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In this work we present a new efficient numerical simulator based on the concepts of transverse
resonance and electromagnetic Hertzian potentials. The method includes the transverse resonance
circuit modelling (TRCM) well suited with scalar time-domain Hertzian potential modelling (HPM).
The transverse circuit provides the effective refractive indices related to the guided modes of an
optical waveguide. The simultaneous implementation of the TRCM and HPM approaches provides
an accurate time domain electromagnetic field solution for two-dimensional and three-dimensional
optical waveguides.
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1. INTRODUCTION

When considering a dielectric slab we can easily match
fields at the interfaces. In the case where our waveguide
is a dielectric multilayer structure however, this procedure
becomes too involved and inadequate. A different way
of looking at the problem, particularly useful in a mul-
tilayer situation, is based on network consideration. This
is the so called transverse resonance technique1 which is
represented by thee transverse resonance circuit modeling
(TRCM). TRCM provides the effective refractive indices
of a dielectric multilayered structure and is well suited
with the Hertzian potentials used to solve stratification
problems. Hertzian potential method (HPM) represents an
accurate and efficient modeling utilized to analyze mul-
tilayered dielectric waveguides,2 ridge waveguides3 and
nonlinear optical waveguides,4 in a good agreement with
experimental results. For a two-dimensional (2-D) problem
the proposed time-domain algorithm solves rigorously the
electromagnetic field by considering only two scalar equa-
tions. For the same problem, the conventional finite differ-
ence time domain (FDTD) algorithm solves for three field
components which are correlated, by increasing of about
50% (Ref. [3]) the central processing unit (CPU) time.
In a three-dimensional (3-D) case the proposed algorithm
solves again two scalar equations instead of six, and sub-
sequently all the electromagnetic (EM) field components
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†Permanent address: IMM-CNR sezione Lecce, University Campus,

Lecce-Monteroni 73100, Italy.

are obtained by the two scalar potentials as in Hertzian
potential formulation. With the introduction of rigorous
time domain HPM with the transverse resonance circuit
modeling we represent the physical phenomena such as
light propagation, scattering and coupling inside optical
waveguides by providing a good convergent solution. The
simulation algorithm, reported in Figure 1, is based on
Hertzian scalar wave equations1–7 associated to transmis-
sion line circuits including the effective refractive indices
evaluation through the TRCM approach. The circuit of the
TRCM can be easily matched with the circuital approach
of the HPM through the concept of equivalent transmis-
sion line. The equivalent transmission lines represent the
propagating modes of the optical waveguide. Each prop-
agating mode is solution of the scalar Helmholtz wave
equation5–6 and is associated to a transmission line with
a characteristic impedance which depends on the modal
effective refractive index. The second derivatives of the
Helmholtz scalar equation introduces an high sensitivity of
the numerical error. For this purpose HPM generators2–4

are necessary at each dielectric interface in order to model
accurately the discontinuous regions of the optical waveg-
uide. These generators allow to model a discontinuous
optical waveguide by decreasing the computational cost
obtaining good convergent solution.3 It is known that the
scalar wave equation may lead to inconsistencies because,
in inhomogeneous regions such as step discontinuities,
it is in general not equivalent to Maxwell’s equations.
Electromagnetic (EM) scattering problems, including free
space, involve the calculation of the fields produced in
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Fig. 1. Finite difference time-domain Hertzian potentials algorithm with transverse resonance circuit modeling.

the presence of these geometrical discontinuities. Such
discontinuities may be replaced by equivalent generators,
giving an accurate solution of the EM field also for struc-
tures with high dielectric contrast. In this way it is also
possible to discretise complex dielectric thin multilayer
structures by obtaining a closed solution. The numerical
approximation introduced by the voltage and current gen-
erators of the HPM, combined with the TRCM approach,
provides an accurate numerical time-domain tool for the
characterization of 2-D and 3-D optical waveguides. In
this work we present a complete HPM electromagnetic
field formulation implemented with the transverse reso-
nance circuit modeling. We apply the new algorithm to a
3-D tapered ridge waveguide commonly used as integrated
optical coupler.

2. TRANSVERSE RESONANCE
CIRCUIT MODELING

As application of the TRCM method we consider the
asymmetrical slab waveguide reported in Figure 2(a). The
infinite material cover and substrate are represented by
modal admittances. Limited core region is represented by
a transmission line. The equivalent modal network consid-
ers the total admittance (or impedance) when looking from

a reference section (Fig. 2(b)) as the sum of the admit-
tance (or impedance) seen on left and the admittance (or
impedance) seen on the right. The resonance condition is
obtained by annulling the total admittance (or impedance).

In order to solve the transverse electric (TE) resonance
condition it is convenient to normalize the various admit-
tances of Figure 2(b) to 1/��0, thus obtaining Y01 = k� ,
Y02 =−j�� , Y03 =−j	� . By choosing a reference point at
x = d we have for TE modes looking towards x > d and
x < d

→
Y �d�+ ←

Y �d� = Y03 +Y01

�Y02 + jY01 tan�k�d��
�Y01 + jY02 tan�k�d��

= −j	�+k�
�−j��+ jk� tan�k�d��
�k�+ j�−j��� tan�k�d��

= 0 (1)

Where k� , �� , 	� are the x-transverse propagation con-
stants in core, in the substrate and in the cladding region,
respectively. We observe that the resonance condition for
the transverse magnetic (TM) is obtained by considering
the normalization of the admittances to ��, thus obtain-
ing Y01 = 1/k� , Y02 =−j/�� , Y03 =−j/	� . In the case of
a symmetrical waveguide the circuit can be simplified by
considering only half circuit: for symmetry the Ey TE field
can be either even or odd and so it will present a maximum
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Fig. 2. (a) Asymmetrical slab waveguide. k� , 	� and �� represent the
propagation constants in the core, in the cladding and in the substrate
region, respectively. (b) Transverse equivalent network of TE/TM mode
in the asymmetrical slab. (c) Equivalent TE even circuit for a symmetrical
waveguide. (d) Equivalent TE odd circuit for symmetrical waveguide.
(e) ARROW waveguide. (f) TE/TM transverse equivalent network.

or a minimum in Ref. = d/2 (Ref. and d indicate the ref-
erence section and the core thickness respectively in case
of TE even mode or TE odd mode as reported in Figs. 2(c)
and (d)). This symmetry condition is equivalent to con-
sider an open circuit (magnetic wall of TE odd modes)
and a short circuit (electric wall of TE even modes). We
observe that in the case of guided modes the core charac-
teristic impedance is real (oscillating field profile), instead
the cladding and the substrate admittance are purely imag-
inary (exponential decay). In the TE even case the trans-
verse resonance condition of a symmetrical waveguide (in
which the x-transverse air propagation constant is equal to
the x-transverse substrate propagation constant �� = 	�) is
given by the total admittance

→
Z+←

Z = jZ01cot�k��d/2��+ jZ01

= j
��0

k�
cot(k��d/2��+ j

��0

	�
= 0 (2)

where the term cotangent represents the input impedance
of an open stub circuit (magnetic wall). Regarding the TE
odd case the dispersion relation is obtained from the previ-
ous formulae by replacing the cotangent functions by tan-
gent. The tangent function represents the input impedance
of a short circuit stub (electric wall). The resonance con-
dition can be extended to a generic dielectric multilayer
structure. Concerning the ARROW8 optical waveguide of
Figure 2(e), the TE resonance condition applied to the
transverse circuit of Figure 2(f) is

1
	1

· 	1+	3 tanh�	1d�

	3+	1 tanh�	1d�
+ 1
	fc

· 	fc+ �	sc tanh�	fct�

�	sc+	fc tanh�	fct�
=0 (3)

with

�	sc =
1
	sc

· 	sc +	2 tanh�	scd1�

	2 +	sc tanh�	scd1�
(4)

where 	3, 	1, 	fc, 	sc, 	2 are the propagation constants in
the upper cladding, in the core, in the first cladding, in the
second cladding and in the substrate region, respectively.

3. HERTZIAN POTENTIALS FORMULATION
AND MODELING

The Hertzian electric and magnetic vectors5–7 are repre-
sented in rectangular coordinates by

��e = a�e�x� y� z� t�

��h = a�h�x� y� z� t�
(5)

where a is unit vector, �e �h represent the TE and the
TM polarization, respectively. From (1) it is possible to
evaluate all the components of the electromagnetic (EM)
field as

�E= �� · ��e−��
�2

�t2
��e−�

�

�t
�� × ��h�

�H= �� · ��h−��
�2

�t2
��h+�

�

�t
�� × ��e�

(6)

where

� · ��e�h = �x�
e�h+ �y�e�h+ �z�e�h

�� · ��e�h = x̂Ae�h+ ŷBe�h+ ẑCe�h

� × �̄e�h = x̂��y�
e�h− �z�e�h�+ ŷ��z�e�h− �x�e�h�

+ẑ��x�e�h− �y�e�h�

(7)

with

Ae�h = �2
x�

e�h+ �yx�e�h+ �zx�e�h
Be�h = �xy�

e�h+ �2
y�

e�h+ �zy�e�h
Ce�h = �xz�

e�h+ �yz�e�h+ �2
z�

e�h

(8)

By using (7), (8) the Eq. (6) becomes

�E= x̂Ae+ ŷBe+ ẑCe− x̂���2
t �

e− ŷ���2
t �

e− ẑ���2
t �

e

−��t�x̂��y�h−�z�h�+ ŷ��z�h−�x�h�
+ ẑ��x�h−�y�h��

�H= x̂Ah+ ŷBh+ ẑCh− x̂���2
t �

h− ŷ���2
t �

h

− ẑ���2
t �

h+��t�x̂��y�e−�z�e�
+ ŷ��z�e−�x�e�+ẑ��x�e−�y�e��

(9)

All the EM component of Eq. (9) for a general unit vector
a are given by

Ex = Ae−���2
t �

e+��t�z�h−��t�y�h
Ey = Be−���2

t �
e−��t�z�h+��t�x�h

Ez = Ce−���2
t �

e−��t�x�h+��t�y�h
Hx = Ah−���2

t �
h+��t�y�e−��t�z�e

(10)
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Hy = Bh−���2
t �

h+��t�z�e−��t�x�e
Hz = Ch−���2

t �
h+��t�x�e−��t�y�e

The potentials �e�h�x� y� z� t� represents the solutions of
the homogeneous wave equations for a non-dissipative
medium

� 2�e�h�x� y� z� t�−���
2�e�h�x� y� z� t�

�t2
= 0 (11)

and for a dissipative medium

� 2�e�h�x� y� z� t�−���
2�e�h�x� y� z� t�

�t2

−�$ ��
e�h�x� y� z� t�

�t
= 0 (12)

where � is the electrical permittivity (farads/meter), � is
magnetic permeability (henrys/meter), and $ is the elec-
tric conductivity (siemens/meter) which is zero in a perfect
dielectric. For a 2-D optical device the HPM algorithm,
shown in Figure 1, solves Eqs. (11) and (12) by consider-
ing the equivalent effective TE/TM indices found through
the TRCM approach (� is substituted with the effective
index �eff ). For this purpose the HPM algorithm is per-
fectly matched with TRCM approach: �e and �h repre-
sent two guided modes characterized effective permittivity
index �eff evaluated by the TRCM approach. Each mode
propagates in the optical waveguide as a signal which trav-
els in a transmission line characterized by a characteristic
impedance

Ze�h =
1√
�effe�h

√
�0

�0

(13)

By analyzing the asymmetrical slab waveguide, the HPM
algorithm of Figure 1 evaluates before the kernel iterations
the TE and the TM equivalent effective refractive indices.
Figure 3 shows the calculated TE/TM effective refractive
indices by varying the core thickness for a slab waveguide
with n1(GaAs) = 3&408, n2(AlGaAs) = 3&042, n3 = 1 and
for a working wavelength of '0 = 1&31 �m. A practical
application of the asymmetrical slab waveguide is reported
in Figure 4(a) where a grating at the interface between the
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Fig. 3. TRCM approach: TE and TM effective refractive indices for an
asymmetrical slab waveguide for different values of the core thickness d.
Inset: equivalent transverse circuit.
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Fig. 4. (a) Asymmetrical slab waveguide with grating. (b) Equivalent
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core and the cladding region is considered. In this case the
HPM algorithm evaluates the effective refractive indices
for the thicknesses da and db reported in Figure 4(a) by
obtaining the equivalent multilayered dielectric structure
illustrated in Figure 4(b). In order to the reduce the numer-
ical error of the temporal second derivatives of Eqs. (11)
and (12), the HPM generators VP and IP (see Fig. 4(c)) are
placed directly on the dielectric interface nodes. The effi-
cacy of the HPM generators is shown in Figure 5, where
is reported the time evolution of the Ey component (nor-
mal to plane of the figure) one cell before the dielectric
multilayered structure of Figure 4(b). The generators in
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Fig. 5. HPM generators modeling: convergent solution of the TE Ey
component regarding the periodical waveguide of Figure 4(a) with da =
0&35 �m, db = 0&25 �m, n1(GaAs) = 3&408, n2(AlGaAs) = 3&042, n3 = 1
and d1 = d2 = 0&3 �m. Inset: equivalent multilayered structure and
equivalent HPM circuit model with generators.
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this case provides a no-oscillating closed solution also by
considering low grid sizes. The Ey oscillations, obtained
by considering the original dielectric profile without HPM
generators, represent the numerical errors. Now we quan-
tify Vp and Ip by a finite difference9 parametric evaluation
of Eq. (11). The scalar wave Eq. (11) for a non-dissipative
medium can be rewritten as

� 2�e�h�x� y� z� t�−��
�2�e�h�x� y� z� t�

�t2

−��
2Ppert�x� y� z� t�

�t2
= 0 (14)

where

Ppert�x� y� z� t�= ���x� y� z� t��e�h�x� y� z� t� (15)

represents the dielectric polarization which takes into
account the dielectric discontinuity. For a 3-D case we
have:

��= �i+1 −�i i = cell position in x direction (16)

��= �j+1 −�j j = cell position in y direction (17)

��= �k+1 −�k k = cell position in z direction (18)

Therefore we solve Eq. (14) in proximity of the dielectric
interfaces, and Eq. (11) in the homogenous regions. The
difference between the parametric solution of Eq. (14), and
Eq. (11) in the iterative form, is in the coefficients; in fact
for one propagation direction Eqs. (11) and (14) become
respectively

�n+1�j�

(
��

��t�2

)

= �n�j+1�
(

1
��z�2

)
+�n�j�

(
2��
��t�2

− 2
��z�2

)

+�n−1�j�

(
− ��

��t�2

)
+�n�j−1�

(
1

��z�2

)
(19)

�n+1�j�

(
��

��t�2
+ ���

��t�2

)

= �n�j+1�
(

1
��z�2

)
+�n�j�

(
2��
��t�2

− 2
��z�2

+ 2���
��t�2

)

+�n−1�j�

(
− ��

��t�2
− ���

��t�2

)
+�n�j−1�

(
1

��z�2

)
(20)

where n and j indicate the time step and the position along
one direction (in this case z-direction), respectively. By
comparing the implemented formula

�n+1�j�= �n�j+1�
(
b

a

)
+�n�j�

(
2a−2b
a

)

+�n−1�j��−1�+�n�j−1�
(
b

a

)
(21)

�n+1�j�= �n�j+1�
(
b

a′

)
+�n�j�

(
2a′ −2b
a′

)

+�n−1�j��−1�+�n�j−1�
(
b

a′

)
(22)

with

a= ��

��t�2

a′ = a+ ���

��t�2

b = 1
��z�2

(23)

we found the effect of the generators Vp and Ip.

4. 3-D OPTICAL WAVEGUIDES

By applying the TRCM approach it is possible to ana-
lyze complex 3-D optical waveguides in a 2-D case. As
example we consider the 3-D tapered ridge waveguide
of Figure 6(a): this waveguide can be analyzed as a 2D
waveguide by evaluating the effective refractive index neffy

in the y-direction. By considering the cross section of the
tapered ridge waveguide at z= 0 we define the two region
reported in Figure 6(b). The TRCM method evaluates
through the resonance circuit model the effective refrac-
tive index neffy1 in the region 1 (referred to the waveguide
with core thickness d), and the index neffy1 in the region
2 (referred to the waveguide with core thickness D). In
Figures 6(c) and (d) we show the HPM equivalent cir-
cuit before the tapered region and on the slanted profile,
respectively. The complete modal classification1 is given
by applying again the TRCM also along the x-direction.
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Fig. 6. (a) 3D tapered ridge waveguide. (b) Cross section at z= 0 and
effective refractive indices. (c) HPM equivalent circuit before tapered
region. (d) HPM circuit model with generators on the slanted profile.
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Fig. 7. TEy and the TMy modes for different widths W of a ridge
waveguide with n1(GaAs) = 3&408, n2(AlGaAs) = 3&042, n3 = 1, d =
0&3 �m, and D = 0&54 �m. The used working wavelength is '0 =
1&31 �m.
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Fig. 8. Time evolution of the Ey component after (a) t1, (b) t2, (c) t3,
and (d) t4 time-step with t1 < t2 < t3 < t4. The simulated waveguide is
characterized by n1(GaAs) = 3&408, n2(AlGaAs) = 3&042, n3 = 1, d =
0&3 �m, D = 0&54 �m, W = 10 �m, l= 0&5 �m, and 2= 45. The used
source is a carrier at '0 = 1&31 �m modulated by an exponential signal.

In particular the TEy is defined by the components Ex,
Ez, Hx, Hy , Hz, with Ey = 0, and the TMy is represented
by the components Hx, Hz, Ex, Ey , Ez, with Hy = 0.
The TEy and the TMy modes of a ridge waveguide with

n1(GaAs) = 3&408, n2(AlGaAs) = 3&042, n3 = 1, d =
0&3 �m, and D = 0&54 �m are reported in Figure 7. In
this case we vary the ridge width W by fixing the working
wavelength at '0 = 1&31 �m.

Moreover coupling and the radiation aspects are high-
lighted by Figure 8 which illustrates the time evolution of
the Ey component after different time-steps. In this simula-
tion we consider as source a carrier at '0 = 1&31 �m modu-
lated by an exponential signal and the absorbing boundary
conditions (ABCs).10 In this case extremely small bound-
ary reflection coefficient of the order of 10−11 is obtained
in the simulations by enhancing the accuracy of the solu-
tion for long simulation time steps.

5. CONCLUSION

In this work we analyze an algorithm totally based on
equivalent circuits. The TRCM circuit characterizes all
the propagating modes of an optical waveguide, and the
HPM generators modelling provides a closed solution of
the electromagnetic field. The TRCM approach combined
with the HPM formulation represents a new tool for the
design of 2-D and 3-D multilayered structures.
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