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Abstract

Beam theories may be grouped in two broad categories, namely induced or intrinsic theories. In the former, beam models are
obtained as exact consequences of three-dimensional theory, making use either of asymptotic expansions in a slenderness parameter
or projections of three-dimensional elasticity on certain function spaces, while beams are inherently one-dimensional bodies in the
latter category. Although induced theories show a clear connection between three- and one-dimensional representations, they
are often more demanding with respect to intrinsic ones, in which a finite number of strain parameters, depending on just one
space variable, characterizes the motion of beams in an internally consistent way and without a direct linkage to three-dimensional
material properties. Hence, as a consequence, intrinsic theories do not provide any structure for constitutive equations and, at least
in principle, different choices can be allowed. A typical example of this fact is represented by the one-dimensional relationship
between the bending moment and the beam curvature, since for this latter two notions are admissible. Indeed, both are adopted
in the literature and, apparently, preferring one to the other is only related to the predictive capability of the ensuing model. The
arising question is about possible differences in both static and dynamic responses of beams, when one or the other definition of
curvature is selected.
© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

Strings and beams are ubiquitous among man-made products and even in nature. Consequently, models for their
analysis are currently met in any field of civil and industrial engineering. Further, the application of beam models
is not restricted to bodies having a prevalent dimension with respect to the others, but is extended to structures that
can suitably resemble beams, at least at a proper “distance” of observation or at a certain level of investigation. An
example is represented by the so-called beam-like lattice structures [1].

The analysis of behavior of beams with low, high or even very high slenderness, which is the ratio between the
length of the beam and the smallest gyration radius, is an important field of application of any beam theory.
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Noteworthy, those beam theories, which are completely decoupled from the three-dimensional theory, do not pro-
vide any structure for constitutive equations, as typically happens for models belonging to the class of Cosserat beam
theories [2] (for a systematic treatment of beams as oriented bodies, see [3]). Thus, in such cases, constitutive equa-
tions must be either introduced on an axiomatic way or experimentally established. For considerations on how to
obtain constitutive equations, see [4].

A key question, indeed treated in many papers and books, is which curvature is the more suitable measure to
adopt in formulating a one-dimensional constitutive relationship for the bending moment especially in case of beams
undergoing large deflections and rotations. We emphasize that, interestingly, in the scientific literature two different
notions of curvature are used and, apparently, preferring one to the other is only related to the predictive capability of
the ensuing model.

The present contribution, which is part of a larger research project aimed at understanding how one choice or the
other influences the theoretical response of beams, is organized as follows. The kinematics of a geometrically exact
nonlinear Timoshenko beam is introduced in Sec. 2 and dynamic equations are reported in Sec. 3. One-dimensional
constitutive equations are indicated in Sec. 4, which is actually the main part of this contribution. The Sec. 5 reports
some basic numerical examples. The contribution ends with some conclusive remarks (Sec. 6).

2. Kinematics

Let us consider an initially straight beam undergoing planar and twist-less deformed states and further assume
that cross sections remain flat and undistorted, but not necessarily orthogonal to the beam axis during the deformation
process. A slice of initial length dx is depicted in Fig. 1, to which we refer for notations, in the reference and deformed
configurations: u(x, t) and v(x, t) stand for axial and transversal displacements of cross section center, ϕ(x, t) and θ(x, t)
are axis and cross section rotations, respectively. The shear angle id denoted by γ(x, t). Displacements and forces are
positive if concordant with the reference (see vectors in Fig. 1); rotations and moments are positive if counterclockwise
oriented. The length of the deformed axis of the slice is given by

ds =
√

2 ε + 1 dx , (1)

where ε is the axial strain written as

ε = u′ +
u′2

2
+

v′2

2
, (2)

the prime denoting derivative with respect to x. The rotation ϕ and the shear angle γ are given by

ϕ = − arctan
(

v′

1 + u′

)
, γ = θ − ϕ . (3)

Finally, two curvature functions, κ = κ(x, t) and κ̂ = κ̂(x, t), are introduced as
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x + dx
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Fig. 1. Beam slice dB0 and dB in reference and deformed configurations, respectively.
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κ = θ′ = γ′ +
v′u′′ −

(
1 + u′

)
v′′

(
1 + u′

)2
+ v′2

, (4)

and

κ̂ = θ′
dx
ds
=

κ√
2ε + 1

. (5)

The former curvature is called material [5], normalized [6], flexural [7] or mechanical [8,9]. The latter, which
differs from the other one whenever axial strain does not vanish, is indicated as the geometric curvature in [7] and
in [9], while in [10] is reported either as geometric curvature and spatial measure of curvature.

We call, from now on, κ as the mechanical curvature and κ̂ as the geometric curvature, in agreement with [11]. We
emphasize that κ and κ̂ are deformations that we expect to play a role in constitutive equations and hence we postulate
that their dual entities exist. In this sense, we admit that both κ and κ̂, in spite of names, have a mechanical meaning.

3. Equations of motion

On making use of virtual variations of Eqs.(2-4) and introducing properly conjugated generalized stresses N, T and
M, the equations of motion can be derived from the Principle of Virtual Work as (see [11], for further details)

ρ A ü + c u̇ =

N
ds
dx

(1 + u′) − Tv′
(

ds
dx

)−1

′
, (6)

ρ A v̈ + c v̇ =

N
ds
dx

v′ + T (1 + u′)
(

ds
dx

)−1

′
+ q , (7)

ρ I θ̈ = T
ds
dx
− M′ , (8)

where, in addition to already defined symbols, ρ and c are the mass density and the damping coefficient, A and I
are the cross-sectional area and the second moment of area, q = q(t) is the transversal load and the overdot denotes
derivative with respect to time t.

Notice that Eqs. (6-8) are geometrically exact.

4. Constitutive equations

Non-standard constitutive laws for axial and transversal forces N and T and for the bending moment M have been
derived in [11] by comparing internal virtual works for a beam treated as both a one-dimensional directed body and a
three-dimensional body, and restricting to a linear hyper elastic Green material, are detailed as

N =
sin2 γ√
2ε + 1

χG A +
ε√

2ε + 1
E A +

1 + 2 cos2 γ

2
√

2ε + 1
κ2 E I , (9)

T =
√

2ε + 1 sin γ cos γ χG A −
√

2ε + 1 sin γ cos γ κ2 E I , (10)

M =
(
ε + (2ε + 1) cos2 γ

)
κ E I +

1
2
κ3 E I , (11)

where, apart symbols already defined, χ is the shear correction factor, E is the Young’s modulus, G is the (second)
Lamé’s constant and I is the fourth moment of area. By substituting κ with κ̂ we get the alternative version of Eqs. (9-
11). Both systems of constitutive laws are strongly coupled due to the geometric nonlinearity of the problem.

Since both curvatures, κ and κ̂, are used in the scientific literature, with arguments in favor of the former in [2,6–
8,10] or the latter in [12–16], the arising question is which is the most suitable one to be selected.
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In order to argue an answer to such a question, in [11], in a slightly different notation, the dimensionless linearized
(with respect to the curvature) version of Eq. (11), namely

m1 =
M
κEI
= ε + (2ε + 1) cos2 γ , (12)

is compared with the approximate expressions commonly reported in the literature, that is

m2 =
M
κEI
= 1 , m3 =

M
κEI
=

1√
2ε + 1

, (13)

and it is found that choosing m2 appears better than choosing m3, although none of these approximate expressions
(with difference between them only of few percents) capture the increment of M/(κEI) with respect to ε (see Fig. 2).
Hence, it can be concluded that, in one-dimensional models, it is better to use the mechanical curvature κ.
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Fig. 2. Dimensionless functions m1, m2 and m3 versus ε.

It is noteworthy that such an answer can’t be directly obtained from intrinsic beam theories, in which the motion
of beams is characterized in an internally consistent way, without a direct linkage to three-dimensional material
properties. Hence, intrinsic theories do not provide any structure for constitutive equations and thus, in the case of
moment-curvature relationships, different choices of curvature are, at least in principle, all equally allowed.

5. Numerical examples

Equations of motion (6-8), with constitutive relationships (9-11) are actually hard to handle. In the static case,
they have been treated in [11] (to which we refer, since here details must be skipped for brevity) by applying a Finite
Difference technique, with results in perfect agreement with classical findings reported in literature [17]. However,
the dynamic case is found much more hard to face and some approximations must be considered.

We introduce a parameter of smallness ε [18] and assume that v′ and θ′ are small of order ε, u′ is of order ε2, γ is
small enough (ε or even

√
ε) to assume

sin γ � γ , cos γ � 1 . (14)

Expanding Eq. (10) and Eq. (11) in Taylor series with respect to ε leads to

T = χG A(θ + v′) , M = κ E I +
1
2
κ3 E I . (15)

Further, by neglecting the longitudinal inertia and the longitudinal damping [19], in the hypothesis of vanishing
axial force, Eq. (6) allows rewriting Eq. (7) as

ρ A v̈ + c v̇ =
(
T

ds
dx

1
1 + u′

)′
, (16)
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from which we attain
θ′ = −v′′ +

ρ Av̈ + cv̇ − q
χGA

. (17)

Finally, by inserting the second time derivative of Eq. (17) in the first space derivative of Eq. (8) and discarding
negligible terms, we get

ρAv̈ + cv̇ + ρIv̈′′ + EIv′′′′ − ρr
2

χG
(
ρA

....
v + c

...
v
) − Er2

χG

(
ρAv̈′′ + cv̈′

)
= q − 3EIv′′

(
v′′′2 +

v′′v′′′′

2

)
, (18)

being r =
√

I/A the cross sectional gyration radius.
By introducing the linear wave speed of longitudinal waves p along the beam and the slenderness λ of the beam as

p =

√
E
ρ
, λ =

L
r
, (19)

and by taking L as characteristic length scale, we define rescaled space and time variables respectively as

ξ =
x
L
, τ =

t
t0
=

tp
Lλ
. (20)

Rescaled displacement V = V(ξ, τ) and its partial derivatives are related to their dimensional counterparts by

∂ j

∂τ j

∂i

∂ξi
V = t j

0Li−1 ∂
j

∂t j

∂i

∂xi v , (21)

where i and j are integers spanning from 0 up to the requested order and we accept that the zeroth order derivatives of
V and v stand for the functions themselves.

On substituting Eq. (21) in Eq. (18) and considering a rectangular cross section, after some algebra, we attain

V̈ + 2π2ζV̇ +
V̈ ′′

λ2 + V ′′′′ +
27
10

V ′′

λ2

(
2V ′′′2 + V ′′V ′′′′

)
=
πP
4

cosΩτ +
12
5λ4

(
λ2V̈ ′′ + 2π2ζ

(...
V + λ2V̇ ′′

)
+ V ′′′′

)
, (22)

where dimensionless loading function and damping ratio are set as

P cosΩτ =
4λ2

πEA
qL , ζ =

cLpλ
2π2EA

, (23)

and overdot and prime, in analogy with what we did before, stand for derivative with respect to τ and ξ.
We consider a single-mode approximation of Eq. (22) by choosing the tentative solution

V(ξ, τ) = υ(τ) sin(πξ) , (24)

with υ a generalized coordinate representing the transversal dimensionless displacement of the middle span of the
beam. Substituting the solution (24) in Eq. (22), multiplying everything by sin(πξ) and integrating over a unit interval,
after a little rearrangement, we get

1 + 7
5
π2

λ2

 ϋ + 2π2ζ

1 + 12
5
π2

λ2

 υ̇ + π4υ +
27
40
π8

λ2 υ
3 = P cosΩτ +

12
5


....
υ + 2π2ζ

...
υ

λ4

 . (25)

Frequency responses reported in Fig. 3, corresponding to a beam for which L is 30 times the cross section height
(λ = 103.92), have been obtained by applying a brute force integration procedure, for six different values of P from
50 up to 100 (with an increasing step of 10), while frequency Ω varies, forward and backward. The integration
time covers 500 cycles of loading function. From Eq. (25), it can be recognized that last term in the right-hand side
becomes smaller and smaller in comparison with other terms for increasing λ. It is actually not surprising, since for
large values of λ the effect of shear and rotary inertia becomes negligible. For the investigated cases, the squared
difference between results from Eq. (25) and from its counterpart, obtained by dropping the last term in the right-hand
side, was of the order 10−14 up to 10−12.
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Fig. 3. Frequency response curves for λ = 103.92 and P from 50 to 100 (increasing step: 10).

6. Concluding remarks

The present communication briefly reports results concerning which is the more suitable notion of bending curva-
ture to adopt in constitutive equations in a kinematically consistent beam theory. The theory has been developed on
assuming that the beams undergo planar deformations, with large displacements and rotations under the main kine-
matic hypothesis of rigid cross sections. To represent specific constitutive equations in explicit form, a hyper elastic
Green material, with a linear relationship between stress and strain, has been chosen. The one dimensional constitu-
tive equations are nonlinear and strongly coupled. Some preliminary frequency response curves are reported to briefly
illustrate the dynamical behavior of the beam.
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