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A Coulomb-excitation experiment to study electromagnetic properties of
42
Ca was performed

using 170 MeV calcium beam from TANDEMXPU facility at INFN Laboratori Nazionali di Legnaro.
Gamma rays from excited states in

42
Ca were measured with the AGATA spectrometer. The

magnitudes and relative signs of 10 E2 matrix elements coupling 6 low-lying states in
42
Ca, including

the diagonal E2 matrix elements of 2
+

1 and 2
+

2 states, were determined using the least-squares code
GOSIA. The obtained set of reduced E2 matrix elements was analysed using Quadrupole Sum Rule
method and yielded overall quadrupole deformation parameters for 0

+

1,2 and 2
+

1,2 states, as well as
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asymmetry parameters for 0
+

1,2 states, establishing the coexistence of a weakly-deformed ground-

state band and highly-deformed slightly triaxial side band in
42
Ca. The experimental results were

compared with the state-of-the-art large-scale shell model and beyond-mean-field calculations, which
reproduce well the general picture of shape coexistence in

42
Ca.

I. INTRODUCTION

Deformation of atomic nuclei is a manifestation of
spontaneous symmetry breaking in a quantum many-
body system, directly related to collective rotation, which
was discovered in molecular physics by Jahn and Teller in
1937 [1]. Nuclear deformation can be related to the shell
structure of single-particle levels in a spherical potential
and, therefore, the shape evolution in atomic nuclei arises
from the competition between the deformation originat-
ing from particle-vibration coupling and the pairing cor-
relations stabilizing the nucleus in the potential energy
minimum corresponding to the strongly deformed shape.

Superdeformed nuclear shapes were first observed
in 1962 through the discovery of a fission isomer in
242

Am [2]. Ten years later, the identification of a ro-
tational band in the second minimum of the potential

energy surface in
240

Pu [3] proved that fission isomers
indeed correspond to highly-deformed nuclear shapes.
This conclusion was further reinforced by lifetime mea-
surements resulting in typical values of the transitional
quadrupole moment Q0 ≈ 30 eb [4] for the rotational
states built on fission isomers, which corresponds to an
axes ratio close to 2:1. Until now, 35 fission isomers have
been identified in the actinide region.

In the late 1980s, the first superdeformed high-spin

band was discovered in
152

Dy [5], followed by observa-
tion of very similar structures in other rare-earth nuclei,
as well as in A ∼ 130 [6, 7] and A ∼ 190 [8] mass re-
gions. Such bands appear in the second minimum of the
potential energy, created due to the additional energy re-
lated to the rotation of a strongly deformed shape. As
the depth of the potential well decreases for lower angu-
lar momenta, the decay from the second to the first po-
tential minimum usually occurs at spins between around
10h̵ and 30h̵. The highly fragmented nature of this de-
cay makes it very difficult to establish a firm link between
the superdeformed structures and the ground state band,
nevertheless, in a few cases this has been possible [9, 10].

The phenomenon of superdeformation thus became
a challenge for both experiment and nuclear structure
theory, and since then about 300 SD structures have
been observed in various regions of the nuclear chart [11].
Transitional quadrupole moments Q0, measured for these
structures, together with those for ground states of even-
even nuclei [12], are plotted in Fig. 1. They are expected
to provide a good estimate of deformation, as the SD
structures behave like rigid rotors, rather weakly cou-
pled to the yrast band in most known cases; it should be
noted here that for most non-yrast structures a more so-
phisticated approach, such as the quadrupole sum rules
method presented in the Sec. IV D of the present pa-

per, should be used. The transitional quadrupole mo-

ments presented in Fig. 1 were normalised to ZR
2

in
order to remove charge dependence, as suggested, for ex-
ample, in Ref. [13]. The obtained estimates of ground-
state deformations, denoted by open circles, follow the

1/A1/3
dependence away from closed shells, but there are

strong deviations from it in the vicinity of closed spher-

ical shells, in particular around
208

Pb. The SD bands
in the A ∼ 150, A ∼ 190 and A ∼ 230 regions are clearly
separated from normal-deformed states due to the su-
perdeformed shell gaps, while those for A<150 span a
broad range of deformations and are much closer to the

1/A1/3
line.

In particular, SD bands have been recently discovered
in lighter nuclei (e.g. A∼ 60 and lower, see panel b) of
Fig. 1), where the number of valence particles is lower as
compared to the “traditional” regions of superdeforma-
tion, and protons and neutrons may occupy the same or-
bitals. The value of the quadrupole deformation param-

eter, β, in the side bands of
40

Ca [14, 15],
36,38,40

Ar [16–

20] and
44

Ti [21], as well as
35

Cl [22] nuclei is between
0.4 - 0.6, see Tab. I. This is similar to what was pre-
viously reported for other mass regions, where superde-
formation has been established. However, in contrast to
heavier nuclei, strongly deformed bands in A ∼ 40 and
A ∼ 60 isotopes extend to low spins and are linked to
other, less deformed states by intense γ-ray transitions.

Considering the relatively small number of nucleons,
the A ∼ 40 mass region constitutes an excellent testing
ground to study the origin of strongly deformed struc-
tures within various theoretical approaches. Superdefor-
mation in light nuclei was discussed in the framework of
large scale shell model (SM) [23, 24], beyond-mean-field
models (BMF) [25–27] and antisymmetrized molecular
dynamics (AMD) [28–33]. In particular, the Shell Model
was succesful in describing the normal-deformed (ND)

and SD structures in
40

Ca, with the calculations yielding
a spherical ground-state band, a ND band (β=0.3) built

on the 0
+

2 state dominated by the 4p− 4h excitation into
the pf shell, and a SD band (β=0.6) built on the 0

+

3 state
with an 8p − 8h configuration [24].

Experimental deformation parameters of known su-
perdeformed bands in the A∼ 40 mass region, and their
dominant configurations resulting from shell-model cal-
culations are presented in Table I.

In a recent Letter [34] we reported on the results of
a dedicated Coulomb excitation experiment to study elec-

tromagnetic structure of
42

Ca, which provided firm evi-
dence for the superdeformed character of the side band
in this nucleus, as well as its slight triaxiality. This
result was consistent with the earlier observations sug-
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FIG. 1. (Color online) Experimental values of transitional

quadrupole moments Q0, normalised to ZR
2
to remove the Z

dependence, for ground-state bands (open circles, [12]), and
superdeformed bands (filled circles, [11]). The values for su-
perdeformed bands in the A∼ 40 mass region are taken from

references listed in Tab. I. The solid line represents the 1/A1/3
dependence and is scaled to experimental values for mid-shell
nuclei. Uncertainties of the values for ground-state bands
are not plotted for clarity, as well as those for superdeformed
bands in panel a).

gesting a highly-deformed character for this structure.
Firstly, its moment of inertia, which is proportional to
the quadrupole deformation parameter β2 [35], is large

and similar to those in the SD bands in both
36

Ar and
40

Ca. Furthermore, this band was preferentially fed by

TABLE I. Experimentally determined β2 deformation param-
eters in known superdeformed bands in the A ∼ 40 region, and
their dominant shell-model configurations.

Isotope Experimental β2 value Configuration
40
Ca [14, 15] 0.59

+0.11
−0.07 8p-8h

36
Ar [16, 17] 0.42±0.03 4p-8h

38
Ar [18, 19] 0.42

+0.11
−0.08 4p-6h

40
Ar [20] 0.48

+0.16
−0.10 ± 0.05 4p-4h

44
Ti [21] not known 8p-4h

35
Cl [22] 0.37 3p-3h

42
Ca [34] 0.43(4) (0

+

2 ) 6p-4h

0.45(4) (2
+

2 ) 6p-4h

the low-energy component of the highly-split giant dipole

resonance decay of
46

Ti [36]. On the other hand, the

band head of the side band in
42

Ca lies at excitation
energy of 1837 keV, considerably lower than its counter-
parts in the neighbouring Ca and Ar isotopes, and so
it was possible to populate this structure with Coulomb
excitation in order to obtain a complete set of electro-
magnetic matrix elements between the observed states.
In the present paper we provide a more in-depth descrip-
tion of the experiment, the data analysis procedure and
the theoretical calculations. It is organized as follows:
the experiments are presented in Sec. II, while the de-
tails of of the Coulomb excitation data analysis and the
final results are described in Sec. III. In Sec. IV the the-
oretical approaches and interpretation are presented. In
Sec. IV D the quadrupole sum rules method is introduced
and the thus obtained quadrupole shape parameters of

the low-lying states in
42

Ca are discussed.

II. EXPERIMENTAL DETAILS

A Coulomb-excitation experiment to study the elec-

tromagnetic structure and deformation in
42

Ca was per-
formed at the INFN Laboratori Nazionali di Legnaro,
Italy [37, 38].

A continuous
42

Ca beam of 170 MeV energy and 1
pnA intensity was delivered by the TANDEM XPU ac-

celerator and bombarded a 1-mg/cm
2
-thick

208
Pb target,

enriched to 99%, and a natural
197

Au target of the same
thickness. The beam energy in both cases was chosen
to fulfill Cline’s “safe energy” criterion for backscatter-
ing [39].

The γ rays from Coulomb excited nuclei were measured
with the three triple clusters of AGATA [40] placed at
143.8 mm from the target. The center of AGATA pointed
at 63

◦
with respect to the beam direction.

The data were collected requiring coincidence between

γ rays and back-scattered
42

Ca ions, detected in the
DANTE array [41, 42]. This setup consisted of three
position-sensitive Micro-Channel Plate (MCP) detectors,
of dimensions 40 mm x 60 mm and 13 mm thick, covering
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θLAB angles from 100
◦

to 144
◦

with respect to the beam
direction.

Data acquisition of the AGATA array was fully digital,
while signals from the MCP detectors were processed by
analog electronics. The readout of DANTE was synchro-
nized and merged with the AGATA acquisition system
using the AGAVA interface [40].

The energy and efficiency calibration of the AGATA
array in the range up to 2.6 MeV was performed under
conditions identical to those in the Coulomb excitation
experiment, using

152
Eu and

226
Ra γ-ray sources placed

at the target position. The position calibration of the

MCP detectors was performed using an
241

Am source
and markers placed on the surface of the detectors, as
presented in Fig. 2 (upper panel). The two-dimensional

particle spectrum of
42

Ca particles scattered on the
208

Pb
target is presented in the bottom panel of Fig. 2.

FIG. 2. (Color online) Upper panel: A picture of the MCP de-
tector surface with the markers used for the position calibra-
tion. Bottom panel: experimental 2D

42
Ca particle spectrum

collected with one of the DANTE detectors.

Events were collected with a condition that at least one
γ ray was registered in AGATA together with exactly one
42

Ca ion detected in one of the MCP detectors within
a 400 ns coincidence window. Gates on the particle-γ
prompt coincidence peak were set individually for each
MCP detector (see Fig. 3).

The kinematic information from the position-sensitive
detectors of the DANTE array was used to Doppler cor-
rect the energies of γ rays depopulating Coulomb excited

states in
42

Ca. The γ-ray spectrum obtained with the
208

Pb target, Doppler corrected for the
42

Ca velocity,
in coincidence with back-scattered particles registered
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FIG. 3. (Color online) Particle-γ coincidence time spectra for
the three MCP detectors of the DANTE array.

in one of the MCP detectors, is shown in Fig. 4. In
the experiment the following transitions were observed:
2
+

1 →0
+

1 (1525 keV), 4
+

1 →2
+

1 (1227 keV), 2
+

2 →2
+

1 (899

keV), 2
+

2 →0
+

1 (2424 keV), 4
+

2 →2
+

1 (1729 keV) and

0
+

2 →2
+

1 (312 keV). Their intensities are presented in

Table II. Additionally, the excitation of the 6
+

1 state
at 3189 keV was observed, but since the lifetime of this
state, equal to 7.7(2) ns, is longer than the average time
of flight between the target and the particle detector, the
weak 6

+

1 →4
+

1 transition has been completely smeared out
when applying Doppler correction.

TABLE II. Numbers of counts in the observed γ-ray tran-
sitions in

42
Ca, and their relative intensities (corrected for

efficiency) normalized to that of the 2
+

1 → 0
+

1 transition.

I
π
i I

π
f Energy [keV] Number of counts Intensity

208
Pb target

2
+

1 0
+

1 1525 1.08 (8) × 10
6

100 (8)

4
+

1 2
+

1 1227 1.07 (8) × 10
4

0.93 (7)

0
+

2 2
+

1 312 1.14 (5) × 10
5

6.9 (3)

2
+

2 0
+

1 2424 2.7 (7) × 10
3

0.28 (8)

4
+

2 2
+

1 1729 2.9 (8) × 10
3

0.28 (8)

197
Au target

2
+

1 0
+

1 1525 9.2 (8) × 10
4

100 (10)

4
+

1 2
+

1 1227 1.30 (12) × 10
3

1.29 (13)

0
+

2 2
+

1 312 9.7 (7) × 10
3

6.9 (5)

2
+

2 0
+

1 2424 300 (140) 0.39 (19)

2
+

2 2
+

1 899 1.12 (10) × 10
3

0.99 (10)

4
+

2 2
+

1 1729 400 (110) 0.45 (13)

A Doppler-broadened and shifted 511-keV γ-ray line,
and transitions from Coulomb excitation of target im-

purities:
204

Pb (899 keV),
206

Pb (803 keV),
207

Pb
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(570 keV), are also present in the experimental spectrum.

In particular, the Doppler broadened transition in
204

Pb

obscured the 2
+

2 →2
+

1 line in
42

Ca, and, consequently, the
intensity of this transition in data collected using the Pb
target could not be included in the Coulomb excitation

analysis. The
197

Au target was meant to be used mostly
to set up proper particle-gamma coincidences, and as a
consequence much lower statistics was collected using this
target. In this case, however, the 899 keV peak was not
contaminated by any transitions resulting from target ex-
citation (see inset of Fig. 4), hence its intensity could be
determined with a good precision.
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FIG. 4. (Color online) The γ-ray spectrum observed in the
42
Ca+

208
Pb Coulomb excitation experiment in coincidence

with back-scattered particles registered in one of MCP de-
tectors, Doppler corrected for the projectile. The lines not
originating from

42
Ca are marked as follows: ■ – lead iso-

topes, ▼ – 511 keV, ● –
43
Ca. Insets show portions of the

spectrum zoomed on the 1600-3000 keV and 850-1300 keV en-
ergy ranges, the latter presenting also the spectrum collected
with the

197
Au target (in red, multiplied by a factor of 3 for

presentation purpose). Reproduced from Ref. [34]

A. Sub-barrier transfer reaction

In addition to the transitions resulting from Coulomb

excitation of
42

Ca and lead isotopes, weaker lines at 376,
1674 and 2048 keV were observed. These could origi-

nate from Coulomb excitation of unknown states in
42

Ca,
or from a different reaction. Both these hypotheses ap-
peared unlikely, as the low-spin part of the level scheme

of
42

Ca seemed to be well known, and the experiment
was performed at a beam energy which did not exceed
the strict Cline’s “safe energy” criterion [39], thus no pro-
cesses other than safe Coulomb excitation were likely to
occur. However, a 2048-keV transition is present in the

decay scheme of
43

Ca, related to the deexcitation of the

p3/2 single particle state. Two scenarios were therefore
tested: that the 376 keV and 2048 keV γ-ray lines re-
sulted from the decay of a Coulomb excited 2

+
state at

2048 keV excitation energy, previously unknown, or that

they originated from the
208

Pb(
42

Ca,
43

Ca)
207

Pb transfer
reaction at about 70% of the Coulomb barrier. Conse-
quently, the angular distribution of the most intense of
these γ-ray transitions, 2048 keV, was analysed in order
to compare with what would be expected for the sub-

barrier neutron transfer reaction
208

Pb(
42

Ca,
43

Ca)
207

Pb,
and for the Coulomb excitation process. To this end, the
range of scattering angles covered by each of the MCP
particle detectors was divided into three bins:

• (105
◦
−114

◦
), (114

◦
−123

◦
), (123

◦
−132

◦
) for

MCP
#

1,

• (111
◦
−120

◦
), (120

◦
−129

◦
), (129

◦
−138

◦
) for

MCP
#

2,

• (118
◦
−126

◦
), (126

◦
−134

◦
), (134

◦
−142

◦
) for

MCP
#

3.

Since the B(E2; 2
+

1 → 0
+

1 ) value in
42

Ca, as well as

the spectroscopic quadrupole moment of the 2
+

1 state are
well known, it was possible to use this line for normal-
isation of the measured cross sections: the intensity of
the 2

+

1 → 0
+

1 transition, measured for each bin of scat-
tering angle, was compared with the excitation cross sec-
tion, calculated for the 2

+

1 state using the GOSIA code.
The resulting normalisation was applied to the measured
intensity of the 2048 keV transition in order to obtain
the absolute experimental cross section as a function of
scattering angle. Those were compared with the results
of two calculations: Coulomb excitation cross section to
populate an unknown 2

+
state at 2048 keV, estimated

using the GOSIA code, and
208

Pb(
42

Ca,
43

Ca)
207

Pb re-

action cross section to populate the p3/2 state in
43

Ca,
calculated with a Distorted Wave Born Approximation
coupled-reaction-channel code FRESCO [43] (Fig. 5, up-
per panel).

The observed ratio of the 376- and 2048-keV transi-
tion intensities in the present experimental spectra was
around 30%, similar to the ratio of the 373- and 2046-

keV γ-ray transitions in
43

Ca observed in the (d,p)
reaction, equal to 32% [44]. The Q value for the
208

Pb(
42

Ca,
43

Ca)
207

Pb reaction is positive and equal to
565 keV, supporting the transfer scenario. On the other
hand, the angular distribution of the 2048-keV γ line fits
better to the Coulomb excitation predictions than to the
transfer calculations, as demonstrated in Fig. 5.

Additionally, γ-γ coincidences were analysed. The γ-γ
matrix was constructed with the γ rays Doppler corrected
for the projectile velocity on one axis, and the γ rays
Doppler corrected for the recoil velocity on the other.
A coincidence gate set on the 570-keV γ-ray transition

deexciting the first excited state in
207

Pb showed the 373-
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FIG. 5. (Color online) Experimentally measured cross sec-
tions compared to the results of calculations with the GOSIA
and DWBA codes (FRESCO). Upper panel:

42
Ca on

208
Pb;

bottom panel:
42
Ca on

197
Au. The points are slightly offset

on the x axis for clarity.

keV γ-ray line in
43

Ca, as presented on Fig. 6, providing
a strong evidence for the one-neutron transfer reaction.

The data collected with the
197

Au target were used
for a cross check. Although the level of statistics in this
measurement was low, it was sufficient to observe the
2048 keV γ transition. Hence, the possibility of one-

neutron transfer reaction
197

Au(
42

Ca,
43

Ca)
196

Au was
taken into consideration, although the Q value is neg-
ative (-140 keV). As in the case of data collected with
the Pb target, the angular distribution of γ rays related
to scattered calcium projectiles was analysed. Due to the
lower statistics, the data was subdivided into only three
ranges of scattering angles in the laboratory frame:

• 105
◦
-132

◦
for MCP#1,

• 111
◦
-138

◦
for MCP#2,

• 118
◦
-142

◦
for MCP#3.

The bottom panel of Fig. 5 presents again the compar-
ison of experimentally determined cross sections related
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FIG. 6. The γ − γ spectrum gated on the 570-keV γ-ray
transition in

207
Pb. The 373-keV γ-ray line originating from

43
Ca is shown.

to the 2048-keV transition with the estimates obtained
using the GOSIA code and those for the 1n transfer cross
section calculated within the DWBA approach. In this
case, the experimental 2048-keV γ-ray yields and the
cross section calculated using the FRESCO code differ
by one order of magnitude. The present DWBA calcula-
tions, though, can only be understood as rough estimates,
since the relevant optical potentials at the experimental

energies and the spectroscopic factors for states in
43

Ca
and the target nuclei are not precisely known. The an-
gular distributions are in this case more meaningful that
the absolute cross sections, and unfortunately, due to the
much lower statistics, no conclusion can be drawn from

these measured for the
197

Au target.

B. Verification of the low-spin structure of
42
Ca in

a fusion-evaporation experiment

As the measured angular distributions of the 2048-keV
transition were better described by Coulomb excitation
than by transfer calculations (see Fig. 5), and a presence
of an additional state at low excitation energy would in-
fluence the results of the Coulomb excitation analysis,
it was decided that it would be prudent to perform an
experimental verification of the low-spin level scheme of
42

Ca. A dedicated fusion-evaporation experiment was
performed at the Heavy Ion Laboratory, University of
Warsaw [38], using the EAGLE spectrometer [45] con-
sisting of 15 high-purity germanium (HPGe) detectors
equipped with anti-Compton BGO shields. Germanium
detectors were placed at the following laboratory angles
with respect to the beam direction: 25

◦
(1 Ge detector),

38
◦

(2), 63
◦

(2), 90
◦

(2), 117
◦

(2), 142
◦

(2), and 155
◦

(1).

A
32

S beam of 80 MeV energy bombarded a 100-

mg/cm
2

thick
12

C target. Significant production of
42

Ca
was observed in the 2p reaction channel, although it led
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mostly to the population of states in the yrast band. The

states in the side band in
42

Ca, including the 2424-keV

level, were populated in the β decay of
42

Sc, produced in

the pn evaporation channel. In its ground state,
42

Sc has
a half-life of 681.3 ms and J

π
=0

+
, whereas its isomeric

state
42

Sc
m

has a spin J
π
=7

+
, and a longer lifetime of

T1/2 = 61.8 s.
42

Sc
m

β decays in 100% to the 6
+

1 level

in
42

Ca, which promptly emits three γ rays in a cascade:
437 keV (6

+

1 → 4
+

1 ), 1227 keV (4
+

1 → 2
+

1 ) and 1524 keV

(2
+

1 → 0
+

1 ). However, the 4
+

1 state at 2752 keV decays
also to the 2

+

2 state at 2424 keV, with the emission of
a 328-keV γ ray. In the experiment, both the 2424- and
899-keV transitions deexciting the 2

+

2 state were observed
(see Fig. 7), which verified this part of the level scheme

of
42

Ca and also allowed determination of the branching
ratio of the two transitions. The obtained value, 0.35(7),
which is in agreement with the previous findings [46, 47],
was used to constrain the Coulomb excitation data anal-
ysis described in the following Section.
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FIG. 7. The γ-ray spectrum collected in
12
C+

32
S experiment,

gated at the 328-keV transition deexciting 4
+

1 state in
42
Ca.

None of the 373-, 1674- and 2046-keV γ-ray transitions
present in the Coulomb excitation spectra have been
observed in the fusion-evaporation experiment, which
provides one more argument to attribute them to one-
neutron transfer.

It should be noted that the Cline’s criterion [39], ful-
filled in the present study, is supposed to ensure that less
than 0.5% of the total reaction cross section arises from
processes other that safe Coulomb excitation. The ratio
of the experimentally measured cross section to populate

the p3/2 state in
43

Ca via the
208

Pb(
42

Ca,
43

Ca)
207

Pb

transfer reaction, to that to populate the 2
+

1 state in
Coulomb excitation, is equal to 0.9%. We do not expect
that this effect may change the conclusions of the present
paper, in particular the E2 matrix elements extracted

from the measured transition intensities, as the role of
other reaction channels remains negligible as compared
to safe Coulomb excitation. It means, however, that for
certain combinations of beams and targets the Cline’s
criterion may not work as well as one might imagine.

III. COULOMB EXCITATION DATA ANALYSIS

A set of reduced electromagnetic matrix elements be-

tween the low-lying states in
42

Ca was extracted from the
Coulomb-excitation data using the GOSIA code [48, 49].

The level scheme of
42

Ca which was considered in the
current analysis is presented in Fig. 8. It is known from
the following reactions:

• Coulomb excitation [50],

• β decay of
42

K [51–53] and
42

Sc [54–58],

• reactions induced by heavy ions:
28

Si(
19

F,pα)
42

Ca [59],
27

Al(
18

O,p2n)
42

Ca [60],
27

Al(
19

F,αγ)
42

Ca [61],
28

Si(
16

O,2pγ)
42

Ca [62–64],
40

Ca(
12

C,
10

C)
42

Ca [65],

• reactions induced by light ions: (d, t), (
3
He,d) and

(α, p) [47, 66–71], (α, 2p) [72], (t, p) [73],

• elastic and inelastic scattering: (γ, γ
′
) [74],

(p, p
′
γ) [46, 75], (d,d’) [76].

From the experiments listed above, branching ra-
tios [46, 51, 56, 77] and E2/M1 mixing ratios [65, 78]

were determined (see Table IV). For the 2
+

2 →0
+

1/2
+

2 →2
+

1

branching ratio, the new value determined in the exper-
iment described in Sec. II B was used. Those, together
with the known lifetimes of yrast and non-yrast states,
summarized in Table III, were used in the GOSIA analy-
sis as additional data points, entering the multidimen-

sional χ
2

fit in the same way as the γ-ray intensities
measured in the current Coulomb excitation experiment.
This increased the sensitivity to higher-order effects such
as spectroscopic quadrupole moments and relative signs
of matrix elements, as well as to the influence of non-
observed transitions on the measured excitation cross sec-
tions, in particular that of the 2

+

2 → 0
+

2 transition.
For the lifetime of the 2

+

1 state at 1525 keV, the value
extracted from B(E2;0

+

1 →2
+

1 ) measured in a one-step

Coulomb excitation experiment with a
32

S beam [50]
was used in the current data analysis. In this measure-
ment, the state of interest was populated from below, and
possible influence of multi-step excitation of higher-lying
states was well controlled and taken into account in the
data analysis. This lifetime was also measured with the
Doppler Shift Attenuation Method (DSAM) [71], yielding
a value of 0.75(30) ps, but subject to a much larger un-
certainty than the Coulomb excitation result [50]. As the
sources of possible systematic error seemed to be much
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FIG. 8. (Color online) Low-lying excited states in
42
Ca, con-

sidered in the present analysis. Transitions observed in the
current experiment are marked in red. Level and transition
energies are given in keV. Reproduced from Ref. [34]

TABLE III. Lifetimes of the excited states in
42
Ca used as

additional data points in the present Coulomb excitation data
analysis.

I
π
i τ (ps)

2
+

1 1.19 (4)

4
+

1 4.45 (40)

6
+

1 7710 (230)

0
+

2 558 (8)

2
+

2 0.18 (4)

4
+

2 0.18 (3)

6
+

2 0.120 (46)

2
+

3 0.17 (3)

better controlled in the case of the Coulomb excitation
experiment [50], the value resulting from the DSAM mea-
surement has not been considered in the current data
analysis.

The lifetime of the 4
+

1 state at 2754 keV was mea-
sured in several Recoil Distance Method (RDM) experi-
ments following fusion-evaporation reactions, yielding re-
sults of 3.8(4) ps [64], 5.1(4) ps [59] 2.3(10) ps [69] and
5.1(4) ps [60]. However, Ref. [59] reported a problem with

the feeding of the 4
+

1 state, and consequently the result-
ing value was not taken into account. Two more existing
values were rejected: 3.4(-17,+110) ps and 2.3(10) ps ob-
tained using DSAM in Ref. [46] and in Ref. [69], respec-
tively, because of very large uncertainties, and 11.5(25) ps
from a RDM measurement following (α,p) transfer [68],
as the authors reported high background due to feeding
from the long-lived 6

+
state. In the end, the weighted

average of values obtained in Refs. [64] and [60] was used
in the present Coulomb excitation analysis.

The 6
+

1 state at 3189 keV has a much longer lifetime

than the other states in
42

Ca. In the present data anal-
ysis, it was decided to use the weighted average of the
values obtained using the differential Perturbed Angular
Correlation method (7.65(23) ns, [79]) and positron-γ co-
incidences (7.96 (22) ns, [58] and 7.76(26) ns, [72]), while
the the result of Ref. [71] (7.8(10) ns) was not taken into
account because of its much lower precision.

The lifetime of the 0
+

2 state at 1837 keV was deter-
mined in a p-γ coincidence measurement [75] to be equal
to 558(8) ps. This value had a much smaller uncertainty
than that obtained in a delayed β-γ-γ coincidence exper-
iment (480(30) ps, [52]), hence it was used in the current
analysis.

For the 2
+

2 state at 2424 keV, a weighted average of the
lifetimes determined in two DSAM experiments [46, 71]
was used, as they were both performed under similar con-
ditions and the obtained precision was similar (0.30(+3,-
4) ps and 0.16(4) ps, respectively).

The lifetime of the 4
+

2 state at 3254 keV was measured
in three DSAM experiments [46, 71, 81] under similar
experimental conditions, yielding 0.30(+15,-10) ps [46],
0.15(4) ps [71], and 0.18(3) ps [81]. The obtained val-
ues agree within error bars, although that reported in
Ref. [46] has a considerably lower precision than two later
measurements. In the Coulex analysis, the most recent
and at the same time most precise value, 0.18(3) ps [81]
was used.

The lifetime of the 6
+

2 state at 4715 keV was deter-
mined in a DSAM measurement [70] to be equal to 120
(46) fs. The same technique was used to measure the

lifetime of the 2
+

3 at 3392 keV equal to 0.17(3) ps [81].

The spectroscopic quadrupole moment of the 2
+

1 state

in
42

Ca was determined using the reorientation effect in
Coulomb excitation [50]. The 2

+

1 → 0
+

1 γ-ray intensi-
ties, measured for several scattering angles, were anal-
ysed using the coupled-channels code of de Boer and
Winther [80]. In the calculations, the ground state and

states at 1.524 (2
+

1 ), 1.836 (0
+

2 ), 2.422 (2
+

2 ) and 2.75 MeV

(4
+

1 ) were included, with E2 transitional matrix elements
taken from Refs. [46, 81].

The 0
+

2 state decays almost exclusively to the 2
+

1 state
with the emission of a 312-keV γ ray, however, an electric
monopole transition, 0

+

2 →0
+

1 , is also known [75, 82–84].

The ratio of 0
+

2 →0
+

1 /0
+

2 →2
+

1 electron intensities was de-
termined to be equal to 1.03 (10) in a (p,p’γ) study [82].

This is equivalent to the I(E0; 0
+

2 →0
+

1 )/I(E2; 0
+

2 →2
+

1 )
branching of 0.35%. It was decided to include this decay
path in the Coulomb excitation data analysis for com-
pleteness, even though the effect is small. Since this in-
formation cannot be directly introduced into the GOSIA
input files, an indirect method described in Ref. [85] was
used: an extra level of spin and parity 1

+
, at 1200 keV

excitation energy, has been declared in addition to the

known level scheme of
42

Ca, and connected to the 0
+

2
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state by a M1 transition. The ⟨1+∥M1∥0
+

2 ⟩ was fitted
so that the relative intensity of the 0

+

2 →1
+

transition was
equal to the relative intensity of E0 electrons measured in
Ref. [82]. The introduction of such a level does not affect
the observed excitation pattern, as low-energy Coulomb
excitation proceeds predominantly via E2 transitions; it,
however, accounts for the alternative decay path of the
0
+

2 state.

TABLE IV. Relative intensities of the γ transitions and mix-
ing ratios, δ, for mixed E2/M1 transitions in

42
Ca used as

additional data points in the present Coulomb excitation data
analysis.

I
π
i I

π
j Eγ [keV] Relative intensity

2
+

2 2
+

1 899 1

2
+

2 0
+

1 2424 0.35(7)

2
+

2 0
+

2 587 0.007(3)

4
+

1 2
+

1 1227 1

4
+

1 2
+

2 328 0.010(4)

4
+

2 2
+

1 1729 1

4
+

2 2
+

2 830 0.18(9)

4
+

2 4
+

1 502 0.64(9)

6
+

2 4
+

1 1963 1

6
+

2 4
+

2 1461 0.94(6)

6
+

2 6
+

1 1526 0.15(4)

2
+

3 2
+

1 1867 1

2
+

3 0
+

1 3392 0.90(6)

2
+

3 0
+

2 1555 0.12(4)

2
+

3 2
+

2 968 0.05(4)

I
π
i I

π
j Eγ (keV) δ(E2/M1)

2
+

2 2
+

1 899 -0.18 (2)

2
+

3 2
+

1 1867 1.7 (4)

In the GOSIA χ
2

fitting procedure, Coulomb excita-
tion amplitudes for all declared states are calculated for a
given set of matrix elements and the scattering kinemat-
ics, defined by the particle and γ detection geometries.
The subsequent calculation of γ-ray decay takes into ac-
count effects such as internal conversion, the finite size
and relative efficiency of Ge detectors, and the atten-
uation caused by the deorientation effect during recoil
into vacuum. In order to compare the experimentally
observed and the calculated γ-ray intensities, the latter
are integrated over the range of scattering angles covered
by the particle detectors, as well over the range of inci-
dent energies due to the beam slowing down in the target
material.

The χ
2

fit of the observed γ-ray yields (Tab. II) and
other spectroscopic data (Tabs. III and IV) was per-
formed with 26 E2 and 4 M1 matrix elements.

In particular, although no transitions de-exciting the
2
+

3 state were observed in the present experiment, its in-
fluence on the population of other states was taken into
account by introducing into the calculations 6 matrix el-
ements coupling it to the observed states. These were

calculated from the known spectroscopic data, such as
the lifetime of the 2

+

3 state, branching ratios for all pos-
sible paths of its decay, and the 2

+

3 → 2
+

1 mixing ratio
(see Tab. IV), and remained fixed in the GOSIA mini-

mization routine. The 2
+

3 → 2
+

2 transition, for which no
E2/M1 mixing ratio was known, was assumed to be of
pure E2 character.

The relative signs of matrix elements may have a sig-
nificant influence on Coulomb excitation cross sections,
as illustrated for example by Fig. 3 of Ref. [86]. The signs
and magnitudes of the experimental matrix elements re-
ported in the present work were carefully verified by per-

forming the χ
2

minimization procedure starting from dif-
ferent initial sets of matrix elements, and comparing the
quality of resulting fits. For example, imposing a positive
sign for the ⟨0+1∥E2∥2

+

2 ⟩ matrix element resulted in an

immediate 11-fold increase of the obtained χ
2

value.

The following sign convention has been imposed: sign
of all in-band transitional E2 matrix elements, both in
the ground state band and in the side band, were assumed
to be positive, as well as that of ⟨0+2∥E2∥2

+

1 ⟩. Signs
of all other E2 matrix elements have been determined
relatively to those.

The experiment had no sensitivity to the signs of ma-
trix elements involving the 2

+

3 state; they were assumed
to be positive, consistent with the large scale shell model
predictions.

The resulting set of reduced matrix elements in
42

Ca
together with their relative signs and the corresponding
B(E2) values are presented in Table V. In addition, in
Tab. VI we present a list of E2 and M1 matrix elements
that were determined from other spectroscopic data, and
their values corresponding to the final solution of the
GOSIA minimisation procedure.

The statistical errors of the matrix elements were cal-
culated when the convergence of the χ

2
minimization was

achieved. This was performed in two steps. Firstly, the

χ
2

surface is sampled in the vicinity of the minimum,
using different values of the matrix element in question,
with all other matrix elements remaining fixed, in order
to find the “diagonal” uncertainty. Secondly, possible
correlations between all matrix elements are taken into
account, in order to obtain the total statistical uncer-
tainty. Note that we do not present uncertainties of ma-
trix elements in Tab. VI; this is to avoid creating false
impression that these specific matrix elements have been
independently determined from the present Coulomb ex-
citation data. Their uncertainties, used for example to
calculate uncertainties of shape parameters in Sec. IV D,
are calculated from the uncertainties of transition prob-
abilities resulting from previous measurements.

The analysis yielded in particular two important quan-
tities, determined for the first time: the ⟨2+2∥E2∥0

+

2 ⟩ ma-
trix element and the spectroscopic quadrupole moment
of the 2

+

2 state. Their large values are consistent with

a highly-deformed character of the side band in
42

Ca.
Other matrix elements obtained in the present analysis
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TABLE V. Reduced transitional and diagonal E2 matrix elements between the low-lying states in
42
Ca, and corresponding

B(E2) values and spectroscopic quadrupole moments determined in the course of the present analysis. Present experimental
results are compared with previously measured values, SM and BMF calculations, as well as the OCM predictions [111].

⟨Ii∥E2∥If ⟩ [e⋅fm
2
] B(E2 ↓; I

+

i → I
+

f ) [W.u.]

I
+

i → I
+

f Present SM BMF Present Previous SM BMF OCM [111]

2
+

1 → 0
+

1 20.5
+0.6
−0.6 11.5 9.14 9.7

+0.6
−0.6 9.3 ± 1 [50] 3.05 1.9 5.6

11 ± 2 [78]

9 ± 3 [81]

8.5 ± 1.9 [46]

4
+

1 → 2
+

1 24.3
+1.2
−1.2 11.3 12.2 7.6

+0.7
−0.7 50 ± 15 [78] 1.6 1.85 7.3

11 ± 3 [81]

10
+10

−8 [46]

6
+

1 → 4
+

1 9.3
+0.2
−0.2 8.2 14.3 0.77

+0.03
−0.03 0.7 ± 0.3 [81] 0.6 1.8 1.95

0
+

2 → 2
+

1 22.2
+1.1
−1.1 11.9 6.1 57

+6

−6 64 ± 4 [81] 16.3 4.3 3.5

100 ± 6 [78]

55 ± 1 [75]

64 ± 4 [46]

2
+

2 → 0
+

1 -6.4
+0.3
−0.3 9.4 4.4 1.0

+0.1
−0.1 2.2 ± 0.6 [78] 2.04 0.5 0.35

1.5 ± 0.5 [81]

1.2 ± 0.3 [46]

2
+

2 → 2
+

1 -23.7
+2.3
−2.7 -13.6 -7.7 12.9

+2.5
−2.5 17 ± 11 [78] 4.3 1.4 0.83

19
+22

−14 [81]

14
+35

−9 [46]

4
+

2 → 2
+

1 42
+3

−4 21.9 10.1 23
+3

−4 30 ± 11 [78] 6.3 1.3 0.11

16 ± 5 [81]

12
+7

−4 [46]

2
+

2 → 0
+

2 26
+5

−3 32 42 15
+6

−4 <61 [81] 24 40.7 37

<46 [46]

4
+

2 → 2
+

2 46
+3

−6 52 70 27
+4

−6 60 ± 30 [81] 35 63 35.7

60 ± 20 [78]

40
+40

−30 [46]⟨Ii∥E2∥Ii⟩ [e⋅fm
2
] Qsp [e⋅fm

2
]

2
+

1 -16
+9

−3 -4.3 0.1 -12
+7

−2 -19 ± 8 [50] -3 0.5 -14.3

2
+

2 -55
+15

−15 -31 -42 -42
+12

−12 -23 -32

are, in general, in agreement with the results of earlier
measurements, and in several cases the precision has been
considerably improved, notably for transitions deexciting
the 4

+

2 state.

The obtained set of reduced matrix elements repro-
duces all lifetimes presented in Table III within 1σ un-
certainty, with the exception of the 2

+

2 state. The value
obtained in the present analysis indicates a longer life-
time for this state (0.3 ps), which is still in agreement
with the literature value within 3σ limit.

Almost all branching ratios presented in Table IV were
reproduced within 1σ uncertainty, with only I(4

+

2 → 2
+

2 )

/ I(4
+

2 → 2
+

1 ) reproduced within 2σ and I(4
+

1 → 2
+

2 ) /

I(4
+

1 → 2
+

1 ) within 3σ limits. The latter are not con-
sistent with measured excitation cross sections to popu-
late the 4

+

1 , 4
+

2 and 2
+

2 states, and, consequently, if the

measured branching ratios are imposed, the intensities
of transitions depopulating these states cannot be repro-

duced and the total χ
2

value increases.

The obtained spectroscopic quadrupole moment of the
2
+

1 state was found in the agreement with the literature
value within 1σ range. The experiment was not sensitive
to E2/M1 mixing ratios, hence the previously measured
values should be understood as strong constraints rather
than data points to be fitted, and consequently they were
reproduced very well in the analysis.

IV. DISCUSSION

The obtained experimental results are discussed in the
context of microscopic calculations performed with both



11

TABLE VI. Reduced transitional E2 and M1 matrix elements between the low-lying states in
42
Ca, included in the present

analysis, and corresponding B(E2) and B(M1) values. These matrix elements were not determined from the present data set,
but influence the extraction of matrix elements listed in Tab. V. The values corresponding to the final solution of the GOSIA
fit are compared with the results of previous measurements, SM and BMF calculations, as well as the OCM predictions [111].

⟨Ii∥E2∥If ⟩ [e⋅fm
2
] B(E2 ↓; I

+

i → I
+

f ) [W.u.]

I
+

i → I
+

f Present SM BMF Present Previous SM BMF OCM [111]

6
+

1 → 4
+

1 9.3 8.2 14.3 0.72 0.72 ± 0.02 [72] 0.6 1.8 1.95

0.74 ± 0.25 [81]

0.74 ± 0.03 [58]

0.77 ± 0.02 [79]

6
+

2 → 4
+

2 75 63 92 50 50
+35

−16 [70] 35 75 35.2

2
+

3 → 0
+

1 4.2 4.1 1 0.4 0.4±0.12 [81] 0.4 0.02 0.05

2
+

3 → 2
+

1 18 11 5 7.5 7.5±2.3 [81] 2.8 0.6 0.10

2
+

3 → 0
+

2 12 7 9 2.0 2.0±0.6 [81] 1.1 1.9 3.15

2
+

3 → 2
+

2 20 24 31 9 9±9
a

13 22

∼2.3 [81]

⟨Ii∥M1∥If ⟩ [µn] B(M1 ↓; I
+

i → I
+

f ) [W.u.]

I
+

i → I
+

f Present SM BMF Present Previous SM BMF

2
+

2 → 2
+

1 0.97 0.78 -0.48 0.11 0.11±0.01 [65] 0.07 0.03

2
+

3 → 2
+

1 0.16 0.21 -0.04 0.0029 0.0029
+12

−7 [78] 0.005 0.0002

a
calculated from the branching ratio reported in Ref. [46] and the lifetime of 2

+

3 state from Ref. [81].

shell model (SM) and beyond-mean-field model (BMF)
approaches. Comparisons with other calculations for
42

Ca are also presented, as well as an attempt to discuss
the measured E2 matrix elements using a phenomeno-
logical two-state mixing model and the quadrupole sum
rule method.

A. Large-scale shell model calculations

In order to investigate the origins of the unexpected
quadrupole collectivity, which has been observed in the

magic nucleus
42

Ca, shell-model calculations were per-
formed using the SDPF.MIX interaction in the sdpf
model space for neutrons and protons, with a virtual
28

Si core [92]. This interaction has proven successful
in describing properties of the superdeformed bands in
40

Ca and
36

Ar and allows for the reproduction of the

observed ground-state magnetic moments of
49,51

Ca and

quadrupole moments of
47,49,51

Ca [93]. In spite of freez-
ing of the excitations from the 1d5/2 orbit, and taking into
account only excitations up to 8p−8h, the diagonalization

of the matrix of dimension O(4.10
9), performed using the

Antoine shell-model code [94, 95], was challenging. This
level of truncation was verified to ensure convergence of

the calculated spectroscopic properties in
42

Ca. The elec-
tric effective charges used in the calculation were 1.5e for
protons and 0.5e for neutrons, whereas the effective gyro-

magnetic factors were (gsπ, glπ) = (5.5857, 1.0) for protons

and (gsν , glν) = (−3.8263, 0.0) for neutrons.

The energies of excited states calculated within the
shell model are in excellent agreement with the data,
as shown in Fig. 11. The E2 matrix elements in the
yrast band are underestimated, and those in the side
band overestimated with respect to the present experi-
mental results. That means that the mixing between the
two bands is not fully reproduced, as discussed in de-
tail in Sec. IV D. On the other hand, the experimental
M1 transition strengths are quite well reproduced by the
present calculation, as shown in Tab. VI.

The quadrupole properties of the lowest non-yrast 2
+

states (Tab. VII), calculated in the laboratory frame, re-
veal collective aspects:

• Qs(2+3 ,K = 2) is nearly equal to Qs(2+2 ,K = 0),
and they have opposite signs,

• Qs(3+1 ,K = 2) is close to zero (0.14e.fm
2) and the

low-lying 3
+

1 state is connected by a strong transi-
tion to the 2

+

3 state.

Furthermore, the intrinsic quadrupole moments Q0

derived from calculated in-band E2 matrix elements
via [96]:

⟨If ,K∥E2∥Ii,K⟩ = √
2Ii + 1(Ii,K, 2, 0∣If ,K)√ 5

16π
eQ0

(1)
or from the spectroscopic quadrupole moments via:

Q0 =
(J + 1)(2J + 3)
3K2

− J(J + 1)Qs(J) (2)
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are similar for the two excited bands, as presented in
Tab. VIII.

These observations are consistent with a deformed
character of excited states in

42
Ca and suggest that the

structure built on 2
+

3 state is a K = 2 γ band, with the
configuration dominated by almost equal contributions
of 6p − 4h and 8p − 6h excitations (∼ 40% each). The
difference between the Q0 values obtained from the tran-
sitional and diagonal E2 matrix elements, presented in
Tab. VIII, may be attributed to triaxiality.

TABLE VII. Quadrupole properties of the 2
+

2 and 2
+

3 states
in

42
Ca, obtained in the present shell-model calculation.

J
+

i 2
+

2 2
+

3

Qs [efm
2
] -23.2 18.5

B(E2, J
+

i → 0
+

i ) [e
2
fm

4
] 201.3 17.9

B(E2, 3
+
→ J

+

i ) [e
2
fm

4
] 26.1 371.6

TABLE VIII. Intrinsic quadrupole moments Q0 of the K = 0
and K = 2 bands extracted from calculated spectroscopic
quadrupole moments and B(E2) transition strengths.

Q0 from Qs [efm
2
] Q0 from B(E2) [efm

2
]

2
+

2 81 100

4
+

2 92 102

6
+

2 91 98

2
+

3 65 102

3
+

1 - 102

The quadrupole properties of the excited states cal-
culated in the laboratory frame can be related to the
nuclear shape in order to investigate the nature of ob-
served structures, in particular that of the γ band. In
Tab. IX we present the β and γ deformation parameters

for the 0
+

1,2 states in
42

Ca derived from the E2 matrix
elements obtained in the present shell-model calculation
using the Davydov-Filipov geometric model [97], Kumar
and Cline’s sum-rule approach [49, 115], and Constrained
Hartree-Fock in the shell-model basis (CHFSM) [99, 100].

In the Davydov-Filipov model [97], the γ angle can

be extracted from the ratio B(E2, 2
+

γ → 2
+)/B(E2,2

+

γ →

0
+), and the β deformation parameter from the Q0 in-

trinsic quadrupole moment, following:

Q0 =

√
16π

5

3

4π
ZeR

2
0β (3)

with R0 = 1.2A
1/3

.
The CHFSM is a simple standard Hartree-Fock pro-

cedure restricted to the shell-model m-scheme configura-
tion basis and used as a simplified alternative to exact
diagonalizations [99, 100]. The Hartree-Fock equations
are solved and constrained on the quadrupole degrees of

TABLE IX. β deformation parameter and the γ angle calcu-
lated using the Davydov-Filipov model, CHFSM, and Kumar-
Cline sum rules, compared to the experimental values ob-
tained from the sum rules (Tabs. XI,XII)

0
+

1 0
+

2

Davydov 0.09 12
◦

0.34 23
◦

CHFSM 0.03 60
◦

0.40 20
◦

sum rules 0.22 15
◦

0.46 18
◦

Exp 0.26(2)
a

28(3)
◦

0.43(4) 13(
+5

−6)
◦

a
Deformation of the ground state is dynamic, as explained in
detail in Sec. IVD, hence β and γ parameters presented here
for 0

+

1 state can be understood as the mean values of the
deformation.

freedom, to obtain the minimal energies as function of β
and γ deformation parameters.

Finally, the quadrupole deformation parameters can
be extracted using the E2 sum rules, proposed by Ku-
mar [98], as detailed in Sec. IV D. It is worth noting that
by using the strength function in the calculation of the
sum rule we can get all the intermediate states reached
from the initial states by E2 transitions. The values
listed in Tab. IX result from the summation over all cal-
culated intermediate states, unlike those in Tabs. XI,XII,
where the sum was limited to states that were accessible
experimentally.

As shown in Tab. IX, the deformation parameters ob-
tained using the three methods are consistent for the 0

+

2

state, and they are in a good agreement with the exper-
imental value. However, for the ground state we obtain
β parameters close to zero using the Davydov-Filippov
model and CHFSM (see Fig. 13a), while the sum rules
yield a much larger value, closer to what is observed ex-
perimentally. This is related to the fact that the defor-
mation of the 0

+

2 state has a static character, while the
ground state exhibits large fluctuations about a spherical
minimum, as discussed in Ref. [34].

B. Beyond mean field

In the present work we have performed BMF calcula-
tions within the symmetry conserving configuration mix-
ing (SCCM) method [101] using the Gogny D1S inter-
action [102] to define the corresponding energy density
functionals. This framework is very well suited to an-
alyze the different states present in the low-lying spec-
tra of atomic nuclei in terms of intrinsic shapes. In the
SCCM method the nuclear states are obtained as linear
combinations of particle number and angular momentum
projected mean-field states. The coefficients of the lin-
ear combination are calculated self-consistently follow-
ing the generator coordinate method (GCM) [103]. On
the other hand, the mean-field states are found by solv-
ing the particle-number variation-after-projection (PN-
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VAP) Hartree-Fock-Bogolyubov (HFB) equations with
constraints in the quadrupole operators parametrized by(β2, γ) [104].

The PN-VAP energy defined in the (β2, γ) plane yileds
qualitative information on the quadrupole properties of
the nucleus under study. In Fig. 9(a) such a potential en-

ergy surface (PES) is plotted for the
42

Ca isotope. This
PES shows a very well-defined spherical minimum, con-
sistent with the semi-magic character of this nucleus. In
addition, a secondary minimum at (β2, γ) ≈ (0.5, 20

◦)
is found at a rather large excitation energy (∼ 8 MeV).
The specific shapes related to these minima (spherical
and triaxially deformed) are better visualized if we rep-
resent the spatial densities that correspond to those HFB
states (see inset in Fig. 9(a)).

FIG. 9. (color online) Potential energy surfaces computed
with the Gogny D1S interaction and: (a) Particle number
variation-after-projection (PN-VAP); (b) particle number and
angular momentum projection (PNAMP) with J = 0; and (c)
PNAMP with J = 2. Energies in each plot are normalised
to that in its minimum and contour lines are separated by
0.25 MeV (dashed lines) and 2 MeV (solid lines), respectively.
Inset in (a): Spatial densities corresponding to each minimum
found in PN-VAP calculations.

If we project the intrinsic HFB states onto particle
numbers and angular momentum, we obtain the PES rep-
resented in Fig. 9(b)-(c) for J = 0 and J = 2. Now the
degeneracy around the spherical shape is larger within
the triangle defined by (β2, γ) = (0, 0◦), (0.25, 0

◦) and(0.2, 60
◦) and the correlation energy gained by the sym-

metry restoration brings the energy of the deformed state
closer to that of the spherical one.

The last step in the SCCM calculation is the shape
mixing within the GCM framework [101]. As a result,
we obtain the spectrum shown in Fig. 11 and the electro-
magnetic matrix elements in the laboratory frame used in
Tabs. V-XIV. After this mixing the lowest excited states
can be grouped into three bands built on top of the 0

+

1

(∆J = 2), 0
+

2 (∆J = 2) and 2
+

3 (∆J = 1) states, respec-
tively. The ground-state band is characterized by small
E2 transition probabilities and spectroscopic quadrupole
moments, as expected for a spherical semi-magic config-
uration. In contrast, larger in-band transitions are pre-
dicted in the second and third bands. In order to in-
vestigate the underlying shapes of the states belonging
to these bands we analyse the collective wave functions
(c.w.f.) of the band heads, as presented in Fig. 10. The
c.w.f. represent the weights of each (β2, γ) deformation

in the nuclear states obtained within the SCCM frame-
work. Hence, the most important contribution to the
ground state comes from the spherical point and its sur-
roundings (Fig. 10(a)). For the states belonging to the

second band (0
+

2 , 2
+

2 , ...) the most relevant shapes are
found around (β2, γ) = (0.55, 20

◦), consistent with the
large electromagnetic transitions and negative spectro-
scopic quadrupole moments obtained in the present cal-
culations. The third band shows rather similar c.w.f. to
those in the second band, corroborating its character of a
γ-band (K = 2) built on the second band. The compar-
ison of obtained transition probabilities and quadrupole
moments with both the experimental results and SM cal-
culations shows a very good qualitative agreement.

FIG. 10. (color online) Collective wave functions for the band-
head states obtained with BMF calculations with the Gogny
D1S interaction. Red (blue) regions represent large (small)
contributions to the wave functions.

.

The comparison between the experimental level
scheme and those obtained from theoretical calculations
is presented in Fig. 11. The shell-model calculations re-

produce the level scheme of
42

Ca remarkably well, while
all level energies are overestimated by BMF calculations,
with the ground-state band being too stretched and the
side band having a level spacing similar to what is ob-
served experimentally, but appearing at a higher excita-
tion energy. This can be explained by the lack of some
degrees of freedom in the set of HFB wave functions used
to perform the symmetry restoration and shape mixing.
For example, the inclusion of cranking states allows for
a better variational exploration of the states with J ≠ 0
compressing the spectrum [106–108]. Moreover, energies

of the excited 0
+

states can be affected by adding pair-
ing fluctuations [105] and/or quasiparticle excitations ex-
plicitly [109]. Unfortunately, these improvements of the
many-body method are very time consuming. We do not
expect, however, that they would bring a change in the
interpretation of the collective structure of this nucleus.

C. Two-state mixing model

The ⟨Q2⟩ quadrupole invariants experimentally deter-

mined for the 0
+

1,2 and 2
+

1,2 states in
42

Ca (Ref. [34],
see also Sec. IV D of the present paper) remain constant
within the side band, while for the ground state band an
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FIG. 11. Level schemes comparison: shell model (left), experiment (middle), beyond mean field (right). Level energies (in keV)

are given in italic. The widths and labels of the arrows represent the measured and calculated B(E2,↓) values in e
2
fm

2
.

important increase is observed between the 0
+

1 and the
2
+

1 states. This effect can be attributed to a possible mix-
ing of the 2

+
states, consistent with one-neutron transfer

reaction spectroscopy [66, 87], therefore we attempt to
interpret the measured E2 matrix elements in the frame-
work of a phenomenological two-state mixing model (see
Ref. [88] and the references therein).

The model is based on the assumption that the ob-
served physical states can be expressed as linear combi-
nations of two pure structures. The mixing of states with
the same spin-parity I

π
is described by a mixing angle θI ,

which can be calculated using the set of experimental
matrix elements. To calculate mixing angles between the

lowest 0
+

and 2
+

states in
42

Ca, the equations listed in
the Section V.A. of Ref. [88] were used, and the results
are presented in Tab. X. The calculated mixing angle for

the 0
+

states, cos
2
(θ0)=0.88(4), indicates that 0

+
states

in
42

Ca are weakly mixed, and is consistent with the
values obtained using theoretical matrix elements. The
same quantity can be determined using the experimental

value of the ρ
2(E0; 0

+

2 → 0
+

1 ) transition strength, pro-
vided that the deformation parameters are known. In
a two-level mixing scenario the E0 strength is given by
[90, 91]:

ρ
2(E0) = (3Z

4π
)2 cos

2(θ0) sin
2(θ0)

⋅ [(β2
1 − β

2
2) + 5

√
5

21
√
π
(β3

1 cos γ1 − β
3
2 cos γ2)]2 , (4)

where sin(θ0) is the amplitude of the admixed wave
function with shape parameters (β1, γ1) (in this case, the

0
+

2 state) in the lower lying level (the ground state) with(β2, γ2). The shape parameters for the 0
+

2 state are taken
to be β = 0.43(4), and γ ≈ 13(5)◦[34], whereas for the
ground state the assumption is made that β = 0. In this
case, Eq. 4 reduces to

ρ
2(E0) ≈ (3Z

4π
)2 cos

2(θ0) sin
2(θ0)

⋅ [β2
1 +

5
√

5

21
√
π
β
3
1 cos γ1]2 . (5)

Solving for cos
2
(θ0) and using the experimental value

of 1000 ⋅ ρ
2(E0; 0

+

2 → 0
+

1 ) of 135(12) [90] yields 84(4)%,
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which is consistent with 88(4)% obtained in the analysis
of the E2 matrix elements.

The obtained cos
2
(θ2)=0.39(8) value shows, however,

that the simple two-level mixing model cannot be applied

to the first two 2
+

states in
42

Ca, as this value suggests
that the ground state has a 61% admixture of the de-
formed configuration, and vice versa. We suggest that
this is related to the strong coupling of the 2

+

3 state to
both 2

+

1 and 2
+

2 : in both calculations the B(E2; 2
+

3 → 2
+

2 )

value is much larger than B(E2; 2
+

3 → 2
+

1 ), while the ex-
perimental transition strengths are similar. This would
suggest that the mixing may involve all three 2

+
states,

and, therefore, that the present model is too simple.

TABLE X. Mixing amplitudes for the 0
+
and 2

+
states in

42
Ca

obtained from measured and calculated E2 matrix elements.

Experiment SM BMF

cos
2
(θ0) 0.88(4) 0.85 0.96

cos
2
(θ2) 0.39(8) 0.83 0.97

The same model has been applied to our results
in Ref. [89]. In addition to reaching similar conclu-

sions on the mixing of the 0
+

and 2
+

states, the au-

thor obtained weak mixing (cos
2
(θ4)=0.94(17)) of the

4
+

states in
42

Ca. The consequences of changing
the sign of the ⟨0+1∥E2∥2

+

2 ⟩ matrix element were also
explored: it leads to lower purity of the 0

+
states

(cos
2
(θ0)=0.75(3)) and slightly weaker mixing of the 2

+

states (cos
2
(θ2)=0.43(3)), again showing that the two-

state model is not applicable in this case.
For comparison, we can apply the two-state mixing

model to matrix elements obtained from theoretical cal-
culations. The results, presented in Tab. X, show that
the two structures predicted by both theories mix weakly
independent of the spin.

D. Quadrupole deformation parameters

The Quadrupole Sum Rules method [49, 115, 116] can
be applied to the obtained E2 matrix elements in order
to extract information on the charge distribution of the
nucleus in specific states. The results were published in
Ref. [34]; here we would like to present the method in
more detail, and analyse the contributions of individual
matrix elements to the resulting invariants.

The Quadrupole Sum Rules method is based on
the fact that the electric multipole transition operator
E(λ=2, µ) is a spherical tensor and it can be represented
using two parameters: Q, the overall quadrupole defor-
mation parameter equivalent to the elongation parameter
β in Bohr’s model, and δ, which is related to the triaxi-
ality parameter γ.

The expectation values of the quadrupole rotational

invariants ⟨Q2⟩ and ⟨Q3
cos(3δ)⟩ which describe the de-

formation of individual states in both the intrinsic and

laboratory frames are determined using the set of E2
matrix elements by an expansion over all possible inter-
mediate states using Wigner

′
s 6j symbols:

1√
5
⟨Q2⟩ = ⟨Ii∥[E2 ×E2]0∥Ii⟩

=
1√

2Ii + 1
∑
j

⟨Ii∥E2∥Ij⟩⟨Ij∥E2∥Ii⟩ {2 2 0
Ii Ii Ij

} , (6)

⟨Q3
cos(3δ)⟩ = ⟨Ii∥{[E2 × E2]2 ×E2}0∥Ii⟩

= ∓

√
35√
2

1√
2Ii + 1

⋅

⋅∑
jk

⟨Ii∥E2∥Ij⟩⟨Ij∥E2∥Ik⟩⟨Ik∥E2∥Ii⟩ {2 2 2
Ii Ij Ik

} .
(7)

The first of the presented invariants is a measure of
overall quadrupole deformation and is proportional to the
sum of squared E2 matrix elements ⟨i∥E2∥t⟩⟨t∥E2∥i⟩
over all intermediate states ∣t⟩ that can be reached
from the state in question ∣i⟩ in a single E2 tran-

sition. The higher-order invariant ⟨Q3
cos(3δ)⟩ that

provides information on triaxial symmetry, is con-
structed of triple products of E2 matrix elements
(⟨i∥E2∥t⟩⟨t∥E2∥u⟩⟨u∥E2∥i⟩, where ∣i⟩ – initial state,∣t⟩ and ∣u⟩ – intermediate states) and thus relative signs
of E2 matrix elements entering the sum must be known.

The ⟨Q2⟩ values were obtained for the 0
+

and 2
+

states
in both bands, as presented in Table XII and in Fig. 12.
Since the present measurement yielded relative signs of
E2 matrix elements coupling the 0

+
and 2

+
states, it was

also possible to determine the ⟨Q3
cos(3δ)⟩ invariants for

the 0
+

1 and 0
+

2 states (Table XI and XII), as in Refs. [117,
118].

TABLE XI. Experimental and theoretical quadrupole invari-
ants, ⟨Q2⟩ [e

2
fm

4
] and σ(Q2) [e

2
fm

4
], for the 0

+

1,2 and 2
+

1,2

states in
42
Ca. Variances σ(Q2) are calculated from ⟨Q4(0)⟩

listed in Tab. XII.

EXP SM BMF

state ⟨Q2⟩ σ(Q2) ⟨Q2⟩ σ(Q2) ⟨Q2⟩ σ(Q2)
0
+

1 500 (20) 350 (30) 240 470 100 250

2
+

1 900 (100) 250 490 100 310

0
+

2 1300 (230) 350 (30) 1200 500 1900 520

2
+

2 1400 (250) 1130 500 1900 300

In order to compare the deformation of each individual
state with the theoretical results, the Quadrupole Sum
Rule method was applied to matrix elements resulting
from theoretical calculations in the same way as it was
done for the experimental ones. As described in Ref. [34],
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TABLE XII. Experimental and theoretical ⟨Q4⟩ invari-
ants [⋅10

4
e
4
fm

8
] and ⟨cos(3δ)⟩ values, calculated from⟨Q3

cos(3δ)⟩ as in Ref. [117, 118].

⟨Q4(0)⟩ ⟨Q4(2)⟩ ⟨Q4(4)⟩
0
+

1 EXP 35(6)

SM 30 30 20

BMF 10 10 10

0
+

2 EXP 185(13)

SM 170 160 140

BMF 390 380 380

⟨cos(3δ)⟩exp ⟨cos(3δ)⟩SM ⟨cos(3δ)⟩BMF

0
+

1 0.06 (10) 0.34 0.34

0
+

2 0.79 (13) 0.67 0.49

]
4

fm
2

 [
e

〉 
2

 Q〈

0
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1000

1500

2000

1
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FIG. 12. (Color online) Experimental and theoretical ⟨Q2⟩
invariants for the 0

+

1,2 and 2
+

1,2 states in
42
Ca.

the non-zero ⟨Q2⟩ value obtained for the 0
+

1 state corre-
sponds to fluctuations about a spherical shape. This is
consistent with the maximum triaxiality obtained for this
state, which results from averaging over all possible de-
formed shapes. The confirmation of this interpretation
comes from the fact that the magnitude of dispersion of⟨Q2⟩, defined as σ(Q2) = √⟨Q4⟩− ⟨Q2⟩2 [119] is compa-

rable to ⟨Q2⟩, as presented in Tab. XII. The ⟨Q4⟩ shape
invariant is given by the fourth-order product:

P
4(J) = ⟨Ii∥{(E2 ×E2)J × (E2 ×E2)J}0∥Ii⟩

= ∑
jkl

(2J + 1)1/2√
2Ii + 1

⋅ (−1)Ii−Ij
⋅ ⟨Ii∥E2∥Ij⟩⟨Ij∥E2∥Ik⟩⟨Ik∥E2∥Il⟩⟨Il∥E2∥Ii⟩⋅

⋅ {2 2 J
Ii Ij Ik

} {2 2 J
Ii Ij Il

} (8)

with J = 0, 2, 4 being the spin that a pair of E2 oper-
ators is coupled to.

The three independent estimates of ⟨Q4⟩ can be eval-

uated using P
4(J) for J = 0, 2, 4, via:

⟨Q4(0)⟩ = 5P
4(0), (9)

⟨Q4(2)⟩ = 7
√

5

2
P

4(2), (10)

⟨Q4(4)⟩ = 35

6
P

4(4). (11)

The values of ⟨Q4(4)⟩ obtained using the three possible
intermediate spins J should be the same, which proves
the consistency of the set of matrix elements and its com-
pleteness. The currently known set of experimentally ob-
tained matrix elements, although rich, is only sufficient to

obtain the expectation value of ⟨Q4(0)⟩. The ⟨Q4(0)⟩,⟨Q4(2)⟩ and ⟨Q4(4)⟩ values obtained from sets of ma-
trix elements resulting from BMF calculations are very

similar for each of the two states, while the ⟨Q4(4)⟩ ob-
tained from LSSM calculations isalways lower than the
other two: this is related to the fact that no matrix ele-
ments involving the 4

+

3 state were calculated within this
approach.

The behaviour of ⟨Q2⟩ and its dispersion is remarkably
consistent for both theoretical approaches, as shown in
Fig. 12 and in Tab. XII. For the ground-state band,

σ(Q2)SM and σ(Q2)BMF values are comparable with⟨Q2⟩, as one would expect for fluctuations about a spher-
ical minimum of potential. For the side band, however,
the dispersion is much lower than the actual value, which
is interpreted as a static deformation.

It should be noted that the deformation predicted by
both theoretical approaches remains constant within each
band. This is confirmed by the experimental results for
the highly-deformed structure, but those for the ground-

state band show that the ⟨Q2⟩ for the 2
+

1 state is con-
siderably larger than the value obtained for the ground
state. This is consistent with the large mixing of the
2
+

states as discussed in Sec. IV C, suggesting that the
2
+

1 has a considerable admixture of the well-deformed 2
+

2

and 2
+

3 states.
The contributions of individual matrix elements to the⟨Q2⟩ invariants for the 0

+

1,2 and 2
+

1,2 states in
42

Ca is
presented in Table XIII, both for experimental and the-
oretical values.

In almost all cases, the same matrix elements bring the
most important contribution to the invariants calculated
using experimental and theoretical matrix elements. The⟨Q2⟩ for the ground state is dominated, as always, by
the coupling to the 2

+

1 state, although its contribution
to the experimental value is much larger than for those
resulting from the calculations, especially using the SM
(90% vs 55%). Different behaviour is observed for the

0
+

2 state, where again the dominant contribution comes
from the in-band matrix element, but the influence of
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matrix elements involving other 2
+

states is much larger
for the experimental value, where they amount to 50% of
the total, than for the theoretical calculations (16% and
6% for SM and BMF, respectively). This effect can be

attributed to the mixing of 2
+

states being much larger
in the experiment than in the theory. It should also be
noted that the transition to the 2

+

3 state, although not
observed in the present experiment. contributes to over

10% of the total ⟨Q2⟩ value for the 0
+

2 state.

For the 2
+

1 state, the dominant contribution to the in-
variant comes from an intra-band transitional matrix ele-
ment ⟨2+1∥E2∥4

+

2 ⟩, amounting to about 40% of the total
for both experimental and SM values. For the 2

+

2 state,
the value of the spectroscopic quadrupole moment of this
state has the largest influence on the experimental value,
while it is the ⟨4+2∥E2∥2

+

2 ⟩ in-band matrix element that
contributes almost 50% of the total for both theoretical
calculations; this difference is due to the more triaxial
shape of the superdeformed band in the calculations than
in the experiment, related to the reduction of the static
quadrupole moments in this structure.

Additionally, we have evaluated the possible contri-

bution of higher-lying states in the γ band to the ⟨Q2⟩
invariants using the matrix elements obtained from the
BMF calculation. As shown in Tab. XIII, the contribu-
tions of the loops involving the 3

+

1 and 4
+

3 states bring

less than 3% to the total ⟨Q2⟩ values, and therefore we
expect the systematic error related to non-completeness
of the sum over intermediate states to be lower than the
statistical error on the invariant.

For the ⟨Q3
cos(3δ)⟩ invariant (see Tab.XIV), again

there is a similarity between the calculations using exper-
imental and theoretical matrix elements, with the dom-
inant contributions coming from the same E2×E2×E2
loops, especially for the 0

+

2 state. For the 0
+

1 state,
all E2×E2×E2 loops have similar influence on the final
value of the invariant, and their contributions partly can-
cel out due to opposite signs. This is especially true for
the invariant deduced from experimentally measured ma-
trix elements. Here, in particular, we would like to note
that the approximate formula proposed by Andrejtscheff

and Petkov [120] to derive the ⟨Q3
cos(3δ)⟩ invariant

using only the first two E2×E2×E2 loops, works very

well in the case of
42

Ca (600 e
3
fm

6
from the approxi-

mate calculation versus 800 e
3
fm

6
from the full sum rules

formalism, which translates into γ angles of 29.1
◦

and
28.9

◦
, respectively). The most notable difference con-

cerns the E2×E2×E2 loops involving the spectroscopic
quadrupole moment of the 2

+

1 state, which is the main

contribution to the ⟨Q3
cos(3δ)⟩ for the 0

+

2 state obtained
from the experimental results, and is much less important
for those resulting from the theoretical calculations. This
is due to the fact that this matrix element is strongly un-
derestimated by theory. The only difference regarding
the sign is observed for two E2×E2×E2 loops involv-
ing the ⟨2+2∥E2∥0

+

1 ⟩ matrix element, being the only ma-
trix element, which experimentally measured sign has not

TABLE XIII. Contribution of individual matrix elements to
the values of the ⟨Q2⟩ shape invariants for 0

+

1 , 2
+

1 , 0
+

2 and 2
+

2

states in
42
Ca: experiment, SM and BMF.

Component Contribution to⟨Q2⟩ [e
2
fm

4
]

State E2 ×E2 Experiment SM BMF⟨0+1∥E2∥2+1 ⟩⟨2+1∥E2∥0+1 ⟩ 440 134 80
0
+

1 ⟨0+1∥E2∥2+2 ⟩⟨2+2∥E2∥0+1 ⟩ 41 89 19⟨0+1∥E2∥2+3 ⟩⟨2+3∥E2∥0+1 ⟩ 19 17 1⟨Q2⟩ = 500(20) 240 100⟨2+1∥E2∥0+1 ⟩⟨0+1∥E2∥2+1 ⟩ 85 28 18⟨2+1∥E2∥0+2 ⟩⟨0+2∥E2∥2+1 ⟩ 100 30 8⟨2+1∥E2∥2+2 ⟩⟨2+2∥E2∥2+1 ⟩ 113 38 13
2
+

1 ⟨2+1∥E2∥4+1 ⟩⟨4+1∥E2∥2+1 ⟩ 120 27 32⟨2+1∥E2∥4+2 ⟩⟨4+2∥E2∥2+1 ⟩ 362 99 22⟨2+1∥E2∥2+3 ⟩⟨2+3∥E2∥2+1 ⟩ 66 25 6⟨2+1∥E2∥2+1 ⟩⟨2+1∥E2∥2+1 ⟩ 54 4 0⟨2+1∥E2∥4+3 ⟩⟨4+3∥E2∥2+1 ⟩ 0.4⟨2+1∥E2∥3+1 ⟩⟨3+1∥E2∥2+1 ⟩ -0.6⟨Q2⟩ = 900(100) 250 100⟨0+2∥E2∥2+1 ⟩⟨2+1∥E2∥0+2 ⟩ 488 142 37
0
+

2 ⟨0+2∥E2∥2+2 ⟩⟨2+2∥E2∥0+2 ⟩ 645 1005 1776⟨0+2∥E2∥2+3 ⟩⟨2+3∥E2∥0+2 ⟩ 168 52 86⟨Q2⟩ = 1300(230) 1200 1900⟨2+2∥E2∥0+1 ⟩⟨0+1∥E2∥2+2 ⟩ 8 18 4⟨2+2∥E2∥2+1 ⟩⟨2+1∥E2∥2+2 ⟩ 109 38 12⟨2+2∥E2∥4+1 ⟩⟨4+1∥E2∥2+2 ⟩ 62 3 3
2
+

2 ⟨2+2∥E2∥0+2 ⟩⟨0+2∥E2∥2+2 ⟩ 126 207 360⟨2+2∥E2∥4+2 ⟩⟨4+2∥E2∥2+2 ⟩ 411 551 980⟨2+2∥E2∥2+3 ⟩⟨2+3∥E2∥2+2 ⟩ 92 119 190⟨2+2∥E2∥2+2 ⟩⟨2+2∥E2∥2+2 ⟩ 592 193 351⟨2+1∥E2∥4+3 ⟩⟨4+3∥E2∥2+1 ⟩ 5⟨2+1∥E2∥3+1 ⟩⟨3+1∥E2∥2+1 ⟩ -46⟨Q2⟩ = 1400(250) 1130 1900

been reproduced by the theory (see Tab.V).

For the 0
+

2 state, the main contributions to the⟨Q3
cos(3δ)⟩ invariant come from the E2×E2×E2 loops

involving the ⟨2+2∥E2∥0
+

2 ⟩ matrix element, as expected
for a band head of a highly-deformed structure, which
is consistent both with theoretical calculations and ex-
perimental results. It should be noted that the contri-
bution of this single loop is close to the value of the en-

tire ⟨Q3
cos(3δ)⟩ invariant, with all other contributions

cancelling out to some extent; this is especially true for
the invariants calculated using experimental values of E2
matrix elements, and those resulting from LSSM calcu-
lations.

The E2×E2×E2 loops involving the ⟨2+2∥E2∥2
+

1 ⟩ and⟨2+3∥E2∥2
+

1 ⟩ matrix elements are more important for the
calculations using experimental values of matrix elements
than for those obtained from the theory. This is related
to the mixing of 2

+
states being underestimated by the

theory.

The spectroscopic quadrupole moment of the 2
+

3 state
has not been measured experimentally, hence in the
present analysis it was assumed to be equal to zero.
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TABLE XIV. Contribution of individual matrix elements to the values of the ⟨0+1 ∣Q3
cos(3δ)∣0+1 ⟩ and ⟨0+2 ∣Q3

cos(3δ)∣0+2 ⟩ shape
invariants in

42
Ca: experiment, SM and BMF.

Component Contribution to⟨Q3
cos(3δ)⟩ [e

3
fm

6
]

State E2 × E2× E2 Experiment SM BMF⟨0+1∥E2∥2+1 ⟩⟨2+1∥E2∥2+1 ⟩⟨2+1∥E2∥0+1 ⟩ 5800 500 0⟨0+1∥E2∥2+1 ⟩⟨2+1∥E2∥2+2 ⟩⟨2+2∥E2∥0+1 ⟩ -5200 2500 500⟨0+1∥E2∥2+1 ⟩⟨2+1∥E2∥2+3 ⟩⟨2+3∥E2∥0+1 ⟩ -2700 -900 -100
0
+

1 ⟨0+1∥E2∥2+2 ⟩⟨2+2∥E2∥2+2 ⟩⟨2+2∥E2∥0+1 ⟩ 1900 2200 700⟨0+1∥E2∥2+2 ⟩⟨2+2∥E2∥2+3 ⟩⟨2+3∥E2∥0+1 ⟩ 1000 -1600 -200⟨0+1∥E2∥2+3 ⟩⟨2+3∥E2∥2+3 ⟩⟨2+3∥E2∥0+1 ⟩ 0 -300 0
Sum of all contributions⟨0+1 ∣Q3

cos(3δ)∣0+1 ⟩ 800 2400 900⟨cos(3δ)⟩ 0.06 (10) 0.34 0.34⟨0+2∥E2∥2+1 ⟩⟨2+1∥E2∥2+1 ⟩⟨2+1∥E2∥0+2 ⟩ 6800 500 0⟨0+2∥E2∥2+1 ⟩⟨2+1∥E2∥2+2 ⟩⟨2+2∥E2∥0+2 ⟩ 22400 8600 3400⟨0+2∥E2∥2+1 ⟩⟨2+1∥E2∥2+3 ⟩⟨2+3∥E2∥0+2 ⟩ -8700 -1600 -500
0
+

2 ⟨0+2∥E2∥2+2 ⟩⟨2+2∥E2∥2+2 ⟩⟨2+2∥E2∥0+2 ⟩ 30100 25800 62500⟨0+2∥E2∥2+2 ⟩⟨2+2∥E2∥2+3 ⟩⟨2+3∥E2∥0+2 ⟩ -12100 -9200 -20200⟨0+2∥E2∥2+3 ⟩⟨2+3∥E2∥2+3 ⟩⟨2+3∥E2∥0+2 ⟩ 0 -1100 -3000
Sum of all contributions⟨0+2 ∣Q3

cos(3δ)∣0+2 ⟩ 38500 23000 42200⟨cos(3δ)⟩ 0.79 (13) 0.67 0.49

However, the contribution to the ⟨Q3
cos(3δ)⟩ invariant

involving the corresponding matrix element is strongly
suppressed independent of the ⟨2+3∥E2∥2

+

3 ⟩ value, since
it enters the sums multiplied by the ⟨2+3∥E2∥0

+

1 ⟩ matrix
element squared (or the ⟨2+3∥E2∥0

+

2 ⟩ squared for the 0
+

2

state), which are small. This is confirmed by the theo-
retical calculations, that predict it to be on the level of

5-10% of the strongest contribution to ⟨Q3
cos(3δ)⟩ for

both the 0
+

1 and 0
+

2 states.

The relative signs of all matrix elements involving the
2
+

3 state were adopted from the theory, thus the signs
of the corresponding E2×E2×E2 loops are the same for
the invariants obtained using experimental and theoreti-
cal values of matrix elements. A different combination of
signs would have a minor influence on the ⟨Q3

cos(3δ)⟩
invariant for the 0

+

1 state, which would still correspond
to a shape close to maximally triaxial. For the 0

+

2 state,
changing the signs of the E2×E2×E2 loops involving the

2
+

3 state would lead to an increase of the ⟨Q3
cos(3δ)⟩

value closer to what would be expected for an axially
symmetric nucleus, or even to non-physical solutions of
cos(3δ) > 1. Measurement of the signs of matrix ele-
ments involving the 2

+

3 state remains a challenge for fu-
ture Coulomb excitation experiments.

The ⟨Q2⟩ and ⟨Q3
cos(3δ)⟩ invariants can be further

converted to the β and γ collective model deformation
parameters, as explained in detail in Ref.[116]. The

β=0.43(4) and γ=13(
+5
−6)

◦
deformation parameters ob-

tained in this way for 0
+

2 , show that the side band in
42

Ca has a slightly triaxial superdeformed shape, and can
be directly compared to model predictions. Very good
overall agreement is found: both potential energy sur-

face maps presented in Fig. 13, in addition to a spherical
minimum for the ground-state band show a triaxial min-
imum that is located at β2=0.4 and γ ≈ 20

◦
for CHFSM

(panel (a)) and at β2=0.5, γ = 15
◦

for BMF calculations
(panel (b)).

FIG. 13. (Color online) Potential energy surfaces resulting
from deformation-constrained Hartree-Fock calculations with
(a) SM interaction, and (b) BMF, particle number projection
method (PN-VAP), Gogny D1S interaction. Spatial densities
corresponding to each minimum found in BMF calculations
are also shown in the panel (b). Reproduced from Ref. [34]

E. Other theoretical approaches

The structure of
42

Ca was also studied in the
framework of the generator coordinate method (GCM)
with deformed-basis antisymmetrized molecular dynam-

ics (AMD) wave functions [110], the α+
38

Ar orthogonal-
ity condition model (OCM) [111] and covariant relativis-
tic energy density functional theory (CDFT) [114].
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In the AMD-GCM approach [110] Gogny D1S force
was used as the effective interaction and the basis wave
functions of the GCM were obtained via the energy vari-
ation with two types of constraints: the quadrupole de-
formation parameter of the total system, β, and the dis-

tance between the α and
38

Ar clusters. As a result, a
rotational band of a predominantly 6p − 4h configura-
tion and β deformation of about 0.4 was found with a
band head at about 4 MeV excitation energy. By com-
paring the calculated intraband transition strengths with
the experimental values, the authors identify this theo-
retical structure with the band built on the 0

+

2 state at
1837 keV. This is further supported by the the fact that
the 0

+

2 state is weakly populated in α transfer, consis-

tent with the obtained low admixture of the α-
38

Ar clus-
ter structure component. The obtained values of B(E2;

2
+

2 →0
+

2 ) = 28.5 W.u. and B(E2; 4
+

2 →2
+

2 ) = 33.1 W.u
are in a very good agreement with our present experimen-
tal findings [34]. In addition, the calculations predicted a

K=2 side band of the structure built on the 0
+

2 state, re-
sulting from its triaxial deformation. On the other hand,
the AMD calculations did not succeed in reproducing the

level energies in
42

Ca, with the ground-state band built
on 2p configuration being extremely compressed, and the
side band appearing at the energy twice as high as ob-
served experimentally.

Another type of α-cluster model was applied to
42

Ca
in Ref. [111]. The OCM theoretical calculations describe
the cluster and shell-model states in a unified way. The

ground-state band in
42

Ca is found to have a two-particle
nature, while the side band constructed on the 0

+

2 state

has a predominantly α+
38

Ar cluster structure. The 2
+

3

state is interpreted as resulting from coupling of an α

cluster to the 2
+

state in
38

Ar. The calculated B(E2)
values are presented in Tab V. The in-band transition
strengths, both in the ground-state and the side bands,
are rather well reproduced, while the interband transi-
tions are strongly overestimated. The calculated spec-
troscopic quadrupole moment of the 2

+

1 state is in good
agreement with the experimental result, and its large
negative value results mostly from the admixture of clus-
ter components to the predominantly 2p 2

+

1 state. The
0
+

2 → 0
+

1 E0 transition strength was also reasonably well
reproduced. The authors note that intra-band transition
rates are very sensitive to small admixtures of 2p and
α-cluster wave functions to the dominant configuration,
and the model should not be expected to give more than
a qualitative prediction of these properties.

Highly-deformed structures in
42

Ca were also studied
in the framework of the cranked relativistic mean field
theory (CRMF) [114]. The model does not assume the
existence of cluster structures: the formation of cluster
structures proceeds from microscopic single-nucleon de-
grees of freedom via many-body correlations. The side

band based on the 0
+

2 state in
42

Ca seems to correspond
to the [4,3] a configuration in Ref. [114], predicted to ap-
pear at about 1 MeV excitation energy and to have a

transitional quadrupole moment, Qt, of about 1.5 eb (as
compared to the experimental value of 1.13(10) eb). Tri-
axial deformation of γ ∼ -20

◦
is expected for this struc-

ture, and the same is true for more deformed states in
42

Ca. Unfortunately, the predictions of this model do
not include properties of the decay from the deformed
structure to the yrast band.

V. SUMMARY

A Coulomb excitation experiment to study electromag-

netic properties of
42

Ca was performed at INFN Labo-
ratori Nazionali di Legnaro. For the first time, the su-
perdeformation and triaxility of states in the side band
in A∼ 40 mass region was experimentally verified in a
dedicated high-precision measurement. The phenomeno-
logical two band-mixing model gives further insight into
the mixing of the wave functions, indicating a low de-
gree of mixing between the 0

+
states and a significant

one between the 2
+

states, but it is clearly too simple to
describe all experimental data. A consistent description
of the shape coexistence of a spherical ground state, ex-
hibiting large fluctuations in the β-γ plane, and a rigid

superdeformed side band in
42

Ca could be achieved by
performing sophisticated state-of-the-art theoretical cal-
culations in the framework of the large scale shell model
and beyond mean-field approach. Expectation values of
the quadrupole invariants of the 0

+
and 2

+
states in the

ground-state and side bands in
42

Ca, related to the shape
parameters, were derived in a model-independent way us-
ing the Quadrupole Sum Rules formalism, and the appli-
cation of this method to the theoretical results helps to

understand the complex structure of
42

Ca.
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2016 (unpublished).
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