distance among 
all the measures. This variability, generally referred 
to as semi-variogram, is defi ned as [14]: 

(1)

where n is the number of measure; m is the number 
of measure at locations having a distance h from the 
measure i; xi is a geographic location (i =1,2,3,...,n), 
and z is the concentration value. 

It is worth to note that for practical applications, 
the distances h, also indicated as lags, are subdivided 

into equally spaced bins. In this case, the quantity 
(hj) is considered as computed in the middle of the 
bin [hj – ½l, hj + ½l], with l being the size of the bins. 

The behaviour of  as a function of h might evi-
dence three different trends for the semi-variogram 
as shown in Fig. 1a. If the measurements are uncor-
related (in yellow), the values will oscillate around 
a constant value. Instead, if they are correlated in 
the whole range of investigation, (h) will be ex-
pected to monotonically increase (green diamonds 
and line). Finally, if the measurements are correlated 
up to a certain distance and uncorrelated beyond, 
the trend will assume the behaviour described by the 
red line monotonically increasing before reaching 
a plateau level. 

To use the (h) discrete estimates for interpola-
tion applications, like the kriging [15], these values 
must be inverted using a fi t with a function account-
ing for the two phases of the semi-variogram. 

A widely used function to fi t such a trend is the 
following exponential relationship: 

(2)

The model in Eq. (2) is characterized by three 
parameters: the range R is the distance at which the 
semi-variogram gets about 63% of the plateau level 
identifi ed as the sill parameter S. In the other words, 
R can be considered as an estimator of the maxi-
mum distance for which two points are considered 
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Fig. 1. (a) Different variogram trends depending on 
spatial correlation of the experimental measures and (b) 
an example of experimental semi-variance fi tted by an 
exponential function. For sake of clarity, the parameters 
of the fi t are reported within the panel. 

( ) 1
h
Rh S e N

      
  



101A new geostatistical tool for the analysis of the geographical variability of the indoor radon activity

spatially correlated. The nugget N is an estimate of 
the residual, spatially uncorrelated noise (Fig. 1b). 
Although crucial to limit the uncertainty on the 
estimation of expected concentration, it was shown 
that identify the correlation trend and hence the 
parameters R and S from an indoor concentration 
measurement campaign is not a trivial process, in 
particular for sparse and noisy sampling. In the next 
Section, we present a new tool for the variogram 
computation based on the spatial variability of the 
Gini coeffi cient [15–17]. 

Gini coeffi cient and Lorenz curve

The Lorenz curve and the Gini coeffi cient are two 
statistical tools generally used for socioeconomic 
applications [13]. The Lorenz curve is a visual 
representation of the degree of inhomogeneity of a 
distribution. From this curve, a quantitative estima-
tion of the inhomogeneity can be inferred through 
the computation of the Gini coeffi cient. In the case 
of homogeneous distribution, the Lorenz curve takes 
the analytical form y = x, and the Gini coeffi cient 
G = 0 while for all other cases the Lorenz curve is 
convex to the y-axis, never rises above the line of 
equality [17] and leads to a G ranging from 0 to 1 
(Fig. 2). 

Figure 2 shows the trend of the Lorenz curve in 
the (p,q) reference system with pi and qi represent-
ing the ordered relative cumulative frequencies and 
the cumulative relative concentration, respectively. 

They can be expressed as pi = i/n; and qi = Ai/X; 
the index i ranges from 1 to n with n being the 
number of experimental measurements {xj}. The A 
quantities are the cumulative experimental values, 
that is Ai = i

j=1xj, while X = n
i=1 Ai. It is worth 

to note that to build the Lorenz curve, as shown in 
Fig. 2, the measurements {xj} must be sorted in an 
ascending order [17]. 

From a geometrical point of view, the Gini coef-
fi cient represents the ratio of the area between the 

equality line distribution and the observed Lorenz 
curve to the area under the uniform distribution: 
lower values of G indicate a pretty uniform distribu-
tion, while higher values stem from inhomogeneous 
distributions. It can be expressed as [17]: 

(3) 

The semi-variogram with Gini coeffi cient

By analogy with the classical semi-variogram de-
scribed in Eq. (1), a different semi-variogram based 
on the computation of the Gini coeffi cient can be 
defi ned. 

To this aim, we can defi ne the semi-variogram as 

(4) 

By analogy with Eq. (1), n is the number of 
experimental measure while h is a distance and 
as said, for discretized problems, it is assumed to 
be the center of equally spaced bins. Gi is the Gini 
coeffi cient computed as shown in Eq. (3), consider-
ing the concentration at the measure points i along 
with all the other measures having a distance d from 
the position i such that h – (l/2) < d  h + (l/2), 
with l  being the bin size. If the measure at the posi-
tion i has less than three points in the considered 
bin h, Gi(h), is assumed to be 0. Therefore, nG is the 
number of realizations for which Gi(h) > 0. 

Simulated radon concentration dataset

The effi ciency of the presented tool as compared to 
the classically used variogram has been tested by 
means of several simulated distributions of radon 
concentration defi ned over a simplifi ed squared (100 
× 100 km2) surface. Over this surface, 1000 measure 
points are randomly extracted (Fig. 3a, black dots) 
from a uniform distribution. 

Recently, it has been shown that a geographical 
variability of the geometrical means (GM(x,y)) of ra-
don concentration can be interpreted in terms of dif-
ferent soil lithological properties [8]. Following this 
fi nding, the sample area has been divided into four 
squares; each of them is thought as characterized 
by different types of geological descriptive classes, 
hence by different expected GM(x,y) [8] (Fig. 3a). 
Several studies show a clear relationship between 
geological factors and indoor radon concentration; 
however other factors, to a lesser extent, such as 
soil structure, groundwater conditions, ventilation 
and condition of the building, and so on, defi nitely 
infl uence the measurements [16]. For our purposes, 
all these factors can be considered as a source of 
spatially uncorrelated noise. 

Therefore, for each concentration dataset, on 
each measure point, the simulated concentration is 
randomly extracted from a log-normal distribution 
having  = GM(x,y) and a fi xed standard deviation 
of the logarithm of concentration  ranging from 

Fig. 2. Lorenz curve to evaluate the inhomogeneity degree 
of the radon concentrations.
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0.2 to 0.5. These values are compatible with the 
uncertainties computed from previous concentration 
surveys in the Campania region [4, 7]. In Fig. 3b, 
there is an example of the distribution. 

Results

In Fig. 4, the results are presented as a system-
atic comparison between the classical and Gini 
variograms. The variograms have been computed 
considering the whole simulated dataset shown in 
Fig. 3 and the fi gure shows the results for the case 
 = 0.2 (Fig. 4a,b) and  = 0.5 (Fig. 4c,d). 

In Fig. 4, the blue and red squares represent the 
(h) values calculated by means of Eqs. (1) and 
(4), respectively. By fi tting both trends with Eq. (2) 
imposing N = 0 and  = 0.2 (Fig. 4a), the Gini var-
iogram, rapidly reaches the plateau level (S = 0.17) 
within the investigated distance range, leading to 
a small estimated range value (R = 9.21 km). At the 
sampled distances, for the classical variogram, the 
trend is still far from the plateau level not allowing 
to clearly identifying the distance at which the mea-
sures can be considered uncorrelated. The described 
results are even more evident when we apply the 
same analysis to noisier simulated data, imposing 
 = 0.5 (Fig. 4c). Although the random noise affects 
the correlation distance leading to smaller R values, 
for the Gini case, the plateau level is still recog-
nizable, and the trend has a good agreement with 

Fig. 3. (a) Measure points (black dots) on a sample sur-
face (100 × 100 km2) characterized by different types of 
geological descriptive classes. (b) One of the stochastically 
simulated radon concentration distribution on the sample 
surface (case with  = 0.2). 

Fig. 4. Comparison between the classical variogram (blue squares and solid line) and the Gini variogram (red squares 
and solid line) with N = 0 (panels a and c) and N  0 (panels b and d) for  = 0.2 (panels a and b) and  = 0.5 (panels 
c and d). Within all panels, the dashed magenta and black lines depict the range distances and the sill levels respectively. 
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exponential fi t (R2 = 0.85). Conversely, the classical 
variogram monotonically increases with distance 
and hence the exponential function fails to fi t the 
experimental points (R2 = 0.13). In this latter case, 
the low correlation distance (R = 0.96 km) is only 
due to the imposed constraint on the nugget (N = 0). 

When we let the nugget N as a free parameter 
of the fi t (Fig. 4b,d), we noticed an improvement 
of the fi t agreement with R2 > 0.94 for all cases, 
and also for this analysis, the Gini method bet-
ter describes the spatial correlation. In the case 
 = 0.2 (Fig. 4b), the trend asymptotically tends to 
the sill within the investigated distance range and 
R = 20.61 km is consistent with the simulated prob-
lem. The same observation holds for larger sigma 
( = 0.5, Fig. 4d); in this case, the classical vario-
gram behaves as all the measurements were cor-
related at any investigated distance (compare with 
the sketch in Fig. 1a) hence leading to unrealistic 
estimates of range and sill. 

Conclusions

In this article, we have presented a new method for 
the computation of the variogram, generally used 
for geostatistical applications such as the prediction 
of radon exhalation starting from sparse measure-
ments. The development of this class of variograms 
is based on the calculation of the Gini coeffi cient, a 
tool widely used for several applications to quantify 
the degree of the inhomogeneity of a distribution. 
A systematic comparison of this method with re-
spect to the classical one has been carried out on 
a synthetic dataset of radon concentration. We have 
verifi ed that by using the Gini method, the transi-
tion between correlated and uncorrelated distances 
is better constrained and the parameters describing 
this spatial correlation are more consistent with the 
initial model. Moreover, the analyses of datasets 
generated with different noise levels have shown that 
the Gini method is more effi cient in discriminating 
the variations due to the environmental conditions 
from those ones due to random noise at least for 
the length scales taken into account in the synthetic 
datasets. These features can be interpreted as in-
trinsic of the method since the (h) parameters are 
obtained through an inhomogeneity quantifi cation 
involving measure clusters in a given distance range 
rather than on the average concentration differences 
between pairs of measure points. We, therefore, 
conclude that this method can be applied to perform 
distance-weighted interpolation, for example, krig-
ing, and hence to possibly identify the geological 
areas that act as homogeneous sources of radon 
exhalation. Future studies are needed to deepen 
these fi ndings, in particular, to assess whether and 
for which length scales this method might better 
constrain the spatial variability of the radon concen-
tration. These analyses will be performed through the 
application of the Gini-based kriging interpolation to 
both synthetic and real radon concentration datasets. 
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