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Abstract 

Objective: Understanding the neurophysiological signals underlying voluntary motor control 

and decoding them for prosthesis control are among the major challenges in applied 

neuroscience and bioengineering. Usually, information from the electrical activity of residual 

forearm muscles (i.e. the electromyogram, EMG) is used to control different functions of a 

prosthesis. Noteworthy, forearm EMG patterns at the onset of a contraction (transient phase) 

have shown to contain predictive information about upcoming grasps. However, decoding 

this information for the estimation of grasp force was so far overlooked. Approach: High 

Density-EMG signals (192 channels) were recorded from twelve participants performing a 

pick-and-lift task. The final grasp force was estimated offline using linear regressors, with 

four subsets of channels and ten features obtained using three channels-features selection 

methods. Two different evaluation metrics (absolute error and R2), complemented with 

statistical analysis, were used to select the optimal configuration of the parameters. Different 

windows of data starting at the grasp force (GF) onset were compared to determine the time 

at which the grasp force can be ascertained from the EMG signals. Main results: The 

prediction accuracy improved by increasing the window length from the moment of the onset 

and kept improving until the steady state at which a plateau of performances was reached. 

With our methodology, estimations of the grasp force through 16 EMG channels reached an 

absolute error of 2.52% the maximum voluntary force using only transient information and 

1.99% with the first 500ms of data following the onset. Significance: The final GF estimation 

from transient EMG was comparable to the one obtained using steady state data, confirming 

our hypothesis that the transient phase contains information about the final grasp force. This 

result paves the way to fast online myoelectric controllers capable of decoding grasp strength 

from the very early portion of the EMG signal. 

 

Keywords: hand prosthetics, grasp force, HD-EMG, regularized linear regression, transient EMG, Lasso, elastic nets 

1. Introduction 

Understanding the neurophysiological signals 

underlying voluntary motor control and decoding them for 

controlling limb prostheses are among the major challenges 

in applied neuroscience and biomedical engineering. A 

case study of particular interest is represented by 

individuals with below-elbow amputation. Indeed, these 

people maintain part of the 18 extrinsic muscles that 

originally served the fingers and wrist and the 

electromyogram (EMG) recorded from these muscles can 
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in theory be used to control a variety of grasps and 

movements in a multi-digit hand prosthesis.  

Although significant efforts have been spent in decoding 

the user motor intent to seamessly control different motor 

functions of a hand prosthesis [1,2] the estimation of the 

desired grasp force (GF) produced by the muscle from the 

EMG, has been investigated less extensively. As an 

example, the clinically adopted strategy in prosthetic hands 

consists in setting the GF proportional to the envelope of 

the recorded EMG signals [3], following an approach 

proposed by Bottomley [4] back in the sixties. However, it 

is well known that the relationship between the EMG and 

the output force produced by voluntary muscle contractions 

is not necessarily proportional [5,6]: in fact, the force is 

modulated by the number of motor units (MU) recruited 

and their activation frequency [7,8].  

So far researchers have investigated this relationship 

using either intra-muscular [9–12] or surface EMG 

recordings [10–28]. Several estimation techniques, 

exploiting a wide range of methodologies, were proposed 

(Table 1). In general, to provide this estimation, the EMG 

signals are decomposed into time segments using sliding 

windows and statistical features descriptive of the signal 

are calculated [29]. Then, the features are fed to a fitting 

algorithm (e.g. a classifier or a regressor) that provides an 

estimate of the force for each segment. By using several 

different algorithms, such as regressors 

[9,11,16,17,22,24,25] or artificial neural networks [9,11–

14,21,26,27], these studies demonstrated notable 

estimation accuracies up to 0.95 R2 (coefficient of 

determination) or 4.21% absolute error (AE) from wrist, 

finger and trunk movements, and from a wide range of 

forces (e.g. from 0% to 100% of muscle activation 

[10,11,13,15–17,19,22,23,25,26], or up to 300N of output 

force [9,12,14,18,24]). Notably, some of the methods 

developed for the estimation of the grip force from the 

EMG also allow for the simultaneous control of up to 6 

degrees of freedom of a prosthesis [12,15,17,20,25,27]. 

This is particularly interesting in clinical settings, where 

multi-articulated hand prostheses are now available, as 

these solutions also provide a smooth way to switch 

between motor functions of the prosthetic device  (Table 

1).  

From an engineering perspective a voluntary muscle 

contraction may be divided in two phases, namely the 

transient and the steady state. The transient is associated to 

the bursts of myoelectric activity due to sudden muscular 

effort while executing a movement. It is related with the 

beginning of the recruitment of the MUs involved in the 

muscle contraction. The steady state corresponds to the 

part of the contraction when almost every MU involved in 

the movement is already recruited, that is, the myoelectric 

signal produced by a stable muscle contraction. The latter 

has very little temporal structure (it is mostly a random 

signal) due to the active modification of recruitment and 

firing patterns of the MUs needed to sustain the contraction 

[30]. On the contrary, the transient EMG was shown to 

possess a deterministic structure [29,31], likely due to an 

orderly recruitment of the MUs. This indeed was 

demonstrated to be descriptive of the intended movement 

[31]. However, thus far, such temporal arrangement was 

poorly exploited for the estimation of the output force 

during a movement (Table 1, [9–28]). Here we 

hypothesized that the informative content of the transient 

EMG in humans is likely due to the preplanned nature of 

grasping, in general, and of the final GF, in particular [32]. 

Thus, to estimate such a final GF, the information 

contained during the preliminary grasping phase could be 

sufficient. To the best of our knowledge only Calvert and 

Chapman attempted to decode the GF of the hand from the 

transient EMG, back in 1977 [33]. This pioneering study 

showed unsatisfactory results and concluded that, with the 

techniques of the time, it was not possible to obtain reliable 

estimates of the GF in the transient phase.  

The objective of this work was to assess, using modern 

techniques, the viability of extracting relevant information 

from the transient phase of the EMG signal, in order to 

decode the target GF during a grasp. To this aim, we 

collected 192 monopolar channels of High Density (HD) 

surface EMGs from the forearms of 12 able-bodied 

participants while producing highly repeatable GFs, i.e., 

performing pick and lift series of a test-object with different 

weights (250g, 500g, 750g, 1kg). Ten features were 

extracted from the HD-EMGs and the GFs decoded using 

three channels-features selection methods (fixed, partially 

fixed and automatic) were assessed offline and compared. 

Our results show that is possible to estimate the GFs using 

down to 16 channels, with an absolute error of 1.99% of the 

maximum voluntary force using information from the first 

500ms of data following the GF onset. These results pave 

the way to online myoelectric controllers capable not only 

of decoding the intended grasp type but to do so from the 

very early portion of the EMG signal.  

2. Materials and Methods 

2.1 Experimental protocol 

Twelve able-bodied participants (aged 27.6 ± 2.96 years, 

seven males, all right-handed) without any history of 

neuromuscular disorders participated to this study. Written 

informed consent in accordance with the Declaration of 

Helsinki was obtained before conducting the experiments 

from each participant. This study was approved by the local 

ethical committee of the Scuola Superiore Sant’Anna, Pisa, 

Italy (request no. 02/2017). The methods were carried out  
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Table 1. Literature about Force Estimation from EMG signals. 

Reference 
Number of 

participants 
Force Range 

Force 

Patterns* 

Muscles 

(number and type 

of electrodes) † 

Algorithm Error Type Accuracy‡ 

This Study 12 

250 g to 1000 

g 

~5 to 25% 

GFMVC 

Pick and 

Lift 

Forearm ([4 8 16] 

164 s High 

Density) 

Regression 

(500ms after the onset) 

AE (%GFMVC)  1.99 (1.04)  

AE (N) 0.64 (0.24) 

R2 0.82 (0.16) 

[22] Liu et al., 

2014 
3 

30% MVC 
flexion and 

extension 

Profile 
Forearm 

(128s High Density) 
Regression AE (%MVC) 4.21 ~ 10.20 

[23] Potvin et 
al., 1996 

8 
0 to 100% 

MVC 
Profile Trunk (3s) 

Nonlinear 
model 

AE (%MVC) 9.2 ± 2.6 

[24] 

Hoozemans et 

al., 2005 

8 

Dynamic 

force bursts 

up to 300N 

Dynamic 

force bursts  
Forearm (6s) Regression AE (N) 27 ~ 41 

[25]Clancy et 

al., 2017 
10 

30% MVC  

 
Profile 

Forearm 

(16s) 
Regression RMS (%MVC) 6.7 ~ 8.5 

[10] Bøg et al., 
2011 

11 
0 to 100 % 

MVC 
Profile 

Forearm 
 (1s and 1i) 

Feature 
profile 

R2 > 0.9 

[26] 

Baldacchino et 
al., 2018 

40 
0 to 80 % 

MVC 
Profile 

Forearm and upper 

arm (12s) 
ANN 

R2 0.91 ± 0.05% 

RMS 4.14 ± 0.92% 

[27] Nielsen et 

al., 2011 
10 

Subjective 

low to 
medium 

Movement 
Forearm 

 (7s) 
ANN R2 0.90 ± 0.02 

[9] Kamavuako 
et al., 2012 

10 0 to 50N Profile 
Forearm 

 (1i) 
Regression 
and ANN 

R2 0.89 ± 0.02 

[28] Zhang et 

al., 2018 
10 

20, 40,60 % 

MVC 
Profile 

Forearm 

(8 x16s High 

Density) 

Regression 

R2 (%MVC) 
0.78~0.93  

(20~60%MVC) 

RMS (%MVC) 
15~8 % 

(20~60%MVC) 

[13] Cao et al., 

2017 
10 

100 % MVC 

(<10% 
discarded) 

Profile 

Forearm 

 (6s) Combinations 
with 2 to 6 muscles 

ANN 
RMS  

± 

Correlation 

Coefficient 

1.165 ± 0.475 

SVM 0.806 ± 0.254 

Regression 3.369 ± 1.457 

[14] Li et al., 

2018 
15 

8 force levels 

0~40N 
Level 

Forearm 

 (8s) 
ANN SD (N) 3.58 ~ 1.25 % 

[15] 

Mirzakuchaki et 
al., 2018 

10 
0 to 80 % 

MVC 
Profile 

Forearm and upper 

arm (12s) 

Generalized 
regression 

neural 

network 

R2 0.93 ± 0.05 % 

RMS 0.057 ± 0.012 

[16] Wang et 

al., 2018 
6 

0, 2, 4, 6, 8, 

10 kg 
Movement 

Forearm 

 (2s) 
Regression 

Average 

recognition rate 
92.57 ± 11.7 % 

[17] Zhu et al., 

2018 
5 ± 30 % MVC Movement 

Forearm 

 (16s) 
Regression RMS (%MVC) 6.0 ~ 16.3 

[18] Gailey et 
al., 2017 

8 
6 ~ 30N (sum 
of finger’s) 

Movement 
Forearm 

 (5s) 

Random 

Forest 

Regression 

RMS ± SE 
(%MVC) 

17 ± 2 ~ 26 ± 6 

[19]  Yang et 

al., 2015 
6 

10, 40, 70 

and 100 
%MVC 

Level Forearm (8s) 
Genetic 

Algorithm 

RMS (%MVC) 0.05 

Correlation 
Coefficient 

0.99 

[20] Jiang et al., 

2009 
12 

Low to 

medium 
Movement Forearm (8s) NMF R2 0.90 ± 0.006 
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in accordance with the approved guidelines. The 

experimental setup consisted of a test-object instrumented 

with force sensors, an object stand with embedded load 

cells, a chair with an instrumented armrest, an HD-EMG 

recording system and a PC (Figure 1a).  

The test-object was composed of a handle fixed on top 

of a box (Figure 1b). The handle was equipped with a 6-axis 

load cell (NANO17, ATI Industrial Automation Inc., Apex, 

USA, 0–70N) in order to measure the GF. The box was 

used to contain objects with different weights in order to 

modify the weight of the test-object. The object stand 

contained, within its base, a piezo-resistive force sensor 

(FSG series, Honeywell Sensotec, Columbus, USA, 0–

15N) to measure the load force on the test-object until lift-

off. The presence/absence of the hand on the armrest, 

which corresponded to the starting position of the 

experimental task, was detected by a force sensing resistor.  

HD-EMG signals were recorded from the participant’s 

forearms, using three 64-electrode surface arrays (8 × 8) 

with 10mm inter-electrode distance (ELSCH064NM3, 

Spes Medica S.r.l., Genoa, Italy) connected to an EMG 

amplifier (EMG-USB2+, OT Bioelettronica, Turin, Italy). 

Two of the arrays were placed on the proximal half of the 

forearm, one covering each of the anterior and posterior 

compartments; the third array was placed in the distal half 

approximately above the FPL (flexor pollicis longus), as 

identified through tactile palpation. Two reference 

electrodes were placed at the wrist level and between the 

matrices following the manufacturer’s guidelines (Figure 

1c).  

All sensors and EMG channels were synchronously 

acquired (10240Hz frequency) and band-pass filtered 

(10Hz–4.4kHz). The data was stored in the PC memory for 

off-line analysis. The PC was also used to guide the 

participants through the experiment (Figure 1a).  

The participants were asked to perform a pick and lift 

task, while comfortably sitting on a chair in front of the 

experimental platform, on a table. In particular, they were 

asked to execute the following sequence from the starting 

position: (i) move their hand to reach the instrumented 

object, (ii) grasp it using a three-digital grasp (thumb, index 

and middle fingers), (iii) lift it 10cm and (iv) wait 2s before 

(v) replacing it on the object stand and (vi) returning their 

hand back to the starting position. In particular the latter 

 
Figure 1 Experimental setup. (a) Lateral view of the participant, with his right hand resting on the starting position sensor (in purple) and with the test-

object on top of the stand (green) and monitor in line of sight. (b) Test-object consisting of a handle (red) and a box (blue). Dimensions are in cm. 

(c) Placement of HD-EMG electrodes (purple) and reference electrodes (grey) on the forearm. (d) Raw data from part of an experimental session and 

onset detection from the grasp force (GF). The first three trials per series (highlighted in purple) were discarded from the subsequent analysis. 

Table 1. Literature about Force Estimation from EMG signals [Continuation]. 

Reference 
Number of 

participants 

Force 

Range 

Force 

Patterns* 

Muscles 

(number and type of 

electrodes) † 

Algorithm Error Type Accuracy‡ 

[11] Smidstrup 

et al., 2011 
11 

0 ~ 100 % 

MVC 
Profiles 

Flexor digitorum 

profundus (1s and 1i) 

Regression 
R2 

0.95 ± 

0.007 

ANN 0.948  

 [21] Ameri et 
al., 2014 

10 
Medium 

level 
Movement Forearm (8s) ANN R2 

0.90 ± 
0.005 

[12] Kamavuako 

et al., 2013 
10 

±3Nm and 

±2Nm 
Profiles Forearm (6i and 6 ) ANN R2 0.93 ± 0.03 

* The force requiring to follow a Profile (ramp, step, bell, etc), corresponding to a Movement (grasp, flexion, etc) or achieving a specific Level. 
† Superficial (s) or intramuscular (i) electrodes. ‡ The accuracy is reported in terms of median (inter quartile range) or mean ± standard deviation. 

Some of the studies included several configurations, movement recognition or results with amputees. For brevity and comparison with the present study, 

only the best predictions on able-bodied participants are shown. 
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consisted in the arm resting on the armrest with the hand at 

the same level of the test-object handle, placed 15cm away 

from it (Figure 1a). A visual cue displayed on the monitor 

marked the start of steps (i) and (v). Between lifts, when 

the hand was in the starting position, to increase grasp 

repeatability, participants were asked to maintain the same 

three-digital grasping posture used during the lifts, in a 

relaxed way.  

Each participant performed five series of 15 lifts for 

each of four weights (250g, 500g, 750g and 1kg), for a total 

of 300 lifts. After each series, the GF necessary to lift the 

object was varied by filling the test-object box with a 

different weight (the order of the weights was randomized 

across participants). The participants could rest between 

series if they wished to. Six performed the experiment with 

their right hand and the others with their left hand. 

At the beginning and at the end of the experiment, the 

GF at maximum voluntary contraction (GFMVC, recorded 

by the load cell) and its corresponding EMG value (MVC), 

were recorded from each participant. In particular the 

participants were asked to perform three lifts with 

maximum force [34,35]. The maximum GF recorded 

across the six trials was used as GFMVC; the maximum root 

mean square (RMS) across EMG channels in the array, 

calculated over a period of 60ms, was used as MVC. 

2.2 Data Analysis 

The data was processed offline using MATLAB R2016b 

(The Mathworks, Natick, USA), with the objective of 

finding key features in the transient EMG to predict the GF 

necessary to maintain the test-object in the air – we called 

this final GF. The data from all sensors and EMG 

electrodes was down-sampled to 2048Hz. The data from 

the sensors was used to segment the recordings in 

individual trials and in task phases, whereas those from the 

EMG electrodes and the test-object were used to build the 

final GF prediction algorithms. 

Considering that during the first three lifts of an 

unknown object humans likely adapt their motor 

control [32], this data was not used for the analysis (leaving  

12 lifts per series, Figure 1d). From each of the remaining 

240 lifts per participant (12 lifts × 5 series × 4 weights), the 

beginning of the transient was identified by the onsets of 

the GF and of the EMG signal. The GF onset was identified 

by applying a simple thresholding operation on the GF 

signal. In other words, the onset was identified as the first 

moment when the GF exceeded a predefined threshold. The 

threshold was set to three standard deviations of the signal 

noise amplitude, evaluated as the signal standard deviation 

when no force was applied to the load cell. The EMG onset 

was also detected, using the Mean Absolute Value (MAV) 

signal from the four central channels of the FPL array, 

following the method proposed by Kanitz et al. [31]. In this 

work, because of the physiological basis of the EMG signal 

[36], we preferred to work in conditions in which the 

variability of EMG onset detection did not influence the 

outcomes. Thus, we based the whole analysis using the GF 

onset. The EMG onset was only calculated for comparison 

purposes. 

EMG signals were filtered with a 4th order band-pass 

Butterworth filter (20Hz – 500Hz) [37]; then, neighboring 

electrodes along the direction of the muscle were 

differentiated for each matrix, converting them into 7 × 8 

bipolar signals that were normalized by their corresponding 

MVC per participant. Similarly, the GF was normalized by 

the GFMVC. These normalizations were made in order to 

reduce the variability between participants and to get an 

estimate of the muscle activation out of EMG data [37]. 

Ten features including MAV, Waveform Lenght (WL), 

Logarithm of Variance (LogVar), square root of the 

variance (2nd order vOrder), Signal Energy (SE), Hjorths 

features, Time-Dependent Power Spectrum Descriptors 

(TDPSD) and the time-differential of the MAV (dMAV) 

were extracted from the EMG signals using sliding 

windows of 60ms (named feature window length, FWL) 

with a 10ms step. These features were selected because 

they are commonly used in literature (MAV, WL, LogVar, 

vOrder and SE [38,39]) or because they already proved 

successful in classifying transient EMG signals (Hjorths 

[40] and TDPSD [41]). An additional feature, the 

differential of the MAV (dMAV), was also calculated.  

 
Figure 2 Analysis on the training windows (TW). The upper panel 

shows the temporal segmentation of the trials into TWs. The bottom 

panel shows the flowchart of the analysis performed on each of the 

time segments. Different types of channel selection 

(Fix/Fix/LassoG) and regularized linear regression (Ridge/EN/EN) 

were performed for each reduction method under test. 
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The actual GF applied on the test-object while being 

held in the air (corresponding to the actual final GF) was 

also calculated for each trial as the mean of the plateau of 

the measured GF (within 400ms and 1000ms after the GF 

onset). The final GF was then estimated (or anticipated) 

from the features by training a regularized linear 

regression. In order to determine the earliest time at which 

the final GF could be accurately predicted (or, in other 

words, the minimum amount of transient signal needed) the 

process was repeated with windows of increasing length 

(named training windows – TW). The length of the TW 

ranged from 1 to 75 samples (Figure 2, upper panel). As 

feature samples are separated by 10ms, this corresponded 

to a portion of data embracing a single instant (the onset) 

up to 750ms. In turn, depending on the TW length, the 

process included only information from the transient or 

from both the transient and steady state (Figure 2, upper 

panel). 

Specifically, to tune the regression parameters and 

hyperparameters, the TWs extracted from the 240 trials 

available from each participant were split into training sets 

(50%), development sets (30%) and test sets (20%). 

Additionally, the trials that contained the MVC were 

included in the training set. Then, for each TW, the 

prediction of the final GF was performed after a selection 

of channels and/or features using a reduction method. The 

aim of the reduction method was to obtain sets of 4, 8 or 16 

channels and compare the results with those achieved from 

all HD channels (i.e. 7 × 8 × 3 = 168 channels) to 

determine the minimum amount of information necessary 

for the prediction of the target GF. As three reduction 

methods were compared, this resulted in a total of 

12 configurations (4 sets of channels × 3 reduction 

methods). The three methods used were:  

1. “Fix-Ridge”: the final GF was estimated using a 

regularized linear regression (with ridge 

regularization parameter λReg ϵ {0, 0.001, 0.01, 0.1, 

1, 10, 100, 1000}) with a predefined selection of 

channels (roughly those in the center of the matrices 

– Figure 3) and all the extracted features. This 

method does not discard any feature. 

2. “Fix-EN”: solution obtained using the same 

channels as in the Fix-Ridge method but performing 

features selection through elastic nets analysis1 [42–

44]. A weight parameter α=0.4 was chosen, whereas 

different values for the regularization parameter λEN 

                                                           
 

1 Elastic nets is a regularization approach that merges ridge and lasso 

regression using a weight parameter α. With α=1 a lasso regularized 

regression is obtained, achieving a stronger effect in terms of selection of 
features; conversely an α approaching to zero leads to a ridge regression 

that reduces the weight of the features without discarding them. 

(being λEN the same set of as λReg) were tested. No 

limitation on the number and type of features to be 

retained by the algorithm was included. As a result, 

the Fix-EN solution could end up with a number of 

channels lower than the initial value, in the case all 

features from a channel were discarded. The 

prediction of the final GF was obtained from the 

coefficients of the elastic nets. 

3. “LassoG-EN”: solution based on the lasso-group 

algorithm [45] for automatic selection of the 

channels, followed by elastic nets for features 

selection (using the same parameters of the Fix-EN 

method). 

For all methods, the algorithms were trained with the 

training set and the selection of the regularization 

parameters was based on the performance on the 

development set while the final assessment was performed 

on the test set (Figure 2, lower panel). Before the training, 

all features were normalized using the data from the 

training set. Notably, the chosen step (10ms), FWL (60ms) 

and α (0.4) were identified after preliminary tests using the 

same dataset split, in order to limit the complexity of the 

testing. The detailed results of such preliminary tests are 

omitted here for sake of conciseness2.  

2 In a nutshell, six FWLs (10ms, 30ms, 60ms, 90ms, 120ms, 150ms) were 

compared. The value of 60ms yielded the best tradeoff between 
performance and resulting temporal filtering. Likewise, for the elastic nets 

analysis, five α values (0.2, 0.4, 0.6, 0.8, and 1) were tested and 0.4 yielded 

the best performance on the development set. 

 
Figure 3 Predefined channels (in blue) for the “Fix-Ridge” and “Fix-

EN” reduction methods. Each column corresponds to a different 

subset of channels and each row to the muscle/compartment targeted 

by the matrix. Anatomically, the matrices were placed having the 

upper border on the proximal side and the right border on the medial 

side of the forearm. 
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The outcomes of the Fix-EN and LassoG-EN reduction 

methods were analyzed in terms of frequencies and timing 

of the selected features to get insights about what 

information was retained after their application. 

The R2 and the mean AE calculated as a percentage of 

GFMVC were used as the metrics to evaluate the estimation 

of the final GF. Hence, the metrics were also used to 

identify the TW that optimized the performance of the 

regression. Specifically, for each configuration and for a 

subset of TWs (i.e. 300, 350, 400, 450, 500, 550, 600ms), 

the difference in AE was analyzed through a Friedman test 

using R (R Foundation for Statistical Computing, Vienna, 

Austria). This was followed by post-hoc pairwise 

comparisons with Bonferroni correction. The TW that 

exhibited statistically better performance (dubbed TW*) 

was further analyzed and the frequency of the selected 

channels was assessed (Fix-EN and LassoG-EN methods). 

A two-way repeated measures ANOVA (factors: 

reduction method and number of channels) with pairwise 

comparisons was used to identify the overall best 

configuration. In this case, a single TW, common to all 

configurations, was used for the comparison. This was 

chosen as the longest TW among all the TW* selected 

through the Friedman test. A significance level of p=0.05 

was used throughout the statistical analysis.  

On the best configuration selected through the ANOVA, 

a test comparing the final GF estimation in two additional 

windows, namely WTR and WSS, was conducted. The two 

windows were dimensioned a posteriori considering the 

average duration of the GF transient across participants. 

This was done to evaluate the differences in estimating the 

GF using the transient only with respect to the steady-state 

only.  

3. Results 

The recorded data showed that all participants 

consistently applied final GFs proportionally to the lifted 

weight. These proved to be (median (inter-quartile range)) 

2.9 (1.1), 5.2 (1.2), 7.5 (1.7), 10.5 (1.5)N for the 250g, 

500g, 750g, and 1kg weight, respectively. These 

corresponded to 7.3 (6.8), 13.7 (9.7), 18.8 (8.3), 

23.7 (11.1)%MVC, respectively. The GFMVC across 

participants was 31.1 (16.7)N. The GF onset occurred 

69.5 (47.5)ms after the EMG onset. The GF transient lasted 

326.3 (186.9)ms.  

3.1 Features reduction 

The total number of features selected by the Fix-EN and 

LassoG-EN reduction methods ranged between a couple 

for small TWs and four channels to a maximum of 150 for 

larger ones and 168 channels (Figure 4a - only the case of 

Fix-EN is displayed). This makes a reduction of the model 

  
(a)                              (b) 

Figure 4 Selection frequency of the time samples and features. (a) 

Selection of features as a function of the TW length. For each number 

of channels, the upper colored plot represents the selection frequency of 

each feature while the lower plot shows the total number of features 

selected. The features on the y-axis are: MAV (1), WL (2), LogVar (3), 

vOrder (4), Hjorths Act (5),  TDPSD m0 (6), TDPSD S (7), TDPSD IF 

(8), dMAV (9) and SE (10).   (b) Selection of time samples as a function 

of TW length. Since LassoG-EN and Fix-EN yielded similar results, for 

the sake of brevity, only the results with Fix-EN are shown. Each row 

corresponds to a channel configuration. The y axis represents the 

selected time samples while the x axis represents the TW length. For 

both (a) and (b), the end of the GF transient is marked by the dotted 

vertical line. For each TW, the selection frequencies are normalized 

with respect to the number of features actually selected by the reduction 

methods.  

 

 
Figure 5. Representative results of the GF prediction. The grey lines 

correspond to the target GFs while the blue, yellow, green and purple 

traces correspond to the predicted GFs from the test set of one 

participant for the 250, 500, 750 and 1000g, respectively (Fix-Ridge 

reduction method). The predicted GF is reported for each TW length, 

which ranged from the moment of the GF onset (1 sample) until 

750ms after it (75 samples). 
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complexity between 90% and 99%, considering that the 

initial number of features ranged from 40 (4 channels 

× 10 features × 1 time sample) to 126,000 (168 channels 

× 10 features × 75 time samples). Overall the Fix-EN and 

LassoG-EN mostly retained the following features: WL, 

TDPSD S, TDPSD IF and dMAV (Figure 4a). This 

preference was more visible for shorter TWs, while it 

attenuated the end of the transient. In addition, the more 

informative time samples were usually the most recent ones 

(i.e. the ones at the end of the TW), with the very last time 

sample in the TW being selected more frequently (Figure 

4b - only the case of Fix-EN is displayed).  

3.2 Final GF estimation 

In all configurations, the prediction algorithm was able 

to predict the final grip force with high accuracy 

(representative example of the Fix-Ridge reduction method 

in Figure 5). Specifically, the prediction improved 

according with the TW length, until a stable performance 

was reached around 400ms after the GF onset. Notably, as 

there is little to no EMG activation at the beginning of the 

transient (TW length is zero), the performance for the 

shorter TWs indicates the random guess of the linear 

regression algorithm. Indeed, under large uncertainty linear 

regression algorithms return the mean of the target (i.e. the 

final GF) used during their training [40]. For this subject 

such value was 6.2N or 14.7%GFMVC. Notably, by 

increasing the number of channels, the estimated GF 

departs from the random guess even when the TW contains 

a single sample. The best AE (averaged along TWs length 

between 450ms and 750ms) of this subject was 

2.26%GFMVC. 

These results were consistent among subjects and 

reduction methods. Specifically, all the assessed 

configurations showed a similar behavior in terms of R2 

and AE. The performance improved (R2 increased and AE 

decreased) with time from the GF onset on, reaching a 

plateau for TWs of around 450ms (Figure 6). More 

quantitatively, the R2/AE increased/decreased from 0.1/5% 

for the shortest TW to 0.8/2% for the longest one (750ms). 

When only information from the transient phase was 

available to the algorithm (i.e., TW=330ms) the R2/AE 

reached a value close to the plateau: 0.67 (0.25)/2.52 

(1.76)%. Notably, as there is little to no EMG activation at 

the beginning of the transient, the performance for the 

 
Figure 7 Channels selection frequency for each HD-EMG matrix for 

the Fix-EN and LassoG-EN reduction methods, calculated for 

TW = TW*. Anatomically, the matrices were placed having the 

upper border on the proximal side and the right border on the medial 

side of the forearm. 

 
Figure 6 R2 and AE as a function of TW. Each column corresponds to a reduction method. Each row corresponds to a number of channels. The violet 

plots correspond to the AE and the wine plots to R2, both calculated considering the median across trials per time sample per participant. Solid lines 

indicate the median and the filled areas the interquartile range. The vertical lines indicate the length of TW* for each configuration (see text for more 

details). Since LassoG-EN and Fix-EN yielded similar results, for the sake of brevity, only the results with Fix-EN are shown. 
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shorter TWs indicates the random guess of the linear 

regression algorithm. Indeed, under large uncertainty linear 

regression algorithms return the mean of the target (i.e. the 

final GF) used during their training [46]. In our problem 

such value is 7.6N resulting in an AE of 5.7%GFMVC.  

The performance of all reduction methods improved 

slightly as the number of channels increased (Figure 6). 

The TW* were found to be mostly independent from the 

tested configuration, being either 450ms or 500ms (Figure 

6). Therefore, a TW of 500ms was considered as the best 

one in the following analysis. 

 The channels selection frequency (Figure 7) showed 

that Fix-EN, on average, did not discard any channel 

completely. The most selected channels were usually those 

from the matrix placed on the flexor muscles. For the 

LassoG-EN reduction method, the algorithm typically 

picked different channels for different participants. By 

definition the 168 channels case reported exactly the same 

results for both reduction methods.  

3.3 Best configuration  

The statistical analysis of the studentized residuals showed 

that there was normality (Shapiro-Wilk test), no outliers 

(no studentized residuals greater than ± 3 standard 

deviations) and no sphericity (Mauchlys test p=0.002) on 

the data. Therefore, Greenhouse-Geisser corrections were 

used. The two-way repeated measures ANOVA showed 

that the number of channels significantly affected the 

performance (F(1.83, 18.25)=16.55, p<0.001, η2=0.71) 

while the reduction method did not (F(1.35,13.46)=4.02, 

p=0.051, η2=0.35). Additionally, there was no interaction 

between the two factors (F(2.4, 23.96)=2.12, p=0.135, 

η2=0.59). Therefore, pairwise comparison was performed 

on the number of channels only (Table 2). This showed that 

the performance improved when moving from 4 or 8 

channels to 168 channels. On the contrary, there was no 

statistical difference between the 16 and 168 channels 

configurations, for all reduction methods. 

Following these results, the configurations with 

16 channels proved the ones with the best tradeoff between 

complexity and performance. Additionally, as there was no 

statistical difference between reduction methods, Fix-EN 

was chosen as the best one due to its reduced computational 

cost. Thus Fix-EN with a TW of 500ms was identified as a 

representative overall best configuration. It allowed for an 

AE of 1.99 (1.04)%GFMVC which corresponds to 

0.64 (0.24)N and to an R2 of 0.82 (0.16).  

By analyzing the data from this configuration for each 

weight separately, the performance in GF estimation 

seemed to correlate negatively with the weight. 

Specifically, the mean AE across participants increased 

from 1.6 (1.05)%GFMVC at 250g to 1.7 (1.12)%GFMVC at 

500g, 2.4 (1.42)%GFMVC at 750g and 2.5 (1.23)%GFMVC at 

1kg. Additionally, when evaluating the performance 

separately for each participant, we found that the AE 

ranged between 0.71 (1.04)%GFMVC and 4.10 

(3.55)%GFMVC. 

Finally, to evaluate the differences in performance 

between transient and steady-state phases, we fixed WTR to 

the interval 0-330ms and WSS to 330-660ms after the onset. 

This resulted in a median AE of 2.52 (1.76)%GFMVC and 

1.75 (1.06)%GFMVC for WTR and WSS, respectively. 

4. Discussion  

This study aimed at predicting the GF applied while 

grasping, using salient information extracted from the 

transient phase of the myoelectric signal. To our 

knowledge, only one study attempted to extract the GF by 

continuously estimating muscle force during dynamic 

changes of the EMG [33]. Specifically, that study tried to 

determine the force generated by the biceps brachii from a 

single EMG channel. The authors reported that integration 

windows of at least 300ms were necessary to determine the 

muscle force with acceptable accuracy. As voluntary 

contractions show faster dynamics, they concluded that the 

bandwidth of the 300ms window prevented an accurate 

continuous estimate of the force. However, in routine 

grasping a continuous estimation of the GF is probably not 

needed. Indeed, as with other motor actions, humans grasp 

in a predictive feedforward fashion, i.e., the final GF is pre-

planned and not continuously modulated [47]. Thus, to 

estimate such a final GF during a functional task (a pick 

and lift), in this study we adopted a different approach: we 

used multiple feature samples calculated on shorter (60ms) 

time windows. 

Table 2 Results of the pairwise comparison. The asterisk 

indicates p < 0.05. 

  Mean 

Difference 

(% 

GFMVC) 

Standard 

Deviation 

(% 

GFMVC) 

Significance 

Fix-

Ridge 

4 8  0.008 0.091 1.000 

16  0.090 0.075 1.000 

168  0.310 0.123 0.183 

8 16  0.082 0.056 1.000 

168  0.302 0.070 0.009 * 

16 168  0.220 0.070 0.060 

Fix-EN 4 8  0.049 0.071 1.000 

16  0.107 0.097 1.000 

168  0.372 0.109 0.041 * 

8 16  0.058 0.083 1.000 

168  0.323 0.088 0.026 * 

16 168  0.265 0.092 0.101 

LassoG-

EN 

4 8  0.176 0.051 0.036 * 

16  0.383 0.097 0.017 * 

168  0.625 0.141 0.008 * 

8 16  0.207 0.062 0.045 * 

168  0.450 0.114 0.017 * 

16 168  0.242 0.098 0.198 
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With this approach, we found that features evaluated 

using only transient information (TW=WTR=330ms) 

allowed a fair prediction of the final GF with a R2 of 

0.67 (0.25) and an AE of 2.52 (1.76)%GFMVC (Figure 6). 

With a 500ms window we achieved the optimal solution 

(R2 of 0.82 (0.16) and an AE of 1.99 (1.04)%GFMVC) which 

in fact was due to the information present in the latter 

portion of the window (Figure 4b). In other words, this 

suggests that the information contained in the steady state 

is more correlated to the final GF than information 

contained in the transient phase. Similar outcomes resulted 

from previous works on transient EMG-based movement 

classification, in which the steady-state based classification 

of four and six hand/wrist movements outperformed 

significantly the transient-based one [48,49]. While on the 

one hand this may limit the breadth of this study – the 

transient contains suboptimal information about the 

preplanned GF, which is better described by the steady 

state – it should be considered that the envelope of the 

EMG (during the steady state) is considered to be a good 

approximation of the actual GF. However, we argue that 

finding suboptimal information about the final GF is per se 

an interesting result, that invites studies where more 

sophisticated algorithms are assessed to find even better 

results.   

It should be noted that comparing these outcomes with 

the literature is not straightforward and should be done 

cautiously. Indeed, no two studies used the same number, 

type and configuration of electrodes, nor target the same 

muscles or movements nor use the same evaluation metrics 

(Table 1). This being said, comparing our results with 

others that used the same metrics, our GF predictions on 

average outperformed previous studies which reported AEs 

between the 4.21 and 12.2% of the GFMVC [22,23] (Table 

1). These performances are actually comparable with the 

ones from the subject that performed the worst in our study 

(4.10 (3.55)%GFMVC).  Concerning the R2, results are 

comparable with the literature (Table 1) reporting values 

between 0.78 and 0.95 for single movements [9–

11,21,26,28] and between 0.90 and 0.93 for simultaneous 

movements [12,15,20,27]; we argue that the mismatch 

between AE and R2 results was due to the range of tested 

weights. Indeed, the GF in this study varied roughly from 

5%GFMVC to 25%GFMVC whilst other investigators 

assessed forces from 20 up to 50, 80 or even 100% of the 

muscle MVC. This wider range found in the literature 

entails that slight differences in the target forces have a 

smaller impact on the goodness of fit, yielding higher R2. 

Conversely, the weights assessed here were all relatively 

small, making R2 more susceptible to variability. This 

difference actually influences the AE as well, that is 

intrinsically smaller due to the smaller weights. However, 

as the capability to fine tune the GF is more relevant for 

light and fragile objects, we deemed necessary to use small 

weights.   

While HD-EMG was chosen in order to collect as much 

information as possible, reduction methods were included 

to limit the complexity of the problem. Given that, up to 

our knowledge, there is no consensus about a preferred 

method, we compared a manual reduction with two 

approaches with an increasing level of automation. We 

opted for the elastic nets regularization method because it 

is less prone than more traditional methods (e.g. sequential 

features selection or correlation threshold [50]) to the issue 

of collinearity within features [42] (a known problem in 

EMG data [37]). To automatically select channels, we 

adopted the LASSO-group algorithm that allowed 

discarding all features from the least significant channels 

within the regularized regression training [45] akin to 

previous studies [43]. 

The use of these reduction methods resulted in three 

main findings. First, when multiple samples are available 

most selected ones are the latest available (Figure 4ab). 

This suggests that the more we approach the steady-state, 

the better it is for the final GF estimation accuracy. This is 

in line with our test involving the two separate windows 

(WTR and WSS). Results confirm that using transient data 

the information about GF is available. Specifically, even if 

the WSS window allows a higher accuracy of estimation, 

estimations from both windows greatly differ from the 

random guess. The reduced accuracy in the WTR could be 

the effect of a lower signal to noise ratio at the beginning 

of the contraction.  

The second finding concerns the features choice. The 

EN algorithm mostly selected the WL, TDPSD S, TDPSD 

IF and dMAV, especially for shorter time windows (Figure 

4a). This is in agreement with previous studies that identify 

WL [16] and TDPSD [51] features as highly informative 

features to estimate the GF. Surprisingly, the MAV, which 

is frequently used for proportional estimation of GF from 

EMG [3], was not within the set of most used ones. This 

confirms that the choice of MAV only for GF estimation 

could be misleading, as reported in previous studies [52]. 

The third finding is that reducing the number of channels 

from 168 to 4 or 8 significantly affects the performance of 

the algorithm, increasing the AE (Table 2) whereas using 

16 channels the performance does not significantly change. 

This is in agreement with previous studies [43,53] 

reporting that a very large number of channels contains 

redundant information [43]. As the optimal number of 

channels changes with different electrode layouts [43,54], 

it may be reasonable to expect similar results even 

decreasing the number of channels. Another interesting 

point to discuss in this regard, concerns the location of the 

most selected channels by the LassoG algorithm (Figure 7). 

These channels do not match those used in the Fix 
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approach. Despite this, there is no statistically relevant 

difference between the performance of the LassoG and the 

Fix approach. This is in line with previous research 

suggesting that the redundancy of available information 

does not call for the need of a very accurate placing of 

electrodes [54]. However, it is worth noting that, if less 

information is available, automatic reduction methods may 

outperform the uniform selection, as reported by Hwang et 

al, where a single feature was used [43]. Here, given that 

all tested approaches resulted in similar outcomes (Figure 

7), we identified the second approach as the preferred one. 

Indeed, this method does not require the use of HD-EMG 

hardware and it operates a strong reduction in the number 

of retained features, making it more suitable for online 

implementations.  

In this study, instead of imposing fixed force profiles 

(Table 1), we opted for the pick-and-lift paradigm. The 

great advantage of such an approach relies in the fact that 

even if the movement is performed in a repeatable fashion, 

it preserves the variability of the natural movement. This 

represents a methodological strength of the study because, 

as the same variability could be found in other activities of 

daily living, we expect that the generalization capability of 

our solution in clinical settings will be higher than those 

obtainable by synthetic and highly-controlled experimental 

tasks.  

There are some limitations to this study to be mentioned. 

First, the study was run in a single session, involved able-

bodied participants only and the analysis was conducted 

offline. In the framework of translating these results to the 

clinical practice, an online evaluation including both able-

bodied and amputees over multiple sessions is necessary to 

properly evaluate the performance of this method, its 

stability across sessions and the ability of the subject to 

improve with practice. Indeed, the important anatomical 

differences between these two groups would probably 

affect the performance of the proposed algorithms, or at 

least require their adaptation. Related to this aspect is the 

fact that we included information from the FPL muscle. 

This restricts the target clinical population to very distal 

amputations (basically wrist disarticulations). Further 

studies should thus be carried out to understand the relative 

importance of the information from this muscle on the 

performance of the proposed method. Another aspect that 

should be considered in future activities is the detection of 

the onset. In this study the onset was determined from the 

GF but this is not feasible in practice and it should be 

determined from the EMG signals. EMG onset detection is 

a well-known and non-trivial problem on its own due to the 

physiological basis of the signal [36]. Thus, as targeting 

this problem was out of the scope of our study, we preferred 

to work in conditions in which the variability of EMG onset 

detection did not influence the outcomes. Nevertheless, to 

translate our methodology into an online system, an option 

could be to detect the EMG onset and shift the beginning 

of the TW according to the average time difference 

between EMG and GF’s onset. This is only one option and 

foreseen activities will address these limitations in 

upcoming research. 

5. Conclusions 

The present work provides a method to detect the final 

grasp force exerted on an object from information 

contained in the transient phase of the EMG. Results show 

that information about the final GF is already available in 

the transient phase (0-330ms after the onset) even if the 

accuracy of GF estimation can be improved by extending 

the observation interval up to 500ms. The importance of 

estimating GF during the transient phase relies in the fact 

that a fast estimation of both the grasp type and the intended 

grip force would enable a new generation of myoelectric 

prostheses with a remarkable usability and responsiveness, 

with no need of retaining for long period of time the 

contraction to control it using the steady state EMG.  

The steps to follow in this work will be about the online 

implementation of the proposed method and its testing with 

both able bodied and injured patients including a larger 

vocabulary of grasp types. Such solution will allow us in 

quantifying the improvement in usability of a transient-

EMG based solution for GF estimation in a close-to-real 

use scenario. 
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