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Abstract. The band structure and the transport properties of graphene are
known to be deeply modified by strong electromagnetic fields. Here we
experimentally demonstrate, using an engineered optical waveguide lattice as
a model system for ac-driven graphene, the partial and complete collapse
of valence and conduction quasi-energy bands corresponding to linearly- and
circularly-polarized monochromatic light irradiation, respectively.
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1. Introduction

Electronic transport in monolayer graphite sheets (graphene) has attracted great interest in
recent years [1]. Owing to the honeycomb structure of the crystal lattice, graphene exhibits
energy bands with Dirac cones, where the energy-momentum dispersion is linear. This feature is
responsible for a strikingly different electronic behaviour as compared to the conventional two-
dimensional (2D) electron gases as, for example, in semiconductor heterostructures. At a Dirac
point, electrons behave effectively as relativistic massless Dirac fermions, a circumstance that
has led to the observation of condensed-matter analogues of the physics of relativistic electrons,
such as Klein tunnelling and Zitterbewegung (see, for instance, [2–4]). Several recent works
have suggested the possibility of engineering the band structure and the electronic transport
properties in graphene by application of electric and/or magnetic fields [4–18], for example
to open dynamic band gaps. This has lead to the prediction of a variety of phenomena, such
as the photovoltaic Hall effect [7], metal–insulator transition [8], valley-polarized currents in
both monolayer and bilayer graphene [9, 10], and the photoinduced quantum Hall effect in the
absence of magnetic fields [11]. Remarkably, an ac field can induce dynamic and controllable
band gaps in the quasi-energy spectrum of graphene, depending on the strength and polarization
of the field. For a linearly polarized field, the anisotropic quasienergy spectrum shows dynamical
gaps at non-zero momentum only in certain directions, and no gap is induced at the Dirac
point. For a circularly polarized field, a band-gap at the Dirac point can be realized, along with
dynamical gaps at other momenta, all of which are tunable by the field intensity [15]. Moreover,
partial band collapse can be realized at strong driving fields, in such a way that the valence
and conduction bands become flat [15]. Most of such phenomena, however, have not been
observed yet.

A highly flexible approach to studying condensed-matter phenomena is the use of
accessible model systems with controllable parameters. As a matter of fact, many interesting
phenomena in graphene structures are generic to honeycomb lattices and hence they are found
in such diverse systems as cold atoms in optical lattices [19–21], electromagnetic waves in
photonic lattices [22–26] and sound waves in acoustic crystals [27]. For example, the creation
of Dirac points with adjustable properties in a tunable honeycomb optical lattice has been
demonstrated recently using ultracold atoms trapped in the periodic potential of interfering
laser beams [21], whereas strong edge effects on the pseudodiffusive transport have been
observed in photonic graphene [25]. Matter waves in suitably driven optical lattices and light
propagation in engineered waveguide lattices have also provided experimentally accessible
systems to demonstrate tunnelling control and quasi-energy band engineering in ac-driven 2D
or three-dimensional (3D) lattice models [28–30]. In particular, the demonstration of complete
band collapse (dynamic localization [31, 32]) in 2D triangular photonic lattices has been
reported in [28, 30] exploiting specially-tailored non-monochromatic and linearly-polarized
field profiles.

In this work we suggest and demonstrate partial and complete quasi-energy band
collapse in honeycomb lattices driven by linearly- and circularly-polarized monochromatic
fields. Experimental validation is achieved in a photonic model based on light transport in
femtosecond-laser-written waveguide arrays. As for a linearly-polarized field, only partial band
collapse can be realized [15]. Here we show that a complete band collapse, corresponding
to a frozen dynamic, can be realized using a monochromatic circularly-polarized field. In an
optical waveguide setting, the effects of external forces can be mimicked by non-inertial forces,
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Figure 1. (a) Schematic of a honeycomb lattice, composed of two sublattices
A and B, driven by a sinusoidal field E(t), and (b) effective lattice model with
re-normalized hopping amplitudes.

obtained by translating or rotating the waveguides about the propagation direction [33–35].
In particular, the experimental demonstration of non-inertial effects for light waves in a
rotating waveguide array was reported in [35]. In the photonic model employed here, linearly-
and circularly-polarized electric fields are implemented by translating (rather than rotating)
the waveguide arrays in three-dimensions. This is a unique capability of femtosecond laser
waveguide writing, which is fully exploited in this work.

2. Quasi-energy bands in ac-driven honeycomb lattices: partial and complete band
collapse

Let us consider a planar honeycomb lattice (figure 1(a)), which is composed of two sublattices
A and B, as in the single-layer graphene. The coherent motion of an electron hopping between
the nearest neighbour sites from different sublattices and driven by an external sinusoidal field
E(t) of frequency ω, in the absence of electron–electron interactions, is described by the tight-
binding Hamiltonian

Ĥ(t)= −h̄κ
∑
〈n,m〉

(
ĉ†

n ĉm + ĉ†
m ĉn

)
+ eE(t) ·

∑
n

rn ĉ†
n ĉn, (1)

where ĉ†
n ( ĉn) creates (annihilates) an electron at site n and κ is the intersite hopping amplitude

between the nearest neighbours 〈n,m〉. For an arbitrary polarization state, the applied sinusoidal
field is given by

E(t)= Ex(t)ux + Ey(t)uy

= Ax cos(ωt +ϕ)ux + Ay cos(ωt)uy. (2)

Linear polarization is attained for ϕ = 0, π , whereas a circularly-polarized field is obtained for
ϕ = ±π/2. Owing to the time periodicity of the Hamiltonian Ĥ(t), the usual energy bands of
graphene for the undriven electron are replaced by the quasi-energy bands ε(k), which can be
numerically computed by application of the Floquet theory [32]. Here we focus our analysis
on the high-frequency regime, corresponding to ω� κ , where the quasi-energy bands can
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be determined from an effective static tight-binding Hamiltonian with renormalized hopping
amplitudes (see, for instance, [15, 36, 37]). The effective Hamiltonian reads

Ĥ eff = −h̄
∑
〈n,m〉

(
κn,m ĉ†

n ĉm + κ∗

n,m ĉ†
m ĉn

)
, (3)

where

κn,m = κ

〈
exp

[
i
e

h̄
(rn − rm) ·

∫ t

0
dt ′E(t ′)

]〉
(4)

and 〈· · · 〉 denotes the time average over the oscillation cycle 2π/ω of the ac field. For the
honeycomb lattice and for a generic polarization state of the sinusoidal field, the effective static
lattice model, described by the Hamiltonian (3), is shown in figure 1(b). As a result of the ac
field, the hopping rate of the electron among nearest neighbour sites is now anisotropic. The
renormalized hopping amplitudes κ1, κ2 and κ3 shown in figure 1(b), read explicitly

κ1 = κ J0(01) exp

[
−i

ea

2h̄ω
Ax sinϕ

]
, (5)

κ2 = κ J0(02) exp

[
−i

ea

2h̄ω
Ax sinϕ

]
, (6)

κ3 = κ J0(03) exp

[
i
ea

h̄ω
Ax sinϕ

]
, (7)

where we have set

01 =
ea

2h̄ω

√
A2

x sin2 ϕ + (
√

3Ay + Ax cosϕ)2, (8)

02 =
ea

2h̄ω

√
A2

x sin2 ϕ + (
√

3Ay − Ax cosϕ)2, (9)

03 =
ea Ax

h̄ω
(10)

and J0(0) is the Bessel function of first kind and zero order. The corresponding quasi-energy
bands can be readily obtained from the effective Hamiltonian (3) and read

ε±(kx , ky)= ±h̄κ
[
J 2

0 (01)+ J 2
0 (02)+ J 2

0 (03)+ 2J0(01)J0(02) f1

+ 2J0(01)J0(03) f2 + 2J0(02)J0(03) f3]
1
2 , (11)

where we have set

f1 = cos(
√

3aky), (12)

f2 = cos

[(√
3

2
ky +

3

2
kx

)
a −

ea Ax sinϕ

h̄ω

]
, (13)

f3 = cos

[(
−

√
3

2
ky +

3

2
kx

)
a −

ea Ax sinϕ

h̄ω

]
(14)
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Figure 2. (a) Band structure of graphene in the absence of the external ac
field. (b) Partial collapse of the quasi-energies for a linearly-polarized field.
(c) Complete collapse for a circularly-polarized field.

and where k = kxux + kyuy is the electron quasi-momentum. Equations (11)–(14) generalize,
in the case of an arbitrarily polarized ac field, the quasi-energy band calculation previously
reported in [15] for graphene in a linearly-polarized field, and enable us to predict the
occurrence of partial or complete collapse of valence (ε−) and conduction (ε+) quasi-energy
bands depending on the polarization state of the driving field. A partial band collapse is obtained
whenever two of the three parameters 01, 02 and 03 are the roots of the J0 Bessel function,
whereas complete band collapse requires that all of them are roots of J0. Let us apply our
results to some specific cases.

1. Absence of the ac field (Ax = Ay = 0). In this case we obtain the usual band structure of
graphene (see figure 2(a)):

ε±(kx , ky)= ±h̄κ

√√√√1 + 4 cos2

(√
3aky

2

)
+ 4 cos

(√
3aky

2

)
cos

(
3akx

2

)
. (15)

Note that the two (conduction and valence) bands touch at the Dirac points, where ε = 0
and the dispersion relation is locally conical.

2. Linearly-polarized field along the y-axis (Ax = 0). Under the effect of linear polarization,
partial collapse of the quasi-energy bands can be obtained in different ways, depending
on the polarization direction. Here we will discuss in detail the example that will actually
be implemented in this work. However, all cases can be derived easily from the above
equations. For the y-polarized field one has 01 = 02 =

√
3ea Ay/(2h̄ω) and 03 = 0. In

particular, for J0(01)= 0 one obtains partial collapse of the quasi-energy conduction and
valence bands into two flat bands, separated by 2h̄κ , i.e. ε±(kx , ky)= ±h̄κ (see figure 2(b)).
In the effective lattice model of figure 1(b), this case corresponds to the suppression of the
hopping rates κ1 and κ2, but not κ3.

3. Circularly-polarized field (Ax = Ay = A0, ϕ = π/2). In this case, 01 = 02 = 03 =

ea A0/(h̄ω) and a complete band collapse ε±(kx , ky)≡ 0 can be observed whenever
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J0(01)= 0 (see figure 2(c)). In this case, we basically destroy all the hopping rates κ1,
κ2 and κ3.

It should be noted that complete band collapse by a monochromatic driving field is only
achievable in 2D lattices with special symmetries, such as in square, triangular and hexagonal
lattices (of which photonic graphene is a relevant example). While in square lattices complete
band collapse can be obtained using linearly-polarized fields2, in honeycomb lattices this is
possible using only a circular (or certain elliptical) polarization state of the driving field, as can
be inferred from equations (8)–(10). Complete band collapse could be achieved in honeycomb
lattices using a linearly-polarized but highly non-monochromatic driving field, as demonstrated
in [30] for the similar case of a triangular lattice.

3. Ac-driven photonic graphene

Light transport in a honeycomb lattice of evanescently-coupled optical waveguides is known
to realize a simple model system of graphene (see, for instance, [22, 24]). The effect of the ac
driving field can be mimicked by sinusoidally-bending the optical axis of the waveguides along
the paraxial spatial propagation direction z (see, for instance, [33, 34]). Indicating by ψn the
light field amplitude trapped in the nth waveguide of the honeycomb lattice and considering
only the evanescent field coupling of nearest-neighbour waveguides from different sublattices,
the evolution of the amplitudes ψn(z) along the spatial z direction is described by the following
coupled-mode equations [33, 34]3

i
dψn

dz
= −κ

∑
〈m〉

ψm +
2πns

λ
R̈(z) · rnψn, (16)

where

R(z)= x0(z)ux + y0(z)uy (17)

is the bending profile of the waveguide axis, λ is the wavelength of the optical propagating
field, ns is the refractive index of the dielectric substrate at wavelength λ, and the sum on the
right-hand side of equation (16) is restricted to the nearest neighbour waveguides 〈m〉 of n.
Note that the optical coupled-mode equation (16) exactly reproduce the one-particle dynamics
as described by the time-dependent tight-binding Hamiltonian (1), provided that the following
formal substitutions

t → z, (18)

h → λ, (19)

eE(t)→ nsR̈(z) (20)

2 Band collapse in a square lattice is a fairly trivial problem, since it is basically equivalent to dynamic localization
in a one-dimensional lattice, as already shown in the pioneering work by Dunlap and Kenkre on dynamic
localization (see [31]). The experimental demonstration of such a localization regime in a one-dimensional optical
waveguide lattice was earlier reported in [38].
3 The accuracy of equation (16) is established by coupled-mode-theory under paraxial wave approximation for
photonic circuits of weakly-coupled and weakly-guiding waveguides, as is the case of our driven photonic lattice
(see e.g. [39] and references therein).
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Figure 3. 3D representation of a single hexagonal cell of a honeycomb
waveguide array with different modulations of the optical axis: (a) no
modulation, (b) sinusoidal modulation along the y-axis and (c) helical
modulation.

are made [33]. Hence, the temporal evolution of an electronic wave packet in the ac-driven
graphene lattice is mapped into spatial light propagation in the honeycomb waveguide lattice
with a bent optical axis.

According to equation (20), the absence of the ac driving field corresponds to a straight
waveguide lattice (see figure 3(a)). A sinusoidal driving field linearly-polarized along, for
example, the y-axis corresponds to a sinusoidal bending of the optical waveguide axis with
a spatial frequency ω in the (y, z) plane, that is x0(z)= 0, y0(z)= Y0 cos(ωz) (see figure 3(b)).
Whereas a sinusoidal and circularly-polarized driving field is mimicked by a helically-bent
waveguide axis about the z-axis with a helix spatial frequency ω, that is x0(z)= X0 cos(ωz +
π/2), y0(z)= Y0 cos(ωz) (see figure 3(c)).

In this work, arrays of waveguides with all the three geometries previously discussed
and depicted in figure 3 are fabricated by the femtosecond laser writing technique [40, 41].
This technique allows the microfabrication of high-quality optical waveguides in transparent
dielectric substrates in a direct fashion. Femtosecond laser pulses are focused by a microscope
objective under the sample surface and nonlinear absorption phenomena induce a localized
refractive index increase: waveguiding structures with arbitrary 3D geometries can be fabricated
by properly translating the sample under the laser beam at a constant speed, along the desired
path. It may be noted that the realization of such complex 3D structures as the ones needed
here is out of reach for conventional lithographic technologies and is made possible uniquely
by femtosecond laser micromachining. The use of femtosecond-laser-written waveguide lattices
as photonic models to study hard-to-observe quantum phenomena has already proven to be a
feasible and powerful approach (see, for instance, [42, 43]).

In particular, for our experiments, the second harmonic (520 nm wavelength) of a
femtosecond laser system (HighQLaser femtoREGEN with pulse duration of 400 fs) is
employed to write waveguides on fused silica glass (Foctek, China) through a 50× microscope
objective (0.6 NA). Irradiation parameters are optimized to obtain low-loss (1 dB cm−1) single-
mode waveguides at 633 nm wavelength, which are capable of bending in three dimensions with
bending losses lower than 2 dB cm−1 for curvature radii above 80 mm. The chosen irradiation
conditions are: 20 kHz repetition rate, 430 nJ pulse energy and 15 mm s−1 translation speed.
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Figure 4. Experimental and simulated output light intensity distributions for
honeycomb arrays, comprising 72 straight waveguides, with different propaga-
tion lengths.

To obtain accurate control of the geometrical parameters, a system of high-precision micro-
translation stages (Aerotech model FiberGlide 3D) was employed. This allowed fabrication at
a constant value of the tangential writing speed, which is key to attaining uniform waveguides
in complex 3D geometries. The mean depth of the fabricated structures is 170µm below the
sample surface.

4. Experimental results

As a first experiment, several 2D arrays, each composed of 72 straight waveguides in
honeycomb geometry, are fabricated in a 2 cm long fused silica sample. In each array, only
one waveguide (in central position) covers the full length of the sample: all the others start at
a certain distance from the edge, different in each array. In this way, light can be selectively
coupled to the central waveguide, avoiding unwanted direct coupling to more than one
waveguide, and in addition allowing the investigation on different effective propagation lengths
of the arrays without having to cut the same sample many times. The explored propagation
lengths range from 1.3 to 16.3 mm and the distance between nearest-neighbouring waveguides
is always a = 15 µm.

To experimentally characterize the light propagation and distribution in such structures,
light at 633 nm wavelength from a 30 mW He:Ne laser is end-fire coupled by a 25× objective
(0.5 NA) to the central waveguide. The light distribution at the output of the arrays is imaged
by another objective onto a high-sensitivity vidicon camera (see top panels of figure 4). The
natural fluorescence emission of femtosecond laser written waveguides in fused silica [44, 45]
can also be exploited to obtain a convenient visualization of the light propagation along
the array.

As discussed in section 3, these structures mimic diffusion phenomena in graphene
lattices. In particular, the initial excitation of a single waveguide of the array corresponds to a
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point-like initial distribution. The use of straight waveguides without any modulation represents
the absence of external fields. Figure 4 shows the comparison between the experimental
light distributions and the corresponding numerical simulations, based on the tight-binding
Hamiltonian (equation (16)) in the absence of external fields, for κ = 0.6 cm−1.4 The numerical
results have been obtained by integration of equation (6) with a fourth-order variable-
step Runge–Kutta method based on the Dormand–Prince formula [46]. It can be seen that,
notwithstanding the weak coupling, light already spreads to several waveguides in less than
2 cm. The good agreement between experimental and simulated distributions assesses the
validity of our photonic model for reproducing coherent transport phenomena in honeycomb
lattices. In addition, it may be worth noting that, as previously discussed, the top panels in
figure 4 correspond to separate waveguide arrays of different lengths, thus testifying to the very
good reproducibility of the fabrication technique.

In a second experiment, another two series of arrays with effective propagation lengths
ranging from 2 to 14 mm are fabricated. In the first series, the waveguide arrays are sinusoidally
modulated along the y-axis, as depicted in figure 3(b). The period of the sinusoid is 3=

6.30 mm and the modulation amplitude is Y0 = 12.9 µm. In the second series, the waveguides
have helical geometry, as shown in figure 3(c). The pitch of the helix is again3= 6.30 mm and
the radius is X0 = Y0 = 11.2µm. The two kinds of modulation mimic the presence of a strong
external oscillating electric field (see section 3), with frequency ω =

2π
3

' 10 cm−1 and linear
or circular polarization, respectively. The modulation amplitudes are designed to provide the
band-collapse regimes discussed in section 2, and ω� κ as assumed in the same section.

The output light distribution is imaged for all the fabricated arrays. In the case of
sinusoidally modulated arrays, light coupling is observed only from the input waveguide to
the adjacent one in the xz plane: coupling to the other waveguides is negligible. This confirms
that, referring to figure 1(b), only κ3 is still significant, while κ1 and κ2 vanish. This result
demonstrates the possibility of achieving partial collapse of the quasi-energy bands under the
action of linearly-polarized light.

In the case of helically modulated structures, light was observed to remain, for any
propagation length, strongly confined in the input waveguide. As theoretically predicted, all
the couplings κ1, κ2 and κ3 are effectively suppressed. This demonstrates the possibility of
achieving a complete collapse of the quasi-energy bands under the effect of circularly polarized
light.

Figure 5 shows top-view fluorescence emission images of the arrays: these confirm the fact
that while in the case of an unmodulated array (figure 5(a)) light spreads to several waveguides,
in the case of modulated arrays light remains strongly confined to two coupled waveguides
(figure 5(b), in the case of sinusoidal modulation) or to a single waveguide (figure 5(c), in
the case of helical modulation). Figures 5(d)–(f) show the output distributions of 13.3 mm
long arrays in the case of no modulation, sinusoidal modulation and helical modulation,
respectively. Figures 5(g)–(i) report the corresponding simulations for κ = 0.6 cm−1. The partial
and complete localization effects discussed above are clear and apparent, with good agreement
between simulation and experiment.

4 The ellipticity of the waveguide mode profile induces a slight dependence of the coupling coefficient on the
coupling angle in the 2D lattice. This dependence is measured in a 5% variation about the average value given in
the text. It should be noted that for the propagation length employed in this experiment, such variation is negligible.
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Figure 5. Top view of the fluorescence emission of 13.3 mm long honeycomb
arrays of 72 waveguides with (a) no modulation, (b) sinusoidal modulation in y
direction to obtain partial quasi-energy band collapse, and (c) helical modulation
to obtain complete energy band collapse. Panels (d)–(f) show the corresponding
experimental output light intensity distributions; panels (g)–(i) the simulated
output distributions.

5. Conclusions

Complete collapse of quasi-energy bands in graphene under the effect of monochromatic
circularly-polarized light has been suggested, theoretically investigated and experimentally
demonstrated in a photonic model system. Coherent transport phenomena in graphene have been
modelled by light propagation in a honeycomb waveguide lattice, called photonic graphene.
In the framework of this model, the polarization of the external field is implemented by
suitably bending the waveguide axis. Exploiting the unique 3D capabilities of femtosecond
laser waveguide writing, not only 2D waveguide arrays, but also sinusoidally and helically
modulated arrays have been fabricated, representing monochromatic linearly- and circularly-
polarized fields, respectively, applied to graphene. Observation of the light distribution in such
structures clearly demonstrated partial and complete band collapse. These results suggest an
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innovative approach to performing coherent band-engineering of graphene by irradiation with
monochromatic light of suitable polarization.
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