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Abstract Here we propose a system that incorporates two different state-of-the-art classifiers (sup-

port vector machine and gaussian process classifier) and two different descriptors (multi local qui-

nary patterns and multi local phase quantization with ternary coding) for texture classification.

Both the tested descriptors are an ensemble of stand-alone descriptors obtained using different

parameters setting (the same set is used in each dataset). For each stand-alone descriptor we train

a different classifier, the set of scores of each classifier is normalized to mean equal to zero and stan-

dard deviation equal to one, then all the score sets are combined by the sum rule.

Our experimental section shows that we succeed in building a high performance ensemble that

works well on different datasets without any ad hoc parameters tuning. The fusion among the dif-

ferent systems permits to outperform SVM where the parameters and kernels are tuned separately

in each dataset, while in the proposed ensemble the linear SVM, with the same parameter cost in all

the datasets, is used.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The importance of texture analysis as a branch of computer vi-
sion has been cleared from decades (Haralick et al., 1973)and
its range of applications is dramatically wide, from medical im-
age processing (Vécsei et al., 2011) to face recognition (Tan

and Triggs, 2010).
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The success of texture analysis is easily understandable
since almost every image contains texture and the continuous

development in image acquisition technology made high-reso-
lution pictures more available. Texture analysis is important in
many machine learning problems, including medical image

analysis, surface inspection, and a host of image detection
and classification problems. As a result of extensive research
on texture analysis over the last 30 years, the literature is rich

with techniques for describing image textures (Xie and Mir-
mehdi, 2008).

Of note, even if various different qualitative definitions of
texture were published and intuitively it is easy thinking about

what a texture is, there is no univocal quantitative definition.
Different attempts are reported in the literature (Tamura and
Mori, 1978; Sklansky, 1978; Haralick, 1979; Hawkins, 1969)

and reviewed in Tuceryan (1998): the common basic elements
ier B.V. All rights reserved.
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emerging from these sources are (i) the presence of repetitive
primitives (patterns) having the same size everywhere in the
textured region and (ii) the spatial non-random organization

of these primitives in a region larger in comparison with the
primitive size itself.

In spite of the lack of a formal quantitative texture defini-

tion, a variety of quantitative texture descriptors was devel-
oped during the last forty years: in Fernández et al. (2012) a
classification of the most relevant texture descriptors based

on histograms of equivalent patterns is provided discriminat-
ing between global and local methods, i.e. texture descriptors
taking into account or not, respectively, parameters computed
from the whole image such as a global threshold used for

binarization.
Among the local texture descriptors we report the most

used approaches (i) methods based on the gray level co-occur-

rence matrix (GLCM), which measures the joint probability of
the gray levels at two pixels at a fixed relative position, such as
Haralick features (Haralick et al., 1973), where a set of features

is computed on GLCMs built according to different orienta-
tions and (ii) neighborhood based methods, computed directly
on the image using a shifting neighborhood (square, rectangu-

lar, circular, etc.). Research on the neighborhood based texture
descriptors was extremely prolific from the nineties and a wide
spectrum of different methods was proposed such as the Rank
Transformations (Zabih and Woodfil, 1994), which considers

the neighborhood pixels with lower intensity than the central
neighborhood pixel, or the Texture Spectrum (He and Wang,
1990) and its simplified version (Xu et al., 2003), where a basic

ternary coding is used according to the fact that the intensity
values of the neighboring pixels are lower, equal or higher than
the central pixel value. Local Binary Patterns (LBP) Ojala

et al., 2002 is an extremely versatile descriptor, as we detail
in the method section, and it was exploited in diverse applica-
tions and evolved into different new operators such as Local

Ternary Patterns (Tan and Triggs, 2010), Local Quinary Pat-
terns (LQP, details in Section 2) (Nanni et al., 2010), Central-
ized Binary Patterns (Fu and Wei, 2008), Binary Gradient
Contours (BGC) Hayman et al., 2004, and Completed Local

Binary Patterns (CLBP) Guo et al., 2010. In the CLBP opera-
tor, two global sub-operators are used considering two global
thresholds based on the gray intensity of the whole image

(CLBP_C) and the average difference between peripheral pixel
and the central pixel gray levels (CLBP_M), as well as the plain
LBP (the third local sub-operator). We include among the lo-

cal texture descriptors the powerful Local Phase Quantization
(LPQ) Rahtu et al., 2012, which is not computed directly on
the gray levels of the neighborhood included pixels, but on
the phase information extracted from the Fourier transform

computed on the neighborhood itself.
Global methods such as the binary Texture Co-occurrence

Spectrum (Patel and Stonham, 1991) and Coordinated Cluster

Representation (Kurmyshev and Cervantes, 1996) take into
account a global threshold (which in the implementation pro-
vided in Fernández et al. (2012) is computed as the gray level

dividing the image intensity histogram into two parts of equal
entropy).

Moreover several works (e.g. Paci et al., 2012) show that a

single texture descriptor cannot bring enough information for
obtaining good results in difficult datasets. For solving this
problem several authors (as in this work) use an ensemble of
classifiers combined in some way (e.g. sum rule) Kuncheva,
2004. In the computer vision field the easier way for building
an ensemble is to train different classifiers using different tex-
ture descriptors. In the present work, starting from our previ-

ous results, we propose to combine two different high
performance texture descriptors, namely multi-threshold local
quinary patterns (MLQP) and multi-threshold local phase

quantization with ternary coding (MLPQ3), with two high per-
formance classifiers, i.e. support vector machine (SVM) and
gaussian process classifier (GP). In this way we build an

ensemble of four approaches (2 texture descriptors · 2 classifi-
ers) combined by the sum rule (Bianconi et al., 2007). The aim
of this work is to apply this approach to the wide suite of data-
sets used by Fernández et al. (2012) in order to assess its effec-

tiveness on different texture datasets.
The paper is organized as follows: in Section 2 the texture

descriptors used in our system are briefly reviewed, in Section 3

the classifiers used in our system are explained, in Section 4 de-
tails on the tested datasets are provided, in Section 5 experi-
mental results are presented and discussed and finally in

Section 6 the conclusions are drawn.
2. Descriptors

2.1. Local quinary patterns (LQP)

The LQP operator represents an improvement of the classical
LBP operator (Ojala et al., 2002). The main weakness of the
LBP operator is that the binary

sðxÞ ¼
1; x P 0

0; x < 0

�

function thresholds exactly at the intensity value of the
central pixel qc, which makes this operator sensitive to noise
especially in near-uniform regions. To overcome this weak-

ness, the quinary coding proposed in Paci et al. (2012) can
be used. The quinary coding is achieved introducing two
thresholds s1 and s2 in the canonical LBP s(x) function

which becomes:

Sðx; s1; s2Þ ¼

2; x P s2
1; s1 6 x < s2
0;�s1 6 x < s1
�1;�s2 6 x < �s1
�2; x < �s2

8>>>>>><
>>>>>>:

To reduce the size of the histogram summarizing the

extracted patterns, the original LQP code is thus split into 4
different sets of binary patterns, according to the following
binary function bc(x), c 2 {�2,�1, 1,2}:

bcðxÞ ¼
1; x ¼ c

0; otherwise

�

Each set of binary patterns is mapped according to the
‘‘uniform rotation invariant’’ (riu2) mapping Ojala et al.,
2002 using two neighborhoods: (i) the 8 pixel neighborhood

resulting in 10 features and (ii) the 16 pixel neighborhood
resulting in 18 features. So the histogram obtained by combin-
ing the two neighborhoods is composed by 28 elements.

Finally, these 4 histograms are concatenated to form the
feature vector containing 112 bins: 28 (features of each histo-
gram) · 4 (number of histograms).
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2.2. Local phase quantization (LPQ) and LPQ with ternary
coding (LPQ3)

LPQ is based on the blur invariance of the Fourier Transform
Phase (Rahtu et al., 2012), locally computed from the 2D

Short Term Fourier Transform (STFT) for each pixel position
of the image over a square neighborhood.

Considering the 2D Fourier transforms F of the original
picture f, H of the point spread function (PSF) h and G of

the blurred image g, they are bounded by the following
relation

G ¼ F � � �H

Thus magnitude and phase aspects can be separated thus

resulting in

jGj ¼ jFj � jHj

and

\G ¼ \Fþ \H

If the blur PSF h is centrally symmetric, its Fourier trans-

form H is always real-valued, and its phase is a two-valued
function given by

\H ¼ 0; H P 0p;H < 0f

meaning that F and G have the same phase at those fre-
quencies which make H positive.The LPQ method is based

on the above properties of blur invariance. It uses the local
phase information extracted using STFT computed over a
square neighborhood at each pixel position x of the image
f(x). The binary code assignment at each x depends on the

phase information only and the phase is computed by observ-
ing the component of the Fx vector

Fx ¼ ½RefFc
xg; ImfFc

xg�;

whereFc
x ¼ ½Fðu1; xÞ;Fðu2; xÞ;Fðu3; xÞ;Fðu4; xÞ� and the u vec-

tors frequency vectors are u1 = [a,0]T, u2 = [0,a]T, u3 = [a,
a]T, and u4 = [a,�a]T where a is small enough to satisfy
H(u) P 0.We defined Gx = VTFxwhere V is an orthonormal
matrix derived from the singular value decomposition of the

covariance matrix of the transform coefficient vector Fx. The
resulting vectors are quantized:

qj ¼
1; gj P 0

0; gj < 0

(

where gj represents the j-th component of Gx. These quantized

coefficients are represented as integers between 0 and 255 using
the binary coding

b ¼
X8
j¼1

qj2
j�1

These integer values are then organized in the feature vector
useful for classification tasks. In this paper we have used a rect-
angular neighborhood of size 3 and 5 concatenating the two

histograms before training a given classifier.
As for LBP a non-binary coding is proposed for the LPQ

operator (Paci et al., 2012): in this case the LPQ with ternary

coding (LPQ3) uses the following quantizer:
qj ¼
1; gj P q � sj
0; �q � sj 6 gj 6 q � sj
�1; gj 6 �q � sj

8><
>:

where sj is set to half of the standard deviation of the j-th com-
ponent of Gx, and q is the given weight. The quantized coeffi-
cients are then represented as integers in the interval 0–255

using the following binary codings

bþ ¼
X8
j¼1
ðqj ¼¼ 1Þ � 2j�1

and

b� ¼
X8
j¼1
ðqj ¼¼ �1Þ � 2j�1

b+ and b� values are then summarized in two distinct 256

bins histograms and the two histograms are then concatenated
thus providing a 512 valued feature vector (for both the neigh-
borhood of size 3 and 5, i.e. the final feature vector is 1024
bins), useful for classification tasks.

2.3. The multi-threshold approach

The use of ternary and quinary codings requires respectively

one (s) or two (s1 and s2) thresholds to be set. The threshold
selection is a critical task in order to reduce the sensitivity to
noise of these new operators: thresholds were usually set man-

ually in order to get the best performance in specific problems,
but some automatic adaptive procedures were also proposed in
Vécsei et al. (2011) exploiting local statistics as mean value and
standard deviation inside each neighborhood. Another ap-

proach lies in choosing a set of different thresholds for the ter-
nary coding (or a set of different couples of thresholds for the
quinary coding), in order to (i) extract a different feature set

according to each threshold (or couple of thresholds), (ii) use
each feature set to train a different classifier and (iii) fuse all
these results according to a fusion rule (sum, mean, vote, etc.).

In details, in this work we considered:

25 threshold couples (s1 = {1,3,5,7,9} and s2 = {s1 + 2,

. . ., 11}) for LQP i.e. 25 feature sets;
5 thresholds (s 2 {0.2, 0.4, 0.6, 0.8, 1}) for LPQ, i.e. 5 fea-
ture sets.

This led to new texture descriptors such as the Multi-
threshold Local Quinary Patterns (MLQP) and the Multi-
threshold Local Phase Quantization with ternary coding

(MLPQ3) Paci et al., 2012.
Since we gathered 30 feature sets we trained 30 different

SVMs using one feature set each. For the testing part, after

computing the same 30 feature sets from the testing images,
each SVM classifies the testing feature set corresponding to
the same feature set it was trained with. Then the 30 partial

classification results are fused together according to the sum
rule (Bianconi et al., 2007). Let us define dt,j(x) the similarity
of the pattern x to the class j obtained using the classifier t.
The values of dt,j(x) are: real values that represent the distances

from the margin when SVM is the classifier; real values varying
in the range 0;1 when GPC is the classifier (see Section 3).
Before the fusion the set of similarities of each classifier is
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normalized to mean 0 and standard deviation 1 (Kuncheva,
2004). The sum rule among a pool of T classifiers is the sum
among the T set of scores i.e. Sum rule: ljðxÞ ¼

PT
t¼1dt;jðxÞ.

Each membership to a class is a sum of real values, so it is al-
most impossible that a given pattern has the same membership
to two (or more) classes1. Each pattern x is assigned to the

class with higher membership, i.e. the class of x is argmaxj
lj(x).

3. Classifiers

3.1. Support vector machines

Support Vector Machines (SVMs) were first introduced in
Vapnik (1995) and are maximum margin classifiers. They are

two-class classifiers that find a decision surface by projecting
the training samples in the multidimensional feature space
and by maximizing the distance of the closest points in the
training set to the decision boundary. The goal is to build

the hyperplane that maximizes the minimum distance between
two classes. Under the hypothesis of linearly separable data

w � xþ b P 1; xi 2 Class 1;

w � xþ b 6 �1; xi 2 Class 2;

the hypothesis space is summarized in H: fw,

b= sgn(w�x+ b).
In order to maximize the distance

dðxi;w; bÞ ¼
jxi � wþ bj
kwk

between the training samples and the hyperplane, the
function

UðwÞ ¼ 1

2
kwk2

should be minimized under the constraints

yiðw � xþ bÞP 1

The final form of the decision hyperplane is:

fðxÞ ¼
Xk
i¼1

aiyixi � xþ b ¼ w � xþ b

where ai and b are the solutions of a quadratic programming
problem.

Unknown test data xt can be classified by simply
computing:

fðxÞ ¼ signðw0 � xt þ b0Þ

It can be seen by examining the above equation that the
hyperplane is determined by all the training data, xi, that have
the corresponding attributes of ai > 0.

In order to get the minimal number of errors during the
classification task the constraints can be relaxed, by using
the tolerance parameters ni and the penalty parameter C, in

the form

yiðw � xi þ bÞP 1� ni

thus changing the function U to be minimized as follows:
1 if it occurs the given test pattern is randomly assigned to a class

with highest membership
UðwÞ ¼ 1

2
kwk2 þ C

Xl

i¼1
ni

 !

The final form of the classifier does not change while now
0 6 ai 6 C. For more information about SVM, the reader is re-

ferred to (Cristianini and Shawe-Taylor, 2000).
We have tested radial basis function and linear kernel, the

parameters setting is performed in each dataset. To select the
parameters an internal 10-fold cross validation is performed

using the training data (so the test set is blind) i.e. each training
set is randomly partitioned into 10 equal size subsamples, a
single set is retained for testing the model, and the remaining

9 sets are used as a new training set. The cross-validation pro-
cess is then repeated 10 times (the folds), and the results from
the 10 folds are averaged. Using this protocol we select the best

parameters for SVM (using a grid search approach as sug-
gested in LibSVM (xxxx)), then these parameters (selected
without using the test data) are used to classify test patterns.

3.2. Gaussian process classifiers

A Gaussian process is a generalization of the Gaussian proba-
bility distribution. A Gaussian process classifier (GPC) is a dis-

criminative approach where the class membership probability
is the Bernoulli distribution (Rasmussen and Williams, 2006).
GPC has a proven track record classifying many different

tasks.
GPC is based on methods of approximate inference for

classification, since the exact inference in Gaussian process

models with likelihood functions tailored to classification is
intractable. In the rest of this section we use the same symbols
and notation from Rasmussen and Williams (2006).

In the basic case of a binary GPC classifier, the main idea

consists in introducing a Gaussian Process over the latent
function f(x), which is used as the argument of an activation
function to get a final output varying in the range 0;1. A com-

monly used activation function is the logistic function

rðfðxÞÞ ¼ 1

1þ e�fðxÞ

thus getting a prior on

pðxÞ ¼ pðy ¼ þ1ÞÞ ¼ rðfðxÞÞ:

The inference problem is made of two steps:

� computing the distribution of f(x) corresponding to a test
case

pðf�jx; y; x�Þ ¼
Z

pðf�jX; x�; fÞpðfjX; yÞdf

where

pðfjX; yÞ ¼ pðyjfÞpðfjXÞ
pðyjXÞ

represents the posterior over the latent variables.
� this distribution over the latent variables is used to produce

the prediction for the test case

p� ¼ pðy� ¼ þ1jX; y; x�Þ ¼
Z

rðf�Þ

¼
Z

rðf�ÞpðfastjX; y; x�Þdf�



Table 1 Characteristics of the datasets.

Dataset Short name Classes Samples/Class Total samples Sample resolution

BonnBTF BO 10 16 160 200 · 200

64 · 64

Brodatz BR 13 16 208 256 · 256

KTH-TIPS KT 10 4 40 100 · 100

MondialMarmi MM 12 64 768 136 · 136

OUTEX_TC_00000 O0 24 20 480 128 · 128

OUTEX_TC_00001 O1 24 88 2112 64 · 64

OUTEX_TC_00013 O3 68 20 1360 128 · 128

UIUCTex UI 25 40 100 640 · 480
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Due to the non gaussian nature of the posterior p(f|X, y),
the first integral is not analitically tractable and approxima-

tions have to be used.
The Laplace approximation allows the replacement of

p(f|X, y) with its Gaussian approximation

qðfjX; yÞ ¼ Nðfĵf;A�1Þ

around the maximum of the posterior

f̂ ¼ arg maxfpðfjX; yÞ

where

A ¼ �rr log pðfkX; yÞjf¼f̂
Following an iterative process to define f̂ and A and computing
the mean and variance for f*, the prediction can be written as

p� �
Z

rðfastÞqðfastjX; y; xastÞdf�

where q() is gaussian.

Due to execution time we have used default parameters in
all the tested datasets2. For more mathematical details of this
classification method, the reader would be best served to refer

to chapter 3 in Rasmussen and Williams (2006), electronically
available at <http://www.gaussianprocess.org/gpml/>. In the
experiments we used the code available at <http://www.gaus-

sianprocess.org/gpml/code/matlab/doc/>.

4. Datasets

Eight datasets were considered in this paper. We chose the
same datasets used in Fernández et al. (2012), except the Jerry
Wu, VisTex and KTH-TIPS2b datasets: in the former 10

images were missed, the second due to execution time, the lat-
ter has some texture classes not included into the training set.
The following descriptions refer to the dataset versions used by
Fernández et al. (2012) and not to the original versions. The

main characteristics of each dataset are described in Table 1
(Fernández et al., 2012) and some significant pictures from
the datasets are reported in Figs. 1–7.

5. Experiments

As performance indicators we used the accuracy and the statis-

tical rank (RK), as testing protocol the 10-fold cross validation
2 loghyper = [0.0; 2.0]; [newloghyper logmarglik] = minimize(log-

hyper, ’binaryEPGP’, -20, ’covSEiso’, trainPatterns, trainLabels);
is used. RK reports the relative position of a method against

the other tested: the average rank is the most stable indicator
of average performance on different datasets, it is calculated
using the Friedman’s test (alpha = 0.05) applying the Holm
post hoc procedure (Ulas� et al., 2012).

In the first test, Table 2, we report (using our testing proto-
col) the performance of well known texture descriptors (using
the same parameter configuration proposed in Fernández et al.

(2012)):

LBP, local binary patterns (Ojala et al., 2002);

LTP, local ternary patterns (Rahtu et al., 2012),
CLBP, completed local binary patterns (Guo et al., 2010),
ILTP, improved local ternary patterns (Nanni et al., 2010).

Moreover we compare the performance of SVM and back-
propagation neural networks (BP). We have run different con-
figurations of BP varying the number of hidden nodes (from 3

to 11) and only the best result in each dataset is reported. For
SVM we have tested radial basis function and linear kernel, the
parameters setting is performed in each dataset. To select the

parameters an internal 10-fold cross validation is performed
using the training data (so the test set is blind).

It is clear that SVM drastically outperforms BP (as ex-

pected from the literature) and that standard texture descriptor
works worse than MLQP/MLPQ3 (see next Table 3) as al-
ready shown in Paci et al. (2012).

In the following table we compare the results obtained with

our texture descriptors coupled with different classifier
systems:

� SVM, SVM where the parameters (also the kernels) are
optimized separately in each dataset (internal 10-fold cross
validation is performed using the training data);

� GPC, Gaussian process classifier;
� SVM +GPC, fusion by the sum rule between linear SVM
and GPC, we have used in each dataset the linear SVM

(instead to optimize the kernel) for avoiding any risk of
overfitting and for showing that the proposed heteroge-
neous system works very well also without a careful param-
eters tuning.

In the row MLQP + MLPQ3/SVM +GPC we report the
performance obtained combining by sum rule the method

SVM +GPC in both the descriptors MLQP and MLPQ3
(so four classifiers are combined).

From the results reported in the previous table we can draw

the following observations:

http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/


Figure 2 Brodatz dataset, 13 classes, (Fernández et al., 2012; USC-SIPI, xxxx).

Figure 3 KTH-TIPS dataset, 10 classes, (Fernández et al., 2012; Hayman et al., 2004).

Figure 1 Bonn BTF dataset, 10 classes, (Fernández et al., 2012; Hauth et al., 2002).

240 M. Paci et al.
� MLQP +MLPQ3/SVM + GPC clearly outperforms all

the other methods, moreover we want to stress that this
method has no parameters (we use linear support vector
machine) tuned separately in each dataset.
� SVM slightly outperforms GPC, anyway notice that we use

the same parameters in all the tested datasets when we use
GPC (due to execution time), while for SVM the parameters
and the kernels are selected separately in each dataset.



Figure 4 MondialMarmi dataset, 12 classes, (Fernández et al., 2012, 2011b).

Figure 5 OUTEX TC 00000 dataset, 24 classes, (Fernández et al., 2012; Ojala et al., 2002).
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� MLPQ3 largely outperforms LPQ in two datasets (MM and
UI), in the other datasets it obtains performance similar to
standard LPQ.
In the last test we report some execution time for extracting
descriptors form images of size 256 · 256 (as in the Brodatz
dataset). We test the extraction on two different Intel PC



Figure 6 OUTEX TC 00013 dataset, 68 classes, (Fernández et al., 2012; Ojala et al., 2002).

Figure 7 UIUCTex dataset, 25 classes, (Fernández et al., 2012; Lazebnik et al., 2005).

242 M. Paci et al.



Table 2 Comparison among the tested methods.

Accuracy Dataset

Classifier Descriptor BO BR KT MM O0 O1 O3 UI

SVM LBP 95.80 100 100 85.58 98.25 98.60 79.30 92.02

LTP 99.00 100 100 90.15 99.00 98.95 80.25 93.10

CLBP 99.18 100 100 92.05 99.05 99.01 83.56 93.40

ILTP 99.00 100 100 91.56 99.05 99.12 82.20 92.58

BP LBP 91.35 100 100 82.52 97.28 97.33 75.94 88.01

LTP 96.05 100 100 86.89 98.27 98.08 77.70 90.75

CLBP 94.39 100 100 88.63 98.80 98.67 81.38 89.06

ILTP 96.06 100 100 87.00 98.29 98.93 79.70 89.13

Table 3 Comparison among the tested methods.

Accuracy Dataset RK

Descriptor Classifier BO BR KT MM O0 O1 O3 UI

MLQP SVM 99.38 100 100 93.91 99.38 99.15 86.62 96.00 5.31

GPC 99.70 99.90 100 94.19 99.13 99.05 83.82 93.93 6.50

SVM+GPC 99.88 100 100 94.14 99.13 99.01 83.82 94.13 5.62

MLPQ3 SVM 99.50 100 98.00 93.96 99.92 99.86 86.62 91.73 5.00

GPC 99.38 100 95.00 93.28 99.96 99.86 83.82 91.47 6.43

SVM+GPC 99.12 100 98.00 93.91 99.96 99.86 85.00 91.53 5.50

LPQ SVM 99.88 100 98.50 91.41 99.92 99.86 86.62 85.93 5.44

GPC 99.88 100 88.00 91.04 99.96 99.81 84.56 86.73 6.56

SVM+GPC 99.75 100 97.00 90.87 99.96 99.81 84.71 86.93 6.43

MLQP+MLPQ3 SVM+GPC 99.95 100 100 96.56 99.96 99.86 88.09 96.80 2.19

Table 4 Execution time.

LBP LTP LPQ MLQP MLPQ3 MLQP+MLPQ3

Seconds/image Core Duo P8600 0.10 0.30 0.11 19.25 1.12 20.37

i7-2600 0.015 0.19 0.020 2.20 0.24 2.44
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(see Table 4): Core Duo P8600 2.4 Ghz 4 GB ram; i7-2600
3.4 Ghz 16 GB ram. For both the PC the Matlab parallel tool-
box is used to exploit the multicore architecture.

The main drawback of the proposed fusion is the execution

time, making it not suited for real time applications. Anyway it
is interesting to note the reduction of the execution time using
a modern PC. An i7-2600 (launch date Q1-2011) is �10x
speedier than an older Core Duo P8600 (launch date Q3-
2008) and classifies an image in �2.5 s (notice that the execu-
tion time of SVM and GPC for classifying an image, i.e. after

the training of SVM and GPC, is negligible. So in our opinion,
the proposed fusion could be used in near real time applica-
tions in few years.
6. Conclusions

In this paper, we have presented an empirical study where

different feature extraction approaches for texture descrip-
tion are compared and combined. Moreover, a configura-
tion based on two classifiers (SVM and GPC) and two
texture descriptors (MLPQ3 and MLQP) is proposed and
evaluated.

Our experiments produced a number of statistically robust
results regarding the generality and robustness of our system
across an extensive evaluation of different datasets. The main

conclusions possible to draw from the results are: (i) our pro-
posed ensemble works well on all the tested datasets and would
thus be very useful for practitioners and (ii) GPC obtains the

performance only slightly lower than SVM without a careful
parameters tuning.

To further improve the performance of our methods, we
plan on testing more classification approaches and to compare

several descriptors.
Finally we want to stress that all the code here used is open

source MATLAB code so it is easy for other researchers to

use/test our proposed methods. The code is available at:

� Texture descriptors, bias.csr.unibo.it/nanni/TernaryCoding.
rar;
� GPC, <www.gaussianprocess.org/gpml/code/matlab/do>;
� SVM, <www.csie.ntu.edu.tw/~cjlin/libsvm/>.

http://www.gaussianprocess.org/gpml/code/matlab/do
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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